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Abstract

The global stabilization of a class of feedforward systems having an exponentially unstable Jacobian linearization is
achieved by a high-gain feedback saturated at a low level. The control law forces the derivatives of the state variables to
small values along the closed-loop trajectories. This “slow control” design is illustrated with a benchmark example and
its limitations are emphasized. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The global stabilization of nonlinear systems has been the subject of an important literature over the last
decade and significant progresses have been made towards the development of systematic design methods and
a better understanding of structural limitations to large regions of attractions (see [1,2,4,6,9,10] and references
therein). It is fair to say that most of existing results have been obtained by exploiting certain triangularity
properties of the considered system’s differential equations. These structural properties can be classified in two
categories and it is sufficient for our purpose to illustrate them on the system

X, = fl(xl)—|—x2 + gl(xg,x3,...,xn,u),

X = fo(x1,x2) +x3 + g2(X3, ..., X0, 1), 0

xl’l = fn(x1,~~~,xn)+u+gn(u)’

where x=(x,...x,) € R" and u € R. We view (1) as a chain of integrators perturbed by feedback connections
(f; functions) and feedforward connections (g; functions). The two possible forms of triangularity are obtained
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by setting to zero either the feedforward terms or the feedback terms:

e Setting g; = 0 yields a system in “strict feedback form™. In this case, the absence of feedforward connections
puts no limitations on the available gain at the input of each integrator. Thanks to this property, systems
in strict feedback form are globally stabilizable without further restrictions on the feedback nonlinearities.
Even strongly destabilizing nonlinearities can be compensated for with sufficiently high gain feedback (see
[2,4,6,8,9]).

e Setting f; = 0 yields a system in “strict feedforward form”. In this case, the absence of feedback con-
nections limits the instability of the open-loop system (in particular the Jacobian linearization can not be
exponentially unstable). Thanks to this property, a low gain at the input of each integrator is sufficient
to stabilize the system and systems in strict feedforward form are globally stabilizable without further re-
striction of the feedforward connections (except for the fact that the Jacobian linearization is required to
be controllable). Even if the feedforward nonlinearities impose severe limitations on the available gain,
stabilization is achieved with sufficiently low gain feedback (see [5,7,11]).

The present paper aims at a (very first) step towards design methods which could bridge the two extreme

triangular classes just described, by simultaneously allowing for the presence of (destabilizing) feedback

connections and (“gain limiting”) feedforward connections. Our result is best illustrated with the help of the
simple benchmark system

X1 = fi(x1) +x2 + g1(x2,x3),
Xz = X3, (2)
)(.73 = u.

Existing methods for feedforward systems require the feedback connection f1(x;) to be missing or “stabilizing”,
that is f1(s)s <0. Existing methods for strict feedback systems require g;(x;,x3) = 0. Our result will show
that a bounded destabilizing nonlinearity f1(x;) can be tolerated provided that the feedforward term g;(x,,x3)
is not “gain limiting” but only “rate limiting”, that is, g;(x;,x3)=¢g1(x3)=¢g2(x2), and is at least quadratic near
the origin. Our design will enforce the convergence of solutions towards a region of the state space where
X2(¢) is kept small enough, but not necessarily x,(¢), thereby guaranteeing enough gain to compensate for the
destabilizing connection f1(x;). This design can be viewed as a slow control design in contrast to the low
gain design previously considered for feedforward systems (see [5,7,11]).
Expanding on this idea, we achieve global stabilization of systems which can be written in the form

Xy = fa(x2) + X3 + g2 (X3,..., X)),

X1 = fum1(Xn—1) + X5 + Gn—1(Xn),
xn:fﬁ(xn)—’—u’ (3)

with x € R", u € R, where we have

e Feedback connections f;(x;) which are depending only on the local integrator state. They are bounded with
bounded derivatives for all x; € R;

e Rate limiting feedforward connections g; with an upper triangular structure. These functions are at least
quadratic near the origin.

Our design will enforce convergence of the solutions towards a sequence of nested manifolds where an

increasing number of state derivatives x; are kept small. Near-invariance of these manifolds will be guaranteed

despite of the destabilizing feedback connections by allowing for enough gain in a restricted neighborhood of

the manifolds. Section 2 of the paper describes our main result. Limitations of the present approach and its

relation to other contributions is discussed in Section 4 (see [3,12]).
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2. Global stabilization of feedforward systems

The next theorem is the main result of this paper. We present a recursive design to achieve Global Asymp-
totic and Local Exponential Stability of the origin of system (3) using the saturation function:

sat : R — [—1,1]
s — sat(s) = sign(s)min(|s], 1)

Theorem 1. Consider the €' system:

X1 = f1(x1) +x2 + g1(¥2,%3,. .., Xp),
X2 = fo(x2) +x3 + g2 (X3,..., Xp),

Xln*l = fnfl(xnfl) + X, + gnfl(xn):

Xp = fn(xn) + u,
with x;, u€R. Suppose that the feedback interconnections are bounded, with bounded derivatives, i.e.
AM;, D; > 0 Vx; - | fi(x:)| < My, | f1(x;)| < D; and the g; functions are at least quadratic near the origin.

Then there exists positive constants ¢ > 0 (sufficiently small) and K > 0 (sufficiently large) such that the
origin of the system is globally asymptotically and locally exponentially stabilized by

K}’l n
u=—fu(x,)—¢&, sat(—e>
87!

where

€1 = X1,
Ki ey
e = x;+ fic1(xi1) + & sat(

i—1

) forie{2,....,n}
for a suitable choice of ¢ and K;. One such choice is

g ’;2 K; 3 & le K;
Ki=K, Ki1=16(K;+D;), e =g, ﬁgeigi 2:, .

4)

Proof. Consider the nested sequence of subsets Q) C---C 2, C R" defined by
Qi = {xeR"[lej|<e;/K), j=i}
whose choice is suggested by the form of the system in e coordinates:

. Klel . .
e =ey —¢&; sat 8— +gl(x29x39"'9xn)9
1

. Krex di—1 Ki_1er1 . .
ér=eri1 — & sat( > + ep —éep—1sat| ———— | + gr—1(Xk, .- -5 Xp)
&k dxg—1 &r—1

Ky—1ep—1
der_g Sat(—ak,, )
€i—1,

+gk(xk+|7"'7xn)+ d
€r—1

. Kye, dy—1 K,_1e,-1 . dey—1 sat( K”;‘f':*l ) .
ep=—¢psat| — | + en — &—1 sat T e + gn—1(Xn) | + €n1. (5)

n dxnfl n— denfl
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We will show that choice (4) for the parameters K; and ¢; ensures the following properties:
(i) each €; is invariant,
(ii) each solution reaches 2 = Q; in finite time,
(iii) each solution in € converges exponentially to the equilibrium x = 0.
We first show that the Jacobian linearization of the closed-loop system is Hurwitz when the parameters K;
are chosen according to (4), with K large enough. The Jacobian linearization of the system in x coordinates is:

X = Fix; +x

X = Fix; + x4

Xp == 4o (H;:kJrl Kj) (Frx + Ki) xx

where we define F; = f7(0) (with F,, = 0 because f,(x) is compensated by u). Introducing the change of
coordinates y; = 35 and the new time scale s = Kz, the matrix of this system can be decomposed into two
parts:

0 1 0 0 0
0 0 1 0 0
A= : : :

0 0 o --- 0 1

—a, —adp—1 —ap—-2 —a; —ay
x00---00
0x0---00

+ =T+U
000---x0
X X X x 0
Ky--Ky—iv1

where a; = limg o ~—5=". The choice (4) ensure that the matrix 7 is Hurwitz and that the matrix U
converges to 0 as K tends to oo. Therefore, the matrix 4 is Hurwitz for K large enough. We have thus fixed
the gains K; such that our controller ensures local exponential stability of the system. The original system
controlled without saturation has a region of attraction A (independent of ¢). The rest of the proof will show
that any solution of the controlled system reaches the set 2 and that we can design this set to be included
inside A by taking ¢ small enough.

To this end, we use the following lemma proven in appendix.

Lemma 1. Suppose that the assumptions of Theorem 1 are satisfied with the parameters chosen such that

&i+1
Kit

& > 2(Dn—] +Kn—1)8n—1,

& > + 2D + Ki—1)ei—1 iE{Z,...,n—l}, (6)

then the constraints are still satisfied after a p-scaling of the e parameters, that is if we replace & by ue;,
and, for u small enough, we have: Ve € Q;:
(a) xi| <2,
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(b) |ei| = &i/Ki = eié; <0,
(C) |€,| < 2¢;.

It is an easy calculation to verify that (6) is satisfied with the choice (4) and that a u-scaling is achieved
by taking & small enough.

Part (i) of the proof of Theorem 1 is a consequence of Lemma 1(b). When a solution is on 09, it satisfies
lej| = ¢;/K; for some j=>i. Due to the fact that Q; C Q; for j>i, Lemma 1(b) implies e;é; < 0. Therefore,
the solution stays inside €;.

In order to prove (ii), we will now show that any solution starting in R"\Q, reaches Q, in finite time and
that any solution in @;;; reaches ; in finite time. By the invariance property of €;, this means that any
solution reaches Q; = Q in finite time.

Let us define

¢i(xi,e;) = fi(x;) + & sat(Kie;/e;).
Let x(0) € R"\Q,. As long as x(¢) ¢ Q,, the solution satisfies
Xy = —&psign(x, + ¢p_1(x,—1,€,-1))

which means that x, converges towards —¢,_(x,—1,e,—1). Because ¢,_; is bounded, x,(¢) eventually enters
an interval where the saturation is no longer active. This happens when |x, + ¢,—1(X,—1,€,—1)| = |en| = &n/K:
the solution enters Q, in finite time.

Next we show that any solution in €;,; reaches ; in finite time. The solution satisfies

Ki(xi + dim1(xi—1,ei-1))
&

Xi=ej1— & sat( ) + gi(Xiv1,. -5 %0) (7)
and as long as x;(¢) € Q;11\Q;, (7) can be rewritten using Lemma 1(b) as

. 2 2
Xi=eip1 — &sign(x; + gi—1(xi—1,€i-1)) + O(&7 145 .-, &)

Because |e;1|<é41/Kir1 < &, the second term dominates the others while x;(¢) € Q;;1\Q;. Hence x;(¢) con-
verges towards ¢;_; until the saturation stops being active, i.e. the solution has reached Q.

Repeating the argument for each i, the solution reaches @ in finite time. Observe that a prescaling of the
parameters ¢ can be used to include Q2 in an arbitrarily small compact set containing the origin (this means
that practical stability is achieved for any choice of the K; satisfying (6)).

Part (iii) of the proof is direct from the fact that 4 is Hurwitz. It is sufficient to take Q to be included
inside A, the region of attraction of the controlled system without saturation (because (2 is an invariant set
for the system controlled with and without saturation). In order to do so, we take ¢ small enough. [

The proof of the previous theorem shows why we may use the term slow control: the derivatives of the
variables are successively brought to small values in order to be able to neglect the values of the g; functions.
When n=2, condition (4) on the parameters reduces to K, > 16(K;+D;) (in this case, it could be weakened
to K; > 2(K;+Dy)). We observe that the latter condition is stronger than the condition imposed for the local
asymptotic stability, which only requires K, > D;. This shows that the K; constants must be chosen large
enough not only to ensure local asymptotic stability, but also to render the designed manifolds near-invariant.

3. Example

We now illustrate the calculation of the parameters on a simple example. Consider the benchmark system (2)

with f a bounded function such that || f/(x1)||c <D and g;(x2,x3) =x3 =¥

. 2
X1 = fi(x1) +x2 + x3,
Xy = X3,

Xy =u. (8)
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The set of constraints (6) is

g1 > &/Ka,
& > &/K3 +2(Dy + Ky )ey,
&3 > 2Kje, )

which could easily be solved for such a low-order system but becomes more intricate for larger dimensions.
Therefore, we rather use the explicit parameter values that we gave in Theorem 1.

Let us take & =¢ small enough and K; =K large enough. We choose the parameters according to (4) with
K; 1 =16(D; + K;) and ¢; in the middle of the intervals:

Ki=K, Ky=16(D+K), K;=256(D+K),
g =é, & =10e(D+K), & =1280e(D + K)>.

With such parameters, the control law is

u = —1280g(D + K )* sat [Sa(Dl—&—K) (x3 + 10&(D + K )sat [586 (xz + fi(x1) + esat {%])})] )

We see that both K; and ¢ parameters are increasing. Such a controller can be designed to satisfy any
rate constraint on the control and on the states. K must be taken sufficiently large in order to get asymptotic
stability. ¢ must be sufficiently small to be able to neglect the &5 term that will arise because of the x? = X
term.

We can justify on this example the boundedness condition of Theorem 1 imposed on the f; functions.
Indeed, when f; : R — R is a ¢' function such that lim,_, o f(s) = +oo and Je > 0: Vs € R: f](s) > ¢,

system (8) can not be globally controlled to the origin. This follows from the calculation:
d
3 10 +x2) = A0 +302) + A6+

> fix)(filx) +x)—-C
= e(fi(x1) +x) — C when fi(x;)+ x>0,

where we have used the fact that f](x;)x] + x3 is bounded from below by a negative constant —C. If the
initial condition of the system is such that &( fi(xj9) 4+ x20) > C, the quantity fi(x;)+ x, will diverge to +o0o
regardless of the control law. It means that such initial conditions (xj9,x9) cannot be driven to the origin,
even if fi is a simple linear function.

4. Limitations of slow control

The slow control design proposed in this paper applies to a restricted class of nonlinear systems which
simultaneously present destabilizing feedback connections and “rate limiting” feedforward connections. The
restrictions on the feedforward connections (to be “rate limiting” rather than “gain limiting”) and the bound-
edness of the f; functions (and of their derivatives) have been justified by means of elementary (that is,
scalar) controllability requirements.

A subtler limitation of slow control is the fact that the f;’s can not depend on the states xj,...,x;_;: the
feedback connections are restricted to be “local” connections around each integrator. Thus our design can
yield a slow control for the second order system

X1 = f1(x1) + x2,

X2 = fo(x1,x2) +u,



F. Grognard et al. | Systems & Control Letters 37 (1999) 107-115 113

but this does not mean that this slow control law can be “backstepped” to yield a slow control law for the
augmented system

X1 = f1(x1) +x2,
X2 = folx1,x2) +x3,
X3 =u, (10)

even if boundedness is assumed for f, and its derivatives. This is in contrast with recent bounded backstepping
results [3,12] which show that a bounded control law with bounded rate can be backstepped to yield a new
bounded control law with bounded rate (when all the nonlinearities are bounded with bounded derivatives). The
difference with our result is that the bound on the control magnitude (or rate) is not a free design parameter
in [3,12]. In the present paper, this flexibility is needed to account for the feedforward nonlinearities. For this
reason, it seems plausible that the boundedness assumptions of the present paper do not suffice to achieve
global stabilization of a system as simple as

Xy = fi(x1) +x2 + g(u), ¢(0)=0,
X2 = fo(x1) + x3,
F— (11)

which violates the structure covered by the present paper only because f, depends on x; rather than x,.

5. Conclusion

We have considered the global stabilization of a restricted class of nonlinear systems which simultaneously
present “destabilizing” feedback connections and “rate limiting” feedforward connections. Under the restriction
that the feedback connections are “local” connections around each integrator, a slow control design has been
proposed which enforces a slow convergence towards a nested sequence of manifolds, the last of which is a
stable manifold of the closed-loop system. Near invariance of the successive manifolds is achieved by allowing
for enough gain in their neighborhood, yet keeping the control slow in the entire state space.
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Appendix A. Proof of Lemma 1

(a) (By induction) Because X, = —¢, sat(K,e,/¢,) (a) holds for i = n.
Suppose now that it is true for j =k + 1---n, we show that it is true for j = k. We know that [x;| < 2g;
for j > k inside €. We have

X = epr1 — &k sat(Kyer/er) + gr(Xuq1s- - %n)-
Using the fact that x is in € and |x;| < 2¢; for j > k, we obtain:
x| < exi1/Kipr + ek + (9('9;‘24—1’---’3;%)-

By (6), we conclude that |x;| < 2&; up to u-scaling (that is, by scaling all the ¢;’s with p sufficiently small,
(O(e2) becomes negligeable in front of the other terms and |¥;| < 2¢; follows from (6)).
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To prove (b) and (c¢) we consider the system in the e coordinates (Eq. (2.5)). We show (b) and (c) by
induction. For £ = 1, we have
e1 = ey — e sat(Kiei/e1) + g1(xX2,%3, ..., X)
which becomes, when x € Q,
e =ey — g sign(e;) + g1(X2,X3,...,%,)

where g1(¥2,%3,...,%,)=0(&3,...,&2) by using (a). From (6) and after u-scaling, we conclude that the deriva-
tive of e; has the sign of —e¢; sign(e;) i.e. e1é; <0 when |e;| = &/K;. We also see that |é,| is bounded by
&1+ &/Ks + O(&3,...,e2) < 2¢ inside Q; (after u-scaling). Hence (b) and (c) hold for i = 1.

Induction step: Suppose that (b) and (c) hold for i =& — 1. We will show that (b) and (c) also hold for
i = k. Consider the e; equation:

. dfi—1 Ki—1er—1 . .
€ = ery1 — & sat(Kiey /e ) + df (ek — g1 sat <— + Gr—1(Xg, .., Xp)
Xi—1 Ek—1

deg_1 sat( Kk;ef‘] )

+ i (X155 %) + q L6k (A1)
€r—1

When x € Q;, the last term of (A.1)

Kk—lek—])

deg_q sat( =

€k—1
dey_

is zero when x¢ Q;_1 and it is K;_1€,_1 when x € Q;_1, which is bounded by 2Kj_;¢;_; in this part o
Q1. Evaluating (A.1) when |e;| = &/K}, we obtain that éze; < 0 if

& &
g > 2 4 p <K" Tag + @(aﬁ,...,gﬁ)> F O E2) + 2K 185y (A.2)
k

By (6), &/Ki < &r—1 and g4 1/Kpr1 + 2(Dr—1 + Ki—1)er—1 < &, so that (A.2) is satisfied, i.e. éze; < 0.
Using the bound (6), we analogously see that the bound |é;| < 2¢; is satisfied. The induction step proves
(b) and (c) for k€{2,...,n— 1}. For k =n, (6) is slightly different. Inequality (A.2) becomes

&
&y > Dn—l((p(‘gi) + Kl + &1 ) + 2Kvn—lgn—l (A3)

which follows from (6) up to p-scaling. This ends the proof. [J
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