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Abstract-This paper considers the problem of designing 
static-state feedback laws for output regulation of square 
affine nonlinear systems. The approach taken is to use 
input-output decoupling techniques to simplify the output 
regulation task into separate single-input single-output 
regulation tasks. In the case where the input-output 
decoupling matrix is full-rank, this approach yields the 
well-known input-output linearizing feedback law. In the 
case where the input-output decoupling matrix is rank- 
degenerate, it is shown that a static-state control law for 
output regulation can be constructed as long as the system 
can be input-output decoupled via dynamic feedback. The 
internal stability of the closed-loop system obtained using 
this approach is analysed. 01997 Elsevier Science Ltd. 

1. Introduction and problem statement 
In recent years the question of state stabilization of nonlinear 
systems has been an area of significant development. The 
foundation of this interest can be traced back to the 
fundamental result of Brockett (1983), which showed that for 
affine systems where the number of inputs is strictly less than 
the number of states, no smooth static-state feedback law 
exists that asymptotically stabilizes the system state. To 
overcome this difficulty, authors have concentrated on two 
approaches: the use of time-varying tocontrol laws (see e.g. 
Pomet, 1992; Coron, 1992), and the use of discontinuous and 
non-smooth static-state control laws (see e.g. the early work 
by Sussmann (1979) and the more recent work by Canudas 
de Wit and Sordalen (1991), Kolmanovsky et al. (1994) and 
Khennouf and Canudas de Wit (1995)). A connection 
between these methods is presented in Coron and Rosier 
(1994). In comparison, the task of output regulation of a 
dynamic system has not been strongly pursued. This question 
has a strong practical motivation, since many physical 
systems have as many control inputs as control objectives (or 
outputs), though the dynamics of the system may contain 
additional ‘internal’ states. In such situations, the techniques 
developed for full-state stabilization need not be employed to 
achieve the desired control objectives. An application area in 
which these issues arise is in the control of kinematic models 
of mobile robots. These models have the advantage that they 
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are simple nonlinear dynamic systems (d’Andrea-Novel et 
al., 1996) that nevertheless display many of the characteristic 
difficulties associated with controlling general nonlinear 
systems. An example of the output regulation problem is the 
task of ‘parking’ the robot at the origin without proscribing 
the orientation of the steering wheels. 

In this paper we consider general nonlinear affine control 
systems with the same number of inputs as outputs. Such 
systems are known as square systems. The output regulation 
task is approached by transforming the system into a form 
where each output can be individually regulated by a single 
input. The main tool employed to achieve this end is the 
dynamic extension algorithm (Nijmeijer and Van der Schaft, 
1990, Section 8.2, esoeciallv DD. 263-2641. In the case where 
the input-output hecou$ig matrix ’ is full-rank, this 
approach yields the well-known input-output linearizing 
feedback law. The closed-loop system generated in this 
manner is studied for internal-stability properties and a 
theorem is given that character&es a subset of initial 
conditions for which the closed-loop system is internally 
stable. The situation is similar to that considered by authors 
studying peaking phenomena in cascaded systems (Saberi et 
al, 1990, Sussmann and Kokotovic, 1991), where certain 
initial conditions generate transients in the system that 
become unbounded in finite time. In the case where the 
input-output decoupling matrix is rank-degenerate, however, 
the controller obtained by direct application of the dynamic 
extension algorithm would have a dynamic state. In this 
paper, the structure of the regulation problem is exploited to 
generate a static-state control law. The resulting algorithm is 
referred to as the linearizing extended output stabilizing 
(LEOS) control algorithm. An analysis of the internal 
stability of the closed-loop system generated in this manner is 
undertaken. To demonstrate the algorithm, an output 
regulating control law is designed for a kinematic model of a 
mobile robot. 

The paper is organised into five sections. After the 
introduction, Section 2 deals with systems for which the 
input-output decoupling matrix is full-rank. The more 
general case, for systems where the decoupling matrix may 
be rank-degenerate, is dealt with in Section 3, while Section 4 
considers issues associated with singularities in the control 
law. Section 5 presents the analysis of the design procedure 
applied to a kinematic model of a mobile robot, while brief 
conclusions are drawn in Section 6. 

2. Systems whose input-output may may be decoupled 
In this section the case of a square, nonlinear affine control 

system whose input-output decoupling matrix is full-rank at 
all points in state space is considered. In this case there exists 
a static-state feedback transformation of the system leading 
to fully decoupled input-output dynamics. Applying a simple 
exponentially stabilizing control law leads to a closed-loop 
system with asymptotically stable output dynamics. The main 
result of the section presents a characterisation of a set of 
initial conditions for which the internal dynamics of the 
closed-loop system are well defined for all time. 

Consider a nonlinear dynamic control system of the form 
x 

~44 =f@) + c &(X)4, x(O) = XII, 
,=t (1) 

y = h(x). 
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Here x E R” is the state variable, u = (ut, . . , u,,,)~ is an 
m-dimensional input variable and Y is an m-dimensional 
output variable. Such systems are known as square systems. 
The functions A g,: G!” + R” and h: R” --, W are assumed to 
be smooth. For the remainder of this section it is assumed 
that the drift term f(x) is identically zero on the whole state 
space. Thus (1) can be written in the form 

i.(t) = g(x)u, y = h(x), (2) 

where the input vectors are written in matrix form 
g: 88” + W$“““, with g(x):= Mx), , g,(x)). 

The input-output decoupling matrix A(x) E Rmxm for the 
system (1) has ijth element {A(x)!, = L,,Thi(x), where 
L$,(x) is the Lie derivative of hi(x) m the direction g,, and 

Pl,...,Pm 1 are the characteristic numbers of the outputs 
Y = (h,, . , h,) (Nijmeijer and Van der Schaft, 1990, pp. 
247-248). Indeed, since f(x) = 0, A(x) = Dh(x)g(x), where 
D/t(x) is the Px” Jacobian matrix of partial derivatives, 
{D/t(x)},, = (&,/axj)(x). It is known Nijmeijer and Van der 
Schaft, 1990, Theorem 8.9) that if Dh(x)g(x) E iRmx” is 
full-rank then the system can be strongly input-output 
decoupled by the input transformation u(x, u’):= 
[Dh(x)g(x)]-‘u’, where u’ is the new input. Thus the 
(linearizing) control law u’ := -y, or, in terms of the original 
inputs and outputs, 

u(x) = -[Dh(x)g(x)]-‘h(x) (3) 

is a candidate for regulating the system output. Indeed, using 
the comparison function V(x) = O.Sh(~)~h(x) and computing 
its time derivative along the solutions x(r) of the closed-loop 
system i = g(x)u(x) yields v(x(?)) = -V(x(t)). Certainly, 
the linearizing control law (3) stabilizes the system output. 
However, the Lyapunov function V(x) *provides _ no 
information on the evolution of the ‘internal states’ of the 
system-those parts of x that do not contribute to the output 
h(x). The concept of ‘internal state’ is not easily defined in a 
rigorous manner; however, the concept of internal stability, 
in the context of output regulation, can be defined as follows: 

Definition 1. Consider a system of the form (1) equipped 
with a static-state control law u:= u(x). The closed-loop 
system is said to be inrernally stable with regulated output if, 
for all initial conditions x0 E R”, the solution x&x0) of the 
closed-loop system exists and remains bounded for all time, 
and in addition the output y(t) = h(x(t;x,)) converges to 
zero. 

In practice, this requirement is too strong for many systems. 
Indeed, even if locally around the zero-output-level set a 
control of the form (3) leads to well-behaved solutions of the 
closed loop, this will not be the case for all initial conditions. 
The situation is analogous to the peaking phenomena studied 
by Saberi et al. (1990) and Sussmann and Kokotovic (Ml), 
where initial conditions that are too far from the zero-level 
set can generate transients in the system that become 
unbounded in finite time. This leads us to propose the 
following definition of weak internal stability. 

Definition 2. Consider a system of the form (1) equipped 
with a static-state control law u:=u(x). The closed-loop 
system is said to be weakly internally stable with regulated 
output if there exists an open neighbourhood Rc R 
containing the zero-level set of the output, {x E W 1 h(x) = 
0}, as a proper subset, such that for any initial condition 
xg E R, the solution x(t;x,,) of the closed-loop system exists 
and remains bounded for all time, and in addition the output 
y(t) = h(x(r;x,)) converges to zero. 

Theorem 3. Consider a square system of the form (2). 
Assume that {Dh(x)g(x)} is full-rank for all x E UP’. Then the 
closed-loop system generated by applying the control (3) is 
weakly internally stable with regulated output (cf. Definition 
2). 

Moreover, an open neighbourhood R of initial conditions 
for which the closed-loop solutions of the system exist for 
infinite time can be explicitly characterized by 

where, for each x* E {x ) h(x) = 0}, 

%=,,j:= x E B&r) I g(x) 

x tDh(xlg(x)l-l exp (Ih(x)I A) - 1 
A 

<$r . 
I 

Here B,.(r) : = {x ) b - x*1 < r}, and A := h(x*, r) is given by 

A = SUJ k(xNWxMx)l- - g(y)[Wyl~(y#-‘l 
X.YC X.W Ix -yl 

Finally, for any x0 E n(x.,r), for some x* E {x ( h(x) = 0) and 
r > 0, the solution x&x0) remains in a ball of radius $r 
around x0: b(t; x0) -x01 5 $r. 

Remark 4. The sets &&.,,) are open subsets of W”, which are 
non-empty since x* E f&.,,). Consequently, R is an open 
neighbourhood of {x E W ) h(x) = 0) c S2. 

Proof For any x* such that h(x*) = 0 and for any r > 0, 
construct A(x*, r) and R,,..,, as indicated in the theorem 
statement. Let x0 E &..,) be an initial condition for the 
closed-loop system 

i = -g(x)[Dh(x)g(x)]-‘h(x). 

Since we assume that g(x) and h(x) are smooth and that 
Dh(x)g(x) is full-rank, there exists a unique local solution 
x(t; x0), well defined on some maximal interval [0, t*). The 
proof proceeds by contradiction. 

Assume there exists a finite time 9< r* such that 
Ix@, x0) - x01 2 jr. Let 1, 5 7 < 1* be defined as 

t, = ini {t 1 k(r; x0) - x01 2 tr). 

Observe that tl is defined in such a way that it follows for any 
x0 E n(x.,r) that x(l; x0) E B,.(r) for I E [0, II). 

Since, by construction, 

,’ = Dh(x)g(x)u(x) = -Dh(x)g(x)[Dfz(x)g(x)]-‘h(x) = -y, 

one has 

h(x(r;x,)) = h(x,) e-’ 

on [0, r*). Thus, from the closed-loop expression 

x(t; x0) - X” = 
I -_gM7; xn) 
0 

X [Dh(x(r xo))g(7;xo))]-‘h(x(z;x,)) dr. 

Computing the norm of this expression and approximating 
the integral for I E [0, t,), one obtains 

W;x,) -x01 5 I ‘Ilg(xo~[~~~~ol8~*~~1)1-‘1 
0 

+ A Hz; x0) - xd Wdl e-‘dz, 

where the definition of A(x*, r) is used along with the fact 
that x(t; x0) E B,.(r). Over-bounding e-‘s 1 leaves the 
above inequality in a form to which the Bellman-Gronwall 
lemma (Sanders and Verhulst, 1985, p. 3) may be applied, 
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yielding 

Ix(f:x,,) - x<,, 5 ,g(xo)[Dh(x,,)g(~~)]-‘I exp r’h(y)’ *I - ’ 

for t E [O, tr). Owing to the construction of f&,,. ,), one now 
obtains lx& x0) - xr,( 5 $r, Ostlr,, but this in turn 
contradicts the existence of t,. 

As a consequence, one has lx@; x0) -x01 < 1 for t E [0, t*). 
Observe that x(t;x,,) is a bounded solution to an ordinary 
differential equation on the time interval [O.t*), and 
consequently its limit at r* must exist. But then classical 
existence results ensure that the solution is well defined for 
some slightly longer time interval [0, t + 8). This ensures that 
r* is not a finite escape time for the system and (by 
contradiction) that no such finite escape time exists. The 
output regulation property is observed directly from the form 
of the output dynamics, while the other claims in the 
theorem statement follow immediately from the above 
argument restated in the knowledge that the solution x(t; x0) 
exists for all time. 0 

3. The linearizing extended output stabilizing control 
algorithm 

In this section the problem of designing a static-state 
feedback law that exponentially stabilizes the output of a 
system for which the input-output decoupling matrix is 
rank-degenerate is considered. Many systems of this type 
may still be input-output decoupled using a dynamic 
feedback law (Nijmeijer and Van der Schaft, 1990, Section 
8.2, especially pp. 263-264). This section develops an 
algorithm to design static-state feedback laws that assign 
linear stable dynamics to the output. We refer to this 
algorithm as the linearizing extended output stabilizing 
(LEOS) control algorithm. Here the term ‘extended’ refers 
to the similarities to the dynamic extension algorithm. 

Consider a general affine nonlinear dynamic control system 
of the form (1). To simplify the technical details, 
consideration is further restricted to analytic systems, 
although non-analytic systems can be tackled in a piecewise 
fashion using the same techniques. In Section 2 (cf. (2)) it 
was assumed that the drift term was equivalent to zero, 
f(x) - 0. In this section it is convenient to derive the desired 
feedback laws for non-zero drift, though the particular cases 
that are of interest (kinematic models of mobile robots) will 
all satisfy f(x) = 0. 

The following development is initially the same as the 
dynamic extension algorithm (Nijmeijer and Van der Schaft, 
1990, Section 8.2), and is included to introduce the notation 
used later in the section. Consider the output equation 
y=h(x)andletpl,..., ph be the characteristic numbers of 
the outputs y = ( y, , . . . , y,,) (Nijmeijer and Van der Schaft, 
1990, p. 2471. Thus one may write 

#+I) 
Yl 

d-1 

= E’(x) + F’(x)u, 
(p!,,+l) nl 

where y(g/+‘) denotes the (p;+ 1)th time derivative of y, 
E’(x) = (f.fl+‘h,(x), . . , LfP”f’hn,(~))T and F’(x) is the 
inputToutput decoupling matrix with ijth entries {F’(x)}, = 
L$ph,(x). 

Since the system considered is analytic, the rank of F’(x) is 
constant except on a set of measure zero in KY. Denote the 
generic rank of F’(x) (off the set of measure zero) by r,. It is 
convenient to refer to the set of points at which the various 
rank conditions required for the construction of the output 
stabilizing feedback law do not hold as the set of singular 
points in R”. Thus the set of singular points includes all 
points at which rank F’(x) # r, as well as other points defined 
in the sequel. The set of singular points will always be of zero 
measure in Iw”. 

Given a point x E R” that is not a singular point, reorder 
and related the output functions h, , , h,, and the inputs u 
(and hence the columns of F’(x)) to ensure that the 
upper-left r, X r, block of F’(x) is full-rank. Partition the 

output into two parts: (h,, . , h,). Correspondingly, 
partition the vector E’(x) into its first r, entries E;(x) and its 
remaining entries E&x), and the matrix F’(x) into four 
submatri&s, where the upper-left submatrix F:,(x) E R’rX’r 
is square and full rank. As a consequence, the last m - r, 
columns of F’(x) are linearly dependent on the first r, 
columns. Consider the input transformation 

u(x, u’, U’):= ( -(F;,)-‘E; 
0 > 

+ tFI,)-’ ( -(Iq,)-‘F& u’ 
0 L-r, I( 1 El ’ (4) 

where the new inputs are denoted by (u’, U’) E w’l X W-‘I. 
Applying this input transformation to (1) yields the output 
dynamics 

yp4+l) 

(4 i 
0 

yc$,+u = E: - F:,(F;,)-‘El 1 
( I 0 u’ 

+ F:&,)-’ 0 )( 1 Cl (5) 

Thus, after applying (4), the first r, outputs are input-output 
decoupled to the new inputs u’ E IF1 and fully decoupled 
from the remaining inputs U’. 

It is at this point that the present development differs 
significantly from the standard dynamic extension algorithm. 
Since our aim is simply to stabilize the output, it is possible 
to specify the first r, inputs u’ to stabilize the first r, outputs 
explicitly. Define the inputs u’ = (ul, , ui,) as follows: 

= - 2 Cp' +‘L+hi(x) i=l,...,r,, (6) 
,=(I 

where C”, =a!/b! (a -b)!. Choosing u:(x) as given above 
ensures that y;(l) satisfies the linear homogeneous differential 
equation 

( 1 $+1 
(p/+1) 

Y;(f) = 0, 

which has the solution y,(r) = (c!’ + c:r + + c$rPj) e-’ for 
constants c)’ = y,(O) and 

c&&y$o) (p=l,...,pJ). (7) 

Remark 5. The particular output dynamics specified at this 
point are chosen with regard to the analysis of behaviour of 
the control laws in the vicinity of singular points. These 
issues are discussed in Section 4. 

Thus one may define a new (partly closed-loop) system with 
inputs u’ E Iw”-‘I and outputs y’ E R”-‘I: 

f = f(x) + g(x) K (-(F1,)-‘EI 
0 1 

+ tc,)- ( -(F! ,)-‘Fy2 u’(x) 
0 I,,-,, I( )I US (8) 

y’ zx (y;$+l+‘), , Y~$>,+“)T 

= E:(x) - F:,(x)[Fl,(x)l-‘El(x) 
+ F:,(x)[Ft,(x)l~‘u’(x), (9) 

where the , solutions x(t) of these equations satisfy 
hi(x(r)) = &, c;r’ e-‘, i=l,...,r,. The new inputs 
U’ E R”‘-‘I are just the inputs U’ that were not assigned in the 
first step of the algorithm, while the new outputs y’ are the 
highest-order time derivatives of the unstabilized outputs 
that were obtained in the previous step. Observe that the 
new inputs u’ do not enter directly into the output equation 
(9). 

Remark 6. It is most convenient to continue subscripting 
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both remaining inputs and outputs as though they are parts 
of the full input and output vectors. Thus the new input 
vector is u’ = (u,+~, . . . , u,) and the output vector is given 
bY (9). 

Obtaining a full control law is simply a matter of iterating 
the above procedure, starting with the newly defined system 
equations (8) and (9). Supserscripts 1 on the terms E’, F’ 
(generically of rank r,), u’, etc. are used to indicate which 
iteration these quantities are associated with. Let 

for i = (ri + . . . + rk_l + l), . . , (ri + . . . + Q). The general 
form for the feedback used in the kth iteration is 

y: 
uf(x) = -C c,*+vp+-j)-$h,(x) 

j=O 

for i = (r, + . . + rj_, + l), . . , (r, + + rk). Choosing 
u$(x) as above ensures that yi(r) satisfies the linear ODE 

(Yf+l) 

Y 0) = 0, 

which has the solution 

Y” 

yi(t) = e-lrrC &j, i = (r, +. . . + rj_, + l), . . . , (r, + . . + r& 
j=O 

for constants cj given by (7). As a consequence, the kth set of 
outputs converge to zero strictly faster (exponentially with 
rate -k) than the previous sets of outputs. Heuristically, the 
motivation for htis choice is that the later outputs, more 
prone to numerical ill-conditioning (following from repeated 
singular feedback transformations), converge to zero before 
any ill-conditioning in the algorithm occurs. A more detailed 
discussion of these issues is undertaken in Section 4. 

To fully determine the inputs, one continues to apply the 
above procedure until all the outputs have been assigned 
asymptotically stable dynamics. Since the system is square 
and analytic, and it has been assumed that a dynamic 
feedback law exists that input-output decouples the system, 
it follows that, apart from on a set of zero measure, each 
output can eventually be controlled by an input. 

4. Input-output singularities and internal stability 
In this section the presence of singularities in linearizing 

extended output stabilizing (LEOS) control laws (cf. Section 
3) are considered. In general, singularities can be avoided by 
switching the input-output ordering used in the LEOS 
algorithm whenever a singular surface is approached. 
However, for drift-free systems of the form (2), the LEOS 
control law will always have singularities on the zero-output- 
level set, owing to the non-holonomic nature of the system 
equations. Careful consideration of the behaviour of the 
closed-loop system in the vicinity of these forced singularities 
provides the motivation for the particular output dynamics 
chosen in Section 3. 

The set of singular points associated with the LEOS 
algorithm is defined as follows. 

Definition 7. Consider a nonlinear dynamic control system of 
the form (1) and let u:=u(x) be a static-state feedback 
control law given by the LEOS control algorithm. The set of 
singular points resulting from the algorithm is referred to as 
the ser of singular points associated with u(x). and is denoted 
by S,,. This set is explicitly characterised by 

S,:= Q E IX” 1 det F:,(x) = 0 for some k E {l, 2, . . . , K}}. 

The presence of singularities of this nature is a 
fundamental limitation on any algorithm that relies on the 
decomposition of input-output dependence generated by the 
dynamic extension algorithm. On a singular surface, the 

degeneracy of one of the matrices F:,(x) implies that certain 
control actions are nulled, and, equivalently, the associated 
output dynamics are uncontrollable. The LEOS algorithm 
makes no allowance for avoiding singular surfaces, and 
should the closed-loop system evolve to cross a singular 
surface, the non-zero output dynamics assigned by the 
algorithm will require unbounded control action to be 
achieved. Unbounded control of this nature will tend to 
generate finite-time escape dynamics in the internal states of 
the system. The situation, however, is not necessarily the 
problem that it may at first appear to be. In particular, the 
singular surfaces are fully algebraically characterised, and the 
approach of a singular surface can be monitored. By 
swapping the order in which the inputs and outputs are 
chosen in the LEOS algorithm, it is possible to alter the 
singular-point structure of the control law generated and 
often remove entirely the singular surface that is being 
approached. A control algorithm exploiting this technique 
will generate discontinuous control action at the instant when 
the input-output ordering is switched. It is beyond the scope 
of this paper to investigate the general performance of such a 
switching strategy in practice. 

For a general affine nonlinear system of the form (1) it is 
unlikely that a singularity will occur exactly on the 
zero-output-level set. Unfortunately, a drift-free system of 
the form (2) has precisely the required structure (due to its 
non-holonomic nature) to create a singularity on the 
zero-output-level set. Consider a system of the form (2) 
where the input-output matrix is not full-rank. Applying the 
input transformation (4) and setting E: and E: equal to zero 
then it can be seen (cf. (5)) that there is a singularity 
(associated with u1 = (yl, . . , y,) =0) lying exactly on the 
zero-output-level set. To indicate how a control law 
generated by the LEOS algorithm remains well defined in 
the vicinity of singularities of this form, it is simplest to 
provide an example. 

Consider a square system, of the form (2) with two inputs 
and outputs. Assume that the input-output decoupling 
matrix has dimension one and write the transformed output 
dynamics in the form (cf. (5)) 3, =u;. jr= F$,(F!,)-‘u;, 
where (u;, u;) are the transformed inputs of the original 
system, (u;, u;)= (u’, Z’) (cf. (4)). Applying the linear 
stabilizing control action u;(x):= -h,(x) = -y,, the y2 
dynamics have the form 

j* = H(x)uXx), (11) 

where H(x):= F~,(x)[F],(x)]-‘. Because of the choice of 
output dynamics for y, it follows that ci](x(r)) = -u;(x(t)). 
The second derivative of yz can be written as 

Y, = 4(x,( [N(x) MWl(” y ) - H(x))> (12) 

where 

[N(x) [M(x)] = DH(x)g(x)( (y’ -(y1’Fi2). 
In particular, observe that the right-hand side of (12) 
contains a multiplicative factor u;(x) = -y,. This causes the 
singularity in the u; control at y, = 0. 

For y, # 0 choose u;(x) according to (6). Recall that while 
the closed-loop solution remains well defined, the output 
dynamics are yi(t) = y,(O) e-‘, and yz(t) = {y*(O) + W(O) + 
2yz(0)]t]e-2r. Now the time evolution of y, ensures that 
u;(x(r)) = -yi(x(t)) = -yi(O)e-‘, at least while the solution 
x(r) remains well defined. Certainly, the control u; will 
remain well defined (and indeed decrease to zero in the 
limit). The situation for u; is the crux of the matter. 
Substituting for the known evolution of y,, y2 and u; in the 
definition of u;, one has 

u;(x):= u;(,~~(x)~[-[u;~x~12~~x~ + 4(xW(x) +jizl1 

_ YI(O)NX) G-’ + H(x) + 4Y2(0) +32(O),-,. 

M(x) M(x) M(x)y,(O) 
(13) 

Assume that M(x) #O in an open neighbourhood of the 
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zero-level set; that is, that the only singularities present at the 
zero-level set are those associated with the control u’. It is 
necessary to show that the input u;(x) remains well defined 
in the limit as t + m. The first term of (13) is well behaved, 
since the numerator has a squared dependence on u;, which 
dominates the effect of the [u;(x)]-’ singularity. The last 
term is also well behaved owing to the particular choice of 
the yz dynamics, which converge like em2’ while the 
singularity converges like e-‘. This analysis provides the 
justification for the choice of the dynamics made in the 
LEOS algorithm described in Section 3. The final term in the 
expression for u; is also well behaved, since, recalling (ll), it 
follows that 

m-(t)) = &) = W203 + 2YzW -h(O) e_,, (14) 

1 Yl(O) 

at least while the solution x(t) remains well defined. 
The above discussion suggests that, for the systems of 

interest (kinematic models of mobile robots), the exponential 
decay of the control action could be used to obtain a result 
analogous to that of Theorem 3. Firstly, it is necessary to add 
an additional condition on the nature of H(x) to ensure that 
the dynamics assigned by (14) can be achieved. Effectively, 
this is equivalent to the requirement that H: W”-+R is 
not bounded away from zero. In general, H(x) = 
wx)Pf,(x)l- is a matrix function relating the r, 
assigned inputs u’ to the remaining m - r, outputs. In this 
case e’H(x)u’ = -H(x(r))y,(O) is the term that is crucial to 
the behaviour of uz. Rather than including the initial 
condition in the analysis given below, we have opted to use 
the stronger (and much simpler) requirement of forcing H(x) 
to the zero matrix, and consequently ensuring uniform 
convergence of U&X) for any initial condition. 

Remnrk 8. It is important to also consider what happens for 
systems where three or more steps of the algorithm are 
needed to generate the full LEOS control law. Recall (9) and 
observe that for a drift-free system the output y’ will Biways 
depend linearly on the input ui, the term E’(x) = 0, and the 
vectors Ek(x) decay faster than the u’ term owing to the 
nature of the output dynamics assigned. As a consequence, 
the singularity at the zero-level set is dominated by the u’ 
term, and the analysis is analogous to that given above, 
though considerably more complex in notation. Unfortun- 
ately, space restrictions do not allow us to present the details 
of this relationship. 

Example 1. Consider the box car robot shown in Fig. 1. 
Denote its Euclidean position in R* by (x, y) and its 
orientation (angle from x axis to forward direction of the 
robot) by a (expressed in radians). One may write the 
kinematic system equations for the box car robot as follows 
(Canudas de Wit and Sordalen, 1991): 

Remnrk 9. In the case of most non-holonomic systems, two 
iterations of the LEOS algorithm will be sufficient to design 
the full closed-loop controller. If one considered systems with 
both velocity and acceleration constraints then in general 
three iterations of the LEOS algorithm would be required. 

~=u,coscu, 

);=u,sina, 

l%=llz. 

Writing this in the form (2) yields 

(15) 

(16) 

(17) 

Theorem 10. Consider a square analytic system 

-$x = 2 g,(x)&, x(0) = x0, 
i=l 

yj=&) for j=l,...,m, 

The outputs used are the Euclidean coordinates (x, y). The 
control task is to drive the output, h(x, y, a) = (x, Y)~ to zero 
while the full state (x, y, (I) remains bounded. 

where x E R” and y, u E R”‘. Assume that the LEOS control 
algorithm provides a static control law u:=u(x), valid off a 
set of singular points S,, (cf. Definition 7) of measure zero. 
Let 

H(x):=F:,(x)[Fl,(x)J-‘, 

where F$,(x) and F:,(x) are defined in the first step of the 
LEOS algorithm (cf. Section 3). Define the set I by 

I-={~xE”]h(x)=O, H(x)=O) 

and assume that it is non-empty. Assume further that there 
exists an open neighbourhood WE R” of the set I that 
contains’ no singular points x E S,, except those explicitly 
generated by the control law at h(x) =O. Then the 
closed-loop system is weakly internally stable with regulated 
output (cf. Definition 2). 

Proof: This differs from that of Theorem 3 in two main ways. Fig. 1. The box car robot, with forward velocity ui and 
Firstly, instead of dealing with the entire space R”, one deals angular velocity uz. 

only with the subset W E W”. Thus the set n of stable initial 
conditions is constructed to be 

R= u 
jr’=t? [,>“.B$&) %*J), 

where B,.(r) : = {x ] Ix - x*1 < r} and 

i&.,,):= [x E B,.($r) j Ig(x)u(x)l exp [’ Ihr)’ ‘]- ’ < $r]. 

Here A := A(x*, r) is given by 

h(x*, r) = sp IkdxW) - dYMY)l 
x2= x.(l) Ix--Y1 . 

Since W is an open neighbourhood of I, for all x* E I there 
exists a range of r for which B,.(r) c W. It follows that R 
itself is a non-empty open neighbourhood of I. 

Secondly, the time evolution of the output (and 
consequently of the control u(x(r))) is composed of 
time-dependent terms of the form tie-‘? Whereas in the 
proof of Theorem 3 the inequality e-‘s 1 was used, here the 
inequality tie-&’ 5 (ilk ye-j must be employed. This is 
verified by observing that tJemk’ is unimodal on (0, a), with 
its maximum at t = j/k. To account for this difference, a 
constant C is included in the definition of Q(x.,,), where C is 
taken to be the maximum of these bounds for the particular 
control law used. The remainder of the argument is 
analogous to that for Theorem 3. 0 

5. The box car robot 
In this section two examples are presented that indicate 

the manner in which the LEOS control algorithm (cf. Section 
3) is applied. The system considered is a simple model of a 
mobile robot commonly known as the box car robot. 
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The system cannot be input-output decoupled using 
static-state feedback, since the input-output decoupling 
matrix 

= : F'(x, y, a) 

is rank-deficient. Proceeding according to the LEOS 
algorithm, an input transformation is applied to bring the 
system into the form (5). As long as cos a # 0, there is no 
need to rearrange the order of the inputs and outputs and the 
matrix F’,,(x, y, a) = cos a. The singular points associated 
with inverting Fi 1 are just those points where cos a = 0. Off 
the set of singular points, the input transformation is simply 
tfi = (cos a)-%,, u2 = u2, where V, and v1 are the new 
inputs. According to (6) set 

u,:= -x H u,(x,y, a):=&. (18) 

The dynamics of the partially closed-loop system are now 
i = -x, j = -x tan a and & = u2. The dynamics of the 
output y can also be written as j, = u, tan a=:u,H(x, y, a). 
Here H(x, y, a) = tan a is the function that was key to the 
discussion in Section 4. Observe that H(x, y, a) = 0 for 
a = qr and q any integer. As a consequence, the limit set I, 
defined in Theorem 10, is non-empty. 

Define a new output function h’(x, y, a) = -x tan a = 3. It 
is easily verified that 

Dh’(x, y, a)g(x, y, a) = (-tan a cos a -x(1 + tan’ a)), 

and thus ji =x tan a -x(1 + tan* a&. In the notation 
introduced in Section 3, one has E’(x, y, a) =x tan a and 
F*(x, y, a) = -x(1 + tan* a). The matrix F2(.r, y, a) is a 
scalar function associated with the last output to be 
stabilised, and must be inverted directly. The singular points 
associated with inverting F*(x, y, a) are characterised by 
x(1 + tan* a) = 0 e x = 0. The final set of singular points 
for the control law u = (u,, u2) is 

S,, = {(x, y, a) 1 a = $7r + 9x for 9 E Z, or x = 0). 

Off the set of singular points, the second input transforma- 
tion of the LEOS algorithm is 

1 
‘* = - x(1 + tan2 a) 

(w, -x tan a), 

yielding the output dynamics ji = w,. The LEOS algorithm 
assigns second-order linear stable dynamics to the output y of 
the form jj = -4j - 4y. Substituting j, = -x tan a and ji = wz 
yields an expression for w2. Substituting this in turn into the 
expression for u2 yields 

u2(x,y, aI:= x(l + ian aj (4~ -3x tan a). (19) 

The final closed-loop dynamics of the system are 

i=--X, 

y = 4x tan a - 4y, 

&=4ycosZ3sinacosa 
X 

(20) 

for (4 Y, a) z 4,. 
Since the control law satisfies the conditions of Theorem 

10, it follows immediately that the closed-loop system is 
weakly internally stable, with regulated output around the 
limit set I fl {h(x, y, a) = 0) = {(0, 0,9x) 1 q E Z}. In fact, 
further analysis yields a stronger result. While the state 
remains well defined, the evolution of a(t) is given by the 
solution of the non-homogeneous ODE 

&= “(O) + 4jr(o) e-’ CosZ (y _ 3 sin 2a. 

x(O) 
2 (21) 

The stationary points for (21) are a = :n(29 - 1) for q any 
integer. Consequently, the solution a(t) of (21) will remain 
in some bounded interval ($r(29 - l), fr(29 + I)), where 

-51 I 
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 

xco-odnate 

Fig. 2. Plot of the evolution of the box car robot in 
Euclidean 2-space for Example 1. The initial condition is 

(-2.3755, -4.5254.0.7515~). 

the integer 9 is determined by the initial condition a,,. For 
any initial condition where x f 0, classical ODE theory now 
ensures that the solution to the closed-loop system exists for 
all time. The non-autonomous term in (21) is exponentially 
decaying with time, and the limiting dynamics will be given 
by the limiting dynamics of the solution of the homogeneous 
ODE h = -1.5sin2a. It follows that a(t)+qn as f-03, 
since this is the only attractive equilibrium of the 
homogeneous ODE in the domain (ftr(2q - l), $x(29 + 1)). 
As required, the point (0.0. qx). It follows that the 
closed-loop system is internally stable with regulated output 
(cf. Definition 1). 

Several simulations of the control strategy (18) and (19) 
have been run using the MATLAB ode45 function to 
integrate (20). This routine uses fourth-order Runge-Kutta 
routines to numerically integrate the solution trajectories 
while checking computational accuracy using fifth-order 
Runge-Kutta routines. Figure 2 displays the path of the box 
car robot in Euclidean 2-space for a typical example. The 
initial condition for this example was (x(O), y(O), a(0)) = 
(-2.3755, -4.5254,0.7515x). The solution of the closed-loop 
system does not pass through any singular points, and the 
control scheme provides smooth bounded control laws. 

Example 2. This example has been chosen to display the 
behaviour of the closed-loop system in the vicinity of 
singularities in the control laws. The initial condition 
(x(O), y(O), a(0)) = (0.0099, -1.3466,0.5008x) was deliber- 
ately chosen to be nearly singular (both cos o(0) 10 and 
x = 0). Figure 3 shows the time evolution of each component 
x, y and a of the state. Observe that the behaviour of the x 
and y coordinates is exactly as expected (despite the presence 
of numerical ill-condiitoning). Of course, the x coordinate is 
initially nearly zero, and its convergence does not show in the 
plot. Figure 3 also provides an excellent picture of the 
dynamics in the orientation a. Observe that a(t) remains in 

-1.51 I 

0 2 4 5 8 10 12 14 16 15 20 

lh?axis 

Fig. 3. Plot of the state (x, y, a/r) for Example 2. 
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lhe axis 

Fig. 4. Plot of the control inputs u, and uz for Example 2. 
The initial condition is (0.0099, -1.3466,0.5008x). 

the interval ($rr, $a) for all time and that, once the 
non-autonomous terms of (21) have died away, t ~6, 
o(t)+ R. At time t = 2 the robot appears to spin on the spot 
(rotating through arad). The control input ut is directly 
linked to change in orientation of the robot and the abrupt 
rotation shows in Fig. 4 as a spike (of magnitude greater than 
+lo). 

6. Conclusions 
In this paper we have discussed several issues in the design 

and analysis of control laws for output regulation of 
nonlinear systems. The main results obtained are Theorems 3 
and 10 and the development of the linearizing extended 
output stabilizing control algorithm (LEOS control algo- 
rithm) presented in Section 3. 

Some aspects of the control law generated by the LEOS 
control algorithm are summarised below. 

No assumption about the controllability of the full state for 
(1) is needed for the design of output stabilization control 
laws. 

Because of the simple structure of the algorithm, it is 
possible to analyse the singular structure of the algorithm. 
In particular, the presence of singularities resulting from 
non-holonomic velocity constraints is tolerated by the 
control law. 

With minor and obvious modifications, the case m >p may 
be treated along similar lines. Control action that is not 

assigned explicitly in the algorithm can be set equal to zero 
or used for other purposes. 
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