
PII: sooo5-10!38(!?7)ooo71-x 
Auromarica. Vol. 33, No. 8, pp. 1437-1448, 1997 
0 1997 Else&r Science Ltd. All rights reserved 

Printed in Great Britain 
ocm-1098/97 $17.00 + 0.00 

Global Stabilization of Exothermic Chemical Reactors 

under Input Constraints* 

F. VIEL,? F. JADOTt and G. BASTINt 

A generic class of exothermic chemical reactors can be globally stabilized 
by state feedback with input saturations at an equilibrium that is unstable in 
open loop conditions. The control is robust against modelling uncertainties 

in the dependence qf the kinetics with respect to temperature. 

Key Words-Exothermic chemical reactors; nonlinear temperature control; state feedback 
controllers; global stabilization; robustness to uncertainties; input constraints, adaptive control. 

Ah&act-This paper is devoted to the temperature control 
and the stabilization under input constraints of exothermic 
chemical reactors. We first consider a reactor in which a 
single and exothermic reaction takes place and design state 
feedback controllers to achieve the global and robust 
stabilization under input constraints of the reactor. Then, we 
extend these results to a general class of exothermic reactors 
in which multiple coupled chemical reactions can take place. 
0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

In this paper, we deal with the temperature 
control under input constraints of exothermic 
continuous chemical reactors. The problem of 
feedback stabilization under input constraints 
has been considered for a long time in the 
literature and can be traced back at least until 
Fuller (1969). In a paper by Sontag (19&l), it was 
shown that linear systems i = Ax + Bu with A 
unstable cannot be stabilized in general with 
bounded feedback control. When the matrix A is 
critically stable, conditions for feedback stabiliz- 
ability with input constraints are as given in 
Sussmann et al. (1994) (see also Tee1 (1995) and 
Lin et al. (1996)). Related conditions for 
nonlinear feedforward systems can be found in 
Tee1 (1992), while the problem of saturated 
feedback control for stable nonlinear systems is 
treated in Lin (1996). It is worth noting that, in 
the present paper, an important contribution is 
to show that a generic class of reaction systems 
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can be globally stabilized by state feedback with 
input constraints at a hyperbolic equilibrium 
which is unstable in open loop conditions. 

For the sake of illustration of the problem we 
are concerned with here, let us consider a 
continuous reactor in which a first order and 
exothermic reaction A + B takes place. Such a 
reactor can be described by the following 
equations: 

1 

3iA = -k(z)x, + d(xZ - XA), 

& = ,‘(T)x, - &, (1) 
f = bk(T)x* + d(T’” - T) + e(Tw - T), 

where xA and xg are the concentrations in the 
reactor of reactant A and the product B, 
respectively. T is the reactor temperature. ~2 is 
the positive and constant concentration of 
reactant A in the feed flow. d and e are positive 
constants associated with the dilution rate and 
the heat transfer rate, respectively. b is a positive 
constant standing for the exothermicity of the 
reaction A+ B. T’” and T, are the manipulated 
variables of the feed temperature and the 
coolant temperature, respectively. k(T) is a 
non-negative and bounded function of the 
temperature. 

According to the terminology of Vie1 er al. 
(1997) and Bastin and Levine (1993) system (1) 
is rewritten as: 

1 

i*= -k( T)xA + d(x$ - xA), 

iiB = k( T)xA - dxB, 

i- = bk(T)x/, - qT + u, 
(2) 

with q = d + e, while u = dT’” + eT, is the 
control input. 

The open-loop reactor (with constant control 
input u) may exhibit three steady states, two of 
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which are asymptotically stable and one of which 
is unstable (Aris and Admundson, 1958). The 
stable low temperature steady state, denoted by 
(TS’, Fz, Zk’), has such a low rate of conversion 
that it is not very desirable for economic reasons. 
The operation of the reactor at the stable high 
temperature steady state ( TS2, 22, xf*) can lead 
to practical engineering difficulties, and for this 
reason is often not desirable in spite of its high 
conversion rate. Therefore, it is of great interest 
to operate the reactor at the intermediate 
unstable steady state (T”, fy, 2:) (medium 
temperature and conversion rate). This explains 
the motivation for obtaining a control scheme 
such that closed loop dynamics are globally 
asymptotically stable at the intermediate open 
loop unstable steady state (see e.g. Abedekun 
and Schork, 1991; Cibrario, 1992; Alvarez- 
Ramirez, 1994). 

Under the linearizing feedback controller 

u(xA, T) = P*(T* - T) + qT - bk(T)xA, (3) 

where T* > 0 is the temperature set point and 
p* > 0 is a control design parameter, it is known 
(see e.g. Abedekun and Schork, 1991; Vie1 et al., 
1995) that the resulting closed-loop dynamics 

{ 

1* = -k( T)xA + d(x; - xA), 

zfB = k(T)x, - dxB, (4) 
F=flP(T*- T), 

are globally asymptotically stable at (T*, f,+ ZB), 
where (ZA, fB) is the unique equilibrium point of 
the globally asymptotically stable zero dynamics: 

i,&= 

c 

-k(T*)x* + d(x: - xA), 

B = k(T*)x* - dxB. (5) 

Therefore, by setting T* = T”, this feedback 
control strategy allows one to operate the 
reactor at the open loop unstable steady state 
(T”, fy, f:). 

The main drawback of this result lies in the 
fact that no input constraints are imposed on the 
control action, although it is obvious that 
u(l) = dT’“(t) + eT,(t) is to be physically positive 
and bounded from above and from below: 

0 < umi” 5 u(t) I urnax, 

where umiP and urnax are the positive constraints 
on the input u. The most direct way of handling 
the input constraints is to saturate the feedback 
controller: 

U&A, T) = IUm~;tJP*(T* - T) +qT- WT)x,~. 

(6) 
However, as will be illustrated later, input 

saturations can impair the nominal stabilizing 
property and lead to an unexpected and 
undesirable closed loop behaviour, as has been 

noted and discussed in the paper by Alvarez et 
al. (1991). For instance, we will show with a 
simulation example in Section 2.1 that, when 
saturated, the above feedback controller is no 
longer capable of cooling the exothermic reactor 
sufficiently to avoid stabilization at an undesired 
extraneous equilibrium point. From this fact, we 
are led to consider the concentration u of 
reactant A in the feed as an additional input. 
(Indeed, decreasing the quantity of reactant A in 
the feed is another way of cooling the exo- 
thermic reactor). We will show in Section 2.2 
how to design and combine two feedback 
controllers u(xA, T) and u(T) in order to solve 
the stabilization problem under input constraints 
(and, as a result, how to operate the reactor at 
the desirable open loop unstable steady state 

(T “,_$,Zi)). In Section 2.3, we present an 
extension of this feedback controller that 
achieves global stabilization of the reactor and is 
robust to large uncertainties on the dependence 
of the kinetics with respect to temperature. 
Finally, Section 3 is devoted to the extension of 
these results to a more general class of 
exothermic reactors. 

2. CASE STUDY: THE SINGLE REACTION CASE 

Let us first introduce two assumptions 
regarding the reactor system (2). These assump- 
tions will be used throughout this section for 
control purposes. 

Assumptions. 

hl: the function k(T) is non-negative, bound- 
ed and k(0) = 0. 

h2: the input constraints urni” and urnax and the 
temperature set point T* are such that the 
following inequality holds: 

Vx* E [O, x2], 

U max > qT* - bk( T*)xA > urni” > 0. 

By Assumption h2, there exists a temperature 
interval [T,, T2] such that T, c T* < T2 and the 
inequality urnax > qT - bk(T)x, > urni” is sat- 
isfied for all (T, xA) E [T,, T,] X [0, x2]. This 
assumption can be regarded as a kind of 
feasibility condition on the open loop system. 
Indeed, it implies that the static input corres- 
ponding to the equilibrium point (T*, _FA, ZB) 
belongs to the interval of input constraints. 
However, it is even much stronger than that: it 
might hold only for a very large range of the 
manipulated input. However, we shall see in 
Section 2.1 that the closed loop behaviour with 
the controller (6) can be unacceptable, even 
though the interval of constraints is large. 

Consider the reactor system (2) under the 
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saturated feedback control law (6). A first 
stability result is given in the following theorem: 

Theorem 2.1. Under Assumptions hl and h2, the 
dynamics of the controlled reactor (2)-(6) are 
such that: 

(i) The domain R X IO, T,] with R = {xA L 0, 
xg z 0, xA + xg I x2} is positively invariant. 

(ii) The equilibrium point (T*, F*, Xg) is asymp- 
totically stable (relatively to the domain 
Sz x IO, T2]) for sufficiently large p*. Cl 

Proof: 

(9 We have iA(xA = 0) z 0 and a,(~, = 0) 2 0. 
Hence, the concentrations remain non- 
negative provided that xA(t = 0) 20 and 
_xs(f = 0) 2 0. Defining Z = XA + XB, we have 
Z = -d(Z - ~2). Hence, Z(t) 5 x2 for 
Z(t = 0) 5x2 and the compact set R = 

bA z 0, xB 10, z = xA + xB 5 x2). is posi- 
tively invariant for the closed loop dynamics. 
Moreover, we have p( T = 0) 2 urnin > 0. By 
Assumption h2, we obtain +A, T,) = 
max (urni”, P*(T* - T2) + qT2 - bk(Tz)~,+) 5 
u max and L!‘(T,) = P*(T* - T,) C 0 or 
pi-(&) = bk(&)xA - qT2 + urnin C 0. Hence, 
the domain Q x IO, T,] is positively invariant. 

(ii) We will prove at first that the reactor 
temperature T is globally asymptotically 
stable at the set point T* (relative to IO, T2]). 
Assumption h2 and a continuity argument 
imply that there exist two temperatures 
T; = T;(P*) and T;= T#*) such that 
T,<T;<T*<T;<T, and +A, T) = 

P*(T* - T) + qT - bk(T)xA E [u”‘~~,u~~~] 
on [0,x:] X [T;, T;]. The technique of proof 
that will be used is to show that the 
temperature trajectory is trapped in finite 
time within the positively invariant interval 

]T;, Gl. 

Consider the case 0 < T(0) < T*. For any 
T E IO, T,[, we have 

utxA, 7’) = 

min (urnax, P*(T* - T) + qT - bk(T)xA) 2 urni” 

by choosing p * large enough. So, for any 
T E IO, T,[ we obtain T(T) = P*(T* - T) >O or 
F(T)=bk(T)xA-qT+u”““>-qT*+u”‘““>O 
by Assumption h2. For any T E [T,, T;] we have 

utxA, T) = 

min (Pax, P*(T* - T) + qT - bk(T)xA) 2 urnin 

and p(T) = P*(T* - T) >O, or p(T) = 
bk(T)xA - qT + urnax > -qT* + urnax > 0 by 

Assumption h2. 
Consider the case T* < T(0) 5 T2. For any 

T E [T;, T,], we obtain 

u(xA, T) = 

max (urnin, P*(T* - T) + qT - bk(T)xA) 5 urnax 

and F(T) = P*(T* - T) <O or i-(T) = 
bk(T)xA - qT + urni” < 0. 

Hence, the temperature trajectory is trapped 
in finite time within the positively invariant 
interval [T ;, T;]. The temperature dynamics on 
[T;, T;] are given by the asymptotically stable 
linear system p = P*(T* - T). So, we have 
proved that the reactor temperature T is globally 
asymptotically stable at the set point T* (relative 

to IO, &I). 
It remains now to show that the closed loop 

dynamics are globally asymptotically stable at 
(T*, $A, XB) where (YA, ZB) is the unique 
equilibrium point of the system (5). The 
isothermal dynamics: 

R,&= 

(, 

-k( T*)xA + G!(x~ - xA), 

‘B = k(T*)xA - dxg, (7) 

are globally asymptotically stable at @A,&) 
(relative to a). By making use of Theorem A.1 
in Appendix A in Vie1 et al. (1995), we conclude 
to the global asymptotic stability of the closed 
loop dynamics at (T*, X,.X,). n 

Theorem 2.1 states that, even if input 
saturations occur, the controlled reactor (2)-(6) 
can be stabilized on the temperature set point 
T* provided that the initial conditions belong to 
the domain Q x IO, T2]. But this is not a global 
stability result, since the whole temperature 
range IO, + m [ is not covered. 

2.1. An example of undesired closed loop 
behaviour 

We shall now show with a simulation example 
that undesired closed loop behaviour may occur 
when the initial temperature condition belongs 
to IT*, +m[. For this purpose, we consider the 
numerical values: k(T) = k0 exp-‘lr (Arrhenius 
law), k,, = 7.2e + 10 min-‘, k, = 8700 K, d = 
1.1 min-‘, x2 = 1 mol/l, b = 209.2 K L/mol, q = 
1.25 min-’ and u = 355 K/min. 

The three open loop steady states are shown 
in Fig. 1 (they correspond to the intersection 
between the rate of heat generation and the total 
rate of heat removal). We assume that the 
system is initially in open loop at the stable high 
temperature steady state ( Ts2, _$, _i$*) = (467.8, 
0.002, 1.1) with a constant input u = 355 K/min. 



1440 F. Viel, F. Jadot and G. Bastin 

“--I I 

, 
sao- .’ - 

,’ 

250- 

!m- 

so- 

lOO- 

Fig. 1. The open loop steady states. 

From time t = 0, the feedback control objective 
is to drive the system to the open loop unstable 
steady state (T”, fy, fg) = (337.1,0.711,0.29) 
and to stabilize the reactor at this equilibrium 
state. 

For this purpose, we use the feedback control 
law (6) with urnin = 300, urnax = 500, p* = 5 and 
the set point T* set to the desired temperature 
T” = 337.1. One can easily check that Assump- 
tions hl and h2 hold and that T2 = 341. 

As shown in Fig. 2, the control input u 
saturates at the lower bound urnin and the reactor 
is driven to the undesired extraneous equilibrium 
point P (see Fig. 1). This equilibrium point P 
corresponds to the high temperature open loop 
steady state when the input u is equal to Pin. 
This behaviour can be easily explained by noting 
that, on the one hand, we have: 

VT ZE 370, t/x* 2 0, 

P*(T* - T) + qT - bk(T)x, 5 urni”, (*) 

and, on the other hand, the steady state 

(T s2, Zy, x”,‘) = (467.8,0.002,1.1) belongs to 
the basin of attraction 

0.015 

3O.O’ .. ” m go., .; 

OO- 10 
Uma (mn) 

of P. The saturated 

&o.._ 

+ EmI 350. .r’ ______________ 
mO 5 10 

th hn) 

500 .... .... 
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-m ........... ......... ... 

Fig. 2. An undesired closed loop behaviour. 

feedback controller is not capable of cooling the 
exothermic reactor suflciently. One can easily 
check that the same scenario would occur for 
any p* such that p* 2 5. 

2.2. Global stabilization with input constraints 
From the simulation presented above, it is 

clear that we have to find another way of cooling 
the reactor in order to stabilize the system at the 
intermediate open loop unstable steady state. 
One obvious possibility is to decrease the 
concentration v of the reactant A in the feed, 
which should reduce the velocity of the 
exothermic reaction and hence have a cooling 
effect on the system. We are therefore led to 
consider the concentration u of reactant A in the 
feed as an additional input. The two-input 
reactor model we now consider is given by: 

iA = -k(T)n, + d(u - xA), 

= k(T)x, - dxB, 

f = bk(T)xA - qT + u, 
(9) 

where u and u are the manipulated heat and the 
manipulated concentration of reactant A in the 
feed, respectively. 

Let p* be such that /I* >(qG - u”‘“)l(Tz - 
T*). Consider the two feedback controllers u(T) 
and u(x+,, T), which are defined as follows: 

u(T) = x2, VT E IO; T,L 

= 0, VTE [T2, +a[, (10) 

and 

with 

+ qT - bk(T)x,d, (11) 

P(T) = P*, VT E IO, T*] 

=min qT-u”“” ( T _ T* , P*), VT E IT”, T,l 

= qT - urni” 

T-T*’ 
VT E [T,, +m[. 

(12) 

The role played by the feedback controller u(T) 
is to set the concentration of reactant A in the 
feed to zero when the temperature of the reactor 
is high. The feedback controller u(x*, T) 
described by (11) and (12) is a modified version 
of the control law (6) with an adaptive gain 
P(T). The next theorem shows that the feedback 
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controllers (lo)-(12) make the reactor system 
(9) globally asymptotically stable at the equilib- 
rium point (T*, Z,+ fu). 

Theorem 2.2. Under Assumptions hl and h2, the 
dynamics of the controlled reactor (9)-(12) are 
such that: 

(i) The domain Q ~10, +a~[ with n = {x,+ 20, 
xB z 0, xA + xB 5 x2) is positively invariant. 

(ii) The equilibrium point (T*, XA, Xg) is asymp- 
totically stable (relatively to the domain 
Q X IO, +m[) for p* large enough. 

Proof 

(9 The positive invariance of Q can be proved 
as in item (i) of the proof of Theorem 2.1 by 
noting that 0 2 u(T) I xg, while the positive 
invariance of the temperature interval 
IO, + m[ results from the fact that f(T = 
0) 1 u min > 0. 

Let us prove that the temperature trajectory 
is trapped in finite time within the positively 
invariant interval [T;, T;] where T;, T; are 
defined as in the proof of Theorem 2.1. 

(ii) 

Consider the case O< T(0) < T*. Since 
P(T) = p*, we are in the same situation as in the 
proof of Theorem 2.1. 

Consider the case T* < T(0). For any 

T E P’6, Gl, +A, T) = 
max (Urnin, /3(T)(TY T) +T?:bk(T)xn) 5 urnaX 
and r(T) = P(T)(T* - T)<O or F(T) = 

bk(T)xA - qT + urnin < 0. For any T E IT,, +m[, 
we have u(T) = 0, u(xA, T) = urnin and p(T) < 
bk(T)x,z, - qT2 + urni” < bk( T)xA - E with E > 0. 
Using the boundedness of k(T) and the fact that 
xA decreases towards 0 when u(T) = 0, we will 
have in finite time p(T) < 0 for any T > Tz. 

0’ ’ I 
0 5 10 

3w- 
0 5 10 

the (mn) time (mn) 

0 5 
time (mn) 

;-r=l 

0 5 10 
Ume (mn) 

Fig. 3. Global stabilization with input constraints. 

Hence, the temperature trajectory is trapped 
in finite time within the positively invariant 
interval [T;, T;]. The rest of the proof is similar 
to that of Theorem 2.1 (by noting that 
u(T*) = xi;;). Cl 

Note that the control law (10) is discon- 
tinuous. In fact, Theorem 2.2 still holds when 
using any smooth feedback control u(T) such 
Fat ;JT(T~ I”, x2], u(T*) =x2 and u(T) = 0 for 

E m. 
To *illustrate Theorem 2.2, we show in 

simulation how our previous control objective 
(Section 2.1) can now be achieved: to drive the 
reactor from the open loop stable high 
temperature steady state ( TS2, 32, CC;*) = (467.8, 
0.002, 1.1) to the intermediate open loop 
unstable steady state (T”,$A,X:) = 
(337.1,0.711,0.29) with input constraints urni” = 
300 and urnax = 500, set point T* = 337.1 and 
parameter p* = 33 > (qT2 - umi”)/(T2 - T*). The 
simulation results are shown in Fig. 3. The 
reactor, as predicted by Theorem 2.2, is indeed 
driven to the intermediate open loop unstable 
steady state under input constraints. 

2.3. Robust global stabilization with input 
constraints 

Let us now consider the same control problem 
but assuming that the function k(T) involved in 
the kinetics and the positive constant b are 
unknown. In other words, we consider a problem 
of robust global stabilization of the reactor under 
input constraints. This problem is mainly 
motivated by the fact that, in many instances, the 
function k(T) may exhibit some uncertainty and 
deviates from the theoretical Arrhenius model. 

This problem of robust global stabilization is 
solved in Vie1 et al. (1997) by using the heating 
rate u alone as a control action, without input 
constraints. The control design is based on 
input-output linearization, with an appropriate 
nonlinear dynamic extension. 

We show hereafter that the same dynamic 
extension can be combined with the controller 
(lo)-(12) to solve this problem of robust global 
stabilization under input constraints, provided 
the following additional assumption is satisfied: 

Assumption h3: The function k(T) is globally 
Lipschitz on 10, + ~0 [. q 

This is a very mild assumption which is satisfied 
by most plausible models of exothermicity, and 
in particular by the Arrhenius law. 
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A dynamic feedback controller u(xA, T) is 
defined as follows: 

u(x,+, T) = sat 
[@“,u-] 

/3*(T* - T) + qT 

(13) 

b = (T - T*)6’xA, 

with 

f(T) = 1, VT E IO, T*], 

= P*(T* - T) + qT - urnin 
qT*-umin ) 

VT E [T*, 1;1, 
= 0, VT E [T,, +w[, 

(14) 

and the temperature & > T* is such that 

/I*(T* - &) + qT, - urnin = 0. 

The feedback controller u(T) is defined as 
before: 

v(T) =x2, VT E IO; T,[, 
= 0, VT E [x;, +w[. (15) 

Then, we have the following result. 

Theorem 2.3. Under Assumptions hl, h2 and h3, 
the dynamics of the controlled reactor, (9), 
(13)-(15), are such that: 

(i) The domain Q X10, +m[ X10, +m[, with 
fi = {x&z 0, xn 2 0, xA + xg Ix?}, is posi- 
tively invariant. 

(ii) The equilibrium point (T*, F.4, -fB, a), 

where 6 is defined by ,a/(, + 8) = bk(T*), 
is asymptotically stable (relative to the 
domain BX]O, +m[ X10, +a$) for p* >q 
large enough and for (Y > bk(T*) such that 

qT* - ox? > urni” holds. cl 

Before proving Theorem 2.3, let us remark 
that, by means of Assumption h2, there really 
exists some (Y > bk(T*) for which qT* - ax: > 
u min. Indeed, Assumption h2 implies that 

qT* - bk(T*)x: > urnin. Hence, by continuity, 
there exists some (Y > bk(T*) such that qT* - 
ax: > urni” holds. 

Proof of Theorem 2.3. 

(9 The positive invariance of R X IO, + w[ can 
be proved as in item (i) of the proof of 
Theorem 2.2, while the positive invariance 
of the interval IO, +w[ in 8 results from the 
fact that 6(0 = 0) = 0 (see Theorem 1.7, 
Chapter II in Bhatia and Szego (1970)). 

(ii) For the sake of clarity, the proof is 
organized in three successive steps. 

Step 1: let /3* be large enough such that 
T* < TI < T2. We show that the temperature 
trajectory is trapped in finite time within the 
positively invariant interval [T,, T,], where 
6 < T* can be chosen arbitrarily close to 
T*. 

VT 5 T,, we have 

u(xA, T) = min urnax, P*(T* - T) 

ae 
+qT--x 

ff+0 
A 1 Umin 

by choosing p* large enough. Hence, 
VT 5 T,, we obtain 

T(T) = bk( T)xA 

- qT + urnax > -qT* + urnax > 0 

by Assumption h2 or 

p(T) = P*(T* - T) + bk(T)x, 

ae --x*>o a+e 

for p* large enough. 
VT? T,, we have u(xA, T) =umin and 

u(T) = 0. VT, 5 T 5 T2, we obtain F(T) = 
bk(T)x, - qT + urni” < 0 by means of Ass- 
umption h2. VT > T2, we have in finite time 
i‘(T) < 0, by using the same argument as 
in the proof of Theorem 2.2. 

Step 2: let us prove now that VT E [T,, T*] 
we have 

P*(T* - T)+qT- 
ae 

-x* 2 urnin, 
a+e 

VT E [T*, T,] we have 

P*(T* - T) + qT 

-f(T) $x/, E [urnin, urnax], 

VT, 5 T I T* we have 

P*(T* - T) + qT -5x, 

for & close to T* (since we have 
qT* - ~1x2 > urni”). 

VT E [T*, T,], the reader can check that 

P*(T*- T)+qT -f(T)~x,M”‘” 
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by using the definition of f(T) and the fact 
that qT* - urni” > ~2. VT E [T*, T,], we 
also have 

P*(T* - T) + qT -f(T)-f$xA I urnax, 

since qT 5 urnax on [T*, T,]. 

Step 3: we show that 

V=$(T*-T)2+~ln((Y+0)-!&(T*)ln8 

is a Liapunov function on the domain 
Q x [T,, T,] X IO, +m[. (This function V was 
considered by Vie1 et al. (1997).) 

Consider the domain [K , T*]. We have 

GA, T) 

= min pax ,/3*(T*-T)+qT-$x,). 

3.1. System description 
We consider CSTRs in which m exothermic 

reactions take place involving n (n >m) 
chemical species and described by: 

When u(x*, T) = urnax, using Assumption 
h3, we obtain for some K,> 0 (K, is 
independent of /3*): I 

i = Cr(x, T) + d(xin - x), 

p=B(x, T)-qT+u. 

ri I Ko(T - T*)* + (urnax - qT)(T - T*). In this system: 

Hence, by Assumption h2 (urnax - qT > 0), 
and for T, sufficiently close to T* we have 
v I 0. When 

x is the vector of the concentrations of the 
involved chemical species, dim x = rz. 

xi” is the vector of non-negative and constant 
feed concentrations, dim xi” = II. 

u(xA, T) = P*(T* - T) + qT - sxA, 

using Assumption h3, we have for some 
K1 > 0 (K, is independent of p*): 

ri I (-/3* + K,)(T* - T)*. 

Hence, for /3* large enough, we have ri I 0. 
Consider the domain [T*, T,]. We obtain: 

v I (-p* + K,)(T* - T)* 

+p* q”f~~urti~ (T* - T)*. 

Let K2 > 0 be defined by K2 = cux$l(qT* - 
urni”). Hence, we have 

ri zz (P*(K2 - 1) + K,)(T* - T)*. 

Since qT* X ~1x2 > urni”, we have K2 < 1 
and for /3* large enough we obtain 3 I 0. 

(iii) The rest of the proof is similar to that of 
Theorem 4.1 (see also Corollary 4.1) in Vie1 
et al. (1997) (use of LaSalle’s invariance 
principle and some w-limit arguments.) Cl 

To illustrate Theorem 2.3, let us consider the 
same scenario as before, i.e. the stabilization of 
the open loop unstable steady state 
(T”,f:,f:) = (337.1,0.711,0.29) from the 
open loop stable steady state (TS2, 32, x”B”) = 
(467.8,0.002,1.1) with respect to the constraints 

U min = 300 and urnax= 500. We set T* = 337.1 
and we choose (Y = 120 (the inequality qT* - 

ax2 ’ Urni” is then satisfied) and p* = 33. (The 
reader can check a posteriori that (Y > bk(T*).) 
We have T, = 340.9. The simulation results are 
shown in Fig. 4. The reactor stabilizes the open 
loop unstable steady state with input constraints, 
in spite of the unknown kinetics. 

3. GENERALIZATION TO THE CASE OF 
MULTIPLE REACTIONS 

Our purpose in this section is to extend our 
previous results to a general class of exothermic 
continuous stirred tank reactors (CSTRs). 

(16) 

T is the reactor temperature. 

r(x, T) is the vector of reaction kinetics with 
dim r = m and rT(x, T) = (r,(x, T), r2(x, T), 

. . . f r,Jx, T)). (Here and throughout, yT stands 
for the transpose vector of y.) Moreover, 
we have 

ri(x, T) = k;(T)cp,(x), (17) 

where /Ii(T) is a positive and bounded 
functions of the temperature (for instance, the 
Arrhenius law) and vi(x) is a non-negative 
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Fig. 4. Robust global stabilization with input constraints. 
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function of the concentrations that vanishes if 
Xj = 0 for some reactant j involved in the ith 
reaction. 

C is the stoichiometric matrix, dim C = n X m. 

B(x, T) is the non-negative reaction heat. We 
have 

where the coefficients bi are positive constants. 

d is the positive and constant dilution rate. 

q is a positive and constant heat transfer 
coefficient. 

u is the input, i.e. the manipulated heat. 

Such a formalism for the description of (bio)- 
chemical reactors has been used previously in 
the literature (see e.g. Bastin and Dochain, 1990; 
Dochain et al., 1992; Bastin and Levine, 1993). 

Example. Consider a CSTR in which the 
exothermic reactions A+ B and B + 2C -+ D 
take place. The reactor is fed with the reactants 
A and C. The dynamics of the process are 
described by the model (16) with the following 
definitions; 

x = (xA, XB, XC, XDjT, 

X in_ - xx, 0, xc”, oy, 

/-I o\ 

C= 1 1 -1 

0 -2 I ’ 0 1 

4x9 0 = @I(-% T), b(X, TNT, 
B(x, T) = b,r,(x, T) + b2r2(x, T). 

Moreover, if we assume that the first reaction 
A+ B is of first order with respect to A and the 
second reaction B + 2C+ D is of first order with 
respect to B and of second order with respect to 
C, we have: 

r1(4 T) = k1(7%1(x) = kl(T)XA, 

rZ(x, T, = k2(T)(02(X) = k2( T)XB& q 

Let us introduce the following assumption. 
Assumption HO (principle of mass conserva- 
tion). There exists a positive vector, w = 

( Wl, w2,. . ., %)‘? Wj>O, j=l,...,n such that 
w=c = 0. 0 

This assumption implies that the reaction system 
is mass-conserving; in other words, what is 
produced in the reaction system cannot be larger 
than what is consumed. It also enables us to state 
a useful result on the boundedness of the 
concentrations in a chemical reactor described 
by the model (16). 

Lemma 3.1. Uniform boundedness. Under As- 
sumption HO, the concentrations Xi(t) remain 
non-negative for all t if xi(O) 2 0 and, further- 
more, admit as a positively invariant domain the 
compact set Q = {x E P :vj, xi 2 0, wTx 5 
wTxin}. Therefore, the concentrations are uni- 
formly bounded with respect to the temperature 
trajectory. 0 

The proof of this lemma is given in Vie1 et al. 
(1997). As a consequence of Lemma 3.1, 
throughout the rest of the paper the vector of 
concentrations x will be restricted to the 
bounded set Q. 

Example (continued). Assumption HO is sat- 
isfied with w = (1, 1, 1, 3)T. Therefore, by 
Lemma 3.1, the set Q = {xA 10, rg 2 0, xc 2 0, 
xb 2 0, wTx 5 wTxin} is a positively invariant 
domain for the chemical reactor under 
consideration. q 

Let us now consider the saturated feedback 
controller 

4x, T) = rums;t_, {P*(T* - 7,) 

+ qT - B(r, TN, (19) 

where urni” and urnax are the positive constraints 
on the input u. The problem we are going to 
focus on is the state feedback stabilization with 
input constraints of the controlled reactor 
(16)-(19) at the temperature set point T*. This 
problem ,will be studied under the following 
assumptions. 

Assumptions. 
Hl. The functions ki(T) are non-negative, 

bounded and ki(0) = 0. 

H2. The input constraints urnin and urnax and the 
temperature set point T* are such that the 
following inequality holds: 

tlx E R, 

U “‘=>qT * - B(x, T*) > urn’” > 0. 

H3. The isothermal dynamics i = 0(x, T*) + 
d(xin - x) are asymptotically stable (relative 
to the set Q) at the single equilibrium point 
x E R. 

Assumption H2 implies that there exists a set of 
temperatures [T , T2] such that T, < T* < T2 and 
the inequality urnax > qT - B(x, T) > urni” is 
satisfied for all (T, x) E [T,, T,] X Q. Let us also 
point out that, in spite of the global asymptotic 
stability of the isothermal dynamics which 
coincide with the zero-dynamics (Assumption 
H3), the overall dynamics of the chemical 
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reactor can be open loop unstable. The reader 
can refer to Feinberg (1987) and Rouchon 
(1992), who give some sufficient conditions on 
the kinetic scheme, so that the minimum-phase 
Assumption H3 holds. 

Theorem 3.1. Under Assumptions HO, Hl and 
H2, the dynamics of the controlled reactor 
(16)-(19) are such that: 

(i) The domain a X 1m1 is positively 
invariant. 

(ii) The reactor temperature T converges 
asymptotically to the temperature set point 
T* (V(x(O), T(0)) E R X IO, T2]) for /3* large 
enough. 

If, in addition, Assumption H3 holds, then we 
have: 

(iii) The equilibrium point (X, T*) is asymptoti- 
cally stable (relative to the domain RX 
IO, &I) for p* large enough. 0 

Proof. 

(9 

(ii) 

(iii) 

The positive invariance of R results from 
Lemma 3.1, while the positive invariance of 
the temperature interval IO, T2] can be 
proved as in item (i) of the proof of 
Theorem 2.1 by replacing bk(T)xA by 
B(x, 7’). 

The convergence of T can be proved as in 
item (ii) of the proof of Theorem 2.1 by 
replacing bk(T)x, by B(x, T). 

The result follows from Theorem A.1 of 
Appendix A given in Vie1 et al. (1997) 
using Lemma 3.1. cl 

Example (continued). It can be shown that 
Assumption H3 holds. Then, under Assumptions 
Hl and H2, the feedback controller 

4x, T) = tms;t_l @*CT* - T) + 0 

is such that the controlled reactor is asymptoti- 
cally stable at the equilibrium point (X; T*) 
relative to the positively invariant domain 
RX IO, T2] for p* large enough. Moreover, 
Z = (Z*, YB, _G, X,,) E R is the unique solu- 
tion of 

0 = -kI(T*)_fA + d(x: -x,), 

0 = kI(T*)fA - k2(T*)F& - u&, 

0 = -2k2(T*)F& + d(x: -x,), 

0 = k2( T*)f& - df,,. cl 

Theorem 3.1 is an extension of Theorem 2.1 to 
a general class of exothermic CSTRs. We have 
shown in our case study (Section 2) that an 
undesired extraneous equilibrium point occurs 
when the initial temperature does not belong to 
the stability domain IO, T2]. For more complex 
reactors, it is likely that other phenomena, such 
as unstable limit cycles, may occur. It is 
therefore of interest to devise similar generaliza- 
tions of Theorems 2.2 and 2.3 to the class of 
chemical reactors under consideration. 

3.2. Global stabilization with input constraints 
From now on, we consider the multi-input 

reactor system 

I 

f, = C,r(x, T) +f(u - x1), 

J$ = C2r(x, T) + d(xi: -x2), 

?‘=B(x, T)-qT+u, (20) 

where the state x has been split into two 
substates x1 and x2, and the matrices C1 and CZ 
are defined accordingly. The substate x1 is a set 
of chemical reactants such that r(x, = 0, x2 = 
xi?“, T) = 0. The input vector u stands for the 
concentrations of the reactants x1 fed into the 
reactor. 

Example (continued). Here, we have x, =xA 
and x2 = (xB, xc, xb) and 

c, =(-1 O), 

/o -2\ 

c2= 1 -1 ) L I 0 1 

x? = (O,xc”,O)T. 

u is the manipulated concentration of reactant A 
fed into the reactor. cl 

Let /3* be such that p* >(qT2 - u”‘“)/(T, - 
T*). Consider the feedback controllers u(T) and 
u(x, T), which are defined as follows: 

u(T) = xy, VT E 10; T2[ 

= 0, VT E [G, +m[, 
and 

4x, T) = &$+ UW‘T . V* - T) 

+ qT - B(x, 7% 
with 

P(T) = P*, VT E IO, T*], 

(21) 

(22) 

= qT - urni” 

T-T* ’ 
VT E [T,, +m(. (23) 

Then, we have the following-result. 
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Theorem 3.2. Under Assumptions HO, Hl and 
H2, the dynamics of the controlled reactor 
(20)-(23) are such that: 

(i) The domain Q X ]O,+w[ is positively 
invariant. 

(ii) The reactor temperature T converges 
asymptotically to the temperature set point 
T*(V(x(O), T(0)) E a X ]O,+m[) for /3* 
large enough. 

reaction kinetics r(x, T) and the positive 
constants bi are unknown. As said earlier, this 
situation is motivated by the fact that, in many 
practical cases, the functions l+(T) that are given 
according to empirical Arrhenius laws present 
large uncertainties. Hence, the question now is 
about the robust global stabilization under input 
constraints of a general class of exothermic 
CSTRs. For this purpose, we set the following 
assumption. 

If, in addition, Assumption H3 holds, then we Assumption H4. The functions ki(T) are glo- 

have: bally Lipschitz on IO, + 03 [. 0 

(iii) The equilibrium point (X, T*) is asymp- 
totically stable (relative to the domain 
R x [O,+m[) for /3* large enough. 0 

Proof: 

Let the control design parameter /I* and the 
m positive constants ai (i = 1,. . . , m) be such 
that $* > q and Vi,cui > biki(T*). Let G = 

( . . . , ej, . . .)’ E a’: and the temperature T, > 
T* be given by: 

(9 

(iii) 

The proof of the positive invariance of 
RX ]O,+w[ is as in item (i) of that of 
Theorem 2.2. 

The convergence of T can be proved as in 
item (ii) of the proof of Theorem 2.2, by 
replacing bk(T)xA by B(x, T). 

The proof is as in item (iii) of that of 
Theorem 3.1. q 

Example (continued). By application of Theorem 
3.2, we deduce that, under Assumptions Hl and 
H2, the feedback controllers: 

u(T) =x2, VT E IO; T,[ 

= 0, VT E [&,+m[ 

and 

u(x, T) = sat 
[&n,dy 

{P(T)(T* - T) + qT 

- WW)XA - b&~(Ow~~ 
are such that the controlled reactor is asymptoti- 
cally stable at the equilibrium point (2, T*) 
relative to the positively invariant domain 
R X IO,+ m[ for /I* large enough. Remember that 
X = (f,+ .&, %-, Zb) E Q is the unique solution of 

0 = -kI(T*)fA + d(x: -x,), 

0 = kI(T*)fA - k,(T*)f& - & 

0 = -2k2(T*)Z& + d(x$ -Is& 

0 = k2( T*)Z& - d&. q 

3.3. Robust global stabilization with input 
constraints 

We address here the same control problem as 
in Section 3.2, but we consider that the 
non-negative functions kj(T) involved in the 

P*(T* - T,) + qT, - urnin = 0, 

ff.6 
‘I = biki( T*). 
(Yi + 8, 

Then, consider the feedback controllers v(T) 
and u(x, T) defined below; 

u(T) = x:, VT E IO; T,[ 

= 0, VT E [T,, +m[ (24) 
and 

1-d’-f(T)C --jy$ cpi(X), (25) 
1 I 

6, = (T - T*)B;cpi(~), 

with 

i = 1, . . . , m, 

f(T)= 1, VT E IO, T*] 

= P*(T* - T) + qT - urni” 
qT*-umin ’ 

VT E [T*, T,] 

= 0, VT E [T,,+w[. (26) 

Theorem 3.3. Under Assumptions HO, Hl, H2 
and H4 the dynamics of the controlled reactor 
((20), (24)-(26)) are such that: 

(9 

(ii) 

The domain Q X ]O,+w[ x WY is positively 
invariant. 

There exists @* > q large enough and 
a; > biki(T*), i = (1, . . . , m), such that the 
reactor temperature T converges asymptoti- 
cally to the temperature set point T* and 
the variables 0, are bounded (V(x(O), 
T(O), e(O)) E Q X]O,+QJ[X~!$ 

If, in addition, Assumption H3 holds, then we 
have: 
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(iii) There exists p* > q large enough and 
ai > b,ki(T*), i = (1,. . . , m), such that 
(x, T) globally converges to (X; T*) (V@(O), 
T(O), e(O)) E R X 10, +m[X%). 0 

Proof. The proof is similar to that of Theorem 
2.3, by replacing bk(T)xA by B(x, 7’). 0 

Example (continued). By application of Theorem 
3.3, we know that under Assumptions Hl, H2 
and H4 the feedback controllers: 

u(T) = x2, VT E IO; T,[ 

= 0, VT E [T,, +m[, 

u(x, T) = sat P*(T* - T) + qT 
[l~m~~,llmax] 

-f(T)(-+xA --ff$- 2, XBXC 7 

1 1 2 2 

b, = (T - T*)fl,x,+ 

t9, = (T - T*)82XBX;, 

are such that the controlled reactor is asymptoti- 
cally stable at the eqilibrium point (2, T*, 8) 
relative to the positively invariant domain 
Qx]O,+m[X%E: for some p*>q and for some 
a, > b,k,(T*) and a2 > b2k2(T*). The equili- 
brium point 6 = (a,, 6,) is given by 

- 

-f$= b,k,(T*), s = b2k2( T*). Cl 
1 1 2 2 

4. CONCLUSION 

From a control point of view, exothermic 
chemical reactors are nonlinear challenging 
processes due to their instability features 
(multiple open loop steady states that are either 
locally asymptotically stable or unstable) and 
their capability of leading to thermal runaways. 
In this paper, we have designed various state 
feedback control structures for exothermic 
CSTRs that achieve global stabilization of the 
process, that are robust to large uncertainties on 
the dependence of the kinetics with respect to 
the temperatures and that handle input con- 
straints along the closed loop trajectories. 
Theorems 2.3 and 3.3 can be considered as the 
main results of the paper. These results have 
been motivated and explained in detail by 
considering the case of a CSTR in which the 
exothermic reaction A+ B takes place. 

From a practical point of view, it is well 
known that reactor operation at an open loop 
unstable steady state often corresponds to an 
optimal process performance (see e.g. Bruns and 
Bailey, 1975). Hence, we provide control tools 
that can achieve in a realistic manner this 
objective. The robustness and input constraints 

issues have been considered in conjunction with 
the stabilization aspect. On the other hand, our 
controllers involve high gain feedback. In 
practice, as the simulation of Section 2.3 
illustrates, the values of the gain are however not 
excessive. 

To be implemented, our state feedback 
controllers require the on-line knowledge of the 
full state of the system: the set of concentrations 
and the temperature. In the case of partial state 
measurement, we can use the robust state 
observer proposed by Bastin and Dochain (1990) 
and Dochain et al. (1992). It has been shown in 
Vie1 et al. (1997) that the incorporation of such 
an observer in the loop does not impair the 
nominal global stabilization and robustness 
properties of a state feedback controller. 
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