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Abstract

The hybrid modelling approach for bioprocesses combines a neural network representation of the reaction rates with
a mass}balance description of the reactor. A procedure for the identi"cation of hybrid models is proposed and illustrated with an
experimental case-study. The key feature is a state transformation which allows to identify separately the kinetic models of the
reaction rates even if they occur simultaneously in the reactor. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Classical models of biotechnological processes in stir-
red tank bioreactors usually represent the speci"c reac-
tion rates in the form of rational functions of the species
concentrations. An interesting alternative is to use non-
linear black-box models (like neural networks) for the
reaction rates. Their advantage is that they have a #exible
structure and can be dependent on qualitative features as
well as the quantitative values of the state variables.

A new approach was recently proposed to identify the
so-called hybrid models, which combine the #exibility of
a neural network representation of the reaction rates
with a global mass}balance-based process description.

In the present paper, this hybrid modelling approach is
combined with the general methodology for the struc-
tural identi"cation of bioprocesses described in Bernard
and Bastin (1998). The proposed methodology allows
the separation of the identi"cation of the pseudo-
stoichiometric coe$cients of the model from the identi-
"cation of the reaction rates. The procedure is based on
a state transformation which enables the kinetic func-
tions to be completely decoupled from one another. This
means that each biological reaction occurring in the

reactor can be represented separately by a neural net
model as if it was the only one, although all the involved
reactions take place simultaneously.

The procedure is illustrated with experimental data
from an industrial pilot process.

2. Methodology

A general mass}balance model for biotechnological
processes in stirred-tank bioreactors is written under
the following form (Bernard & Bastin, 1998, Bastin
& Dochain, 1990):

dm
dt

"Kr(m)#u, (1)

where the state m"(m
1
, m

2
,2, m

n
)T3Rn is the vector of

species concentrations in the reactor. The "rst term Kr(m)
represents the biological and biochemical conversions in
the reactor. K3RnCm is the stoichiometric matrix and
r(m)"(r

1
(m), r

2
(m),2, r

m
(m))T3Rm is the vector of reaction

rates. The second term u"(u
1
, u

2
,2,u

n
)3Rn represents

the balance between in#ows/out#ows and dilution.
The modelling problem of a bioprocess described by

this equation involves two sub-problems: (i) the estima-
tion of the unknown stoichiometric coe$cients which are
entries of the matrix K; and (ii) the modelling of the
reaction rates r

i
(m). This modelling problem is considered
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here under the assumption that (at least) one experiment
is available where all the state variables m

i
and all the

`exogenousa signals u
i
have been measured with a rea-

sonable sampling frequency. The procedure described in
Bernard and Bastin (1998) allows these two modelling
sub-problems to be completely separated. It is based on
a state transformation which is now presented.

It is assumed that the number of species n (the dimen-
sion of m) is larger than the number of reactions m
(the dimension of r(m)) and that the stoichiometric matrix
K is full rank. Under this assumption, two matrices
¸3R(n~m)Cn and M3RmCn can be de"ned so that

¸K"O
(n~m)

,

MK"I
m
,

where M is a left inverse of K while ¸ is orthogonal to K.
Furthermore, these two matrices are chosen so that the
(n]n) matrix

A
M

¸ B
is invertible. Then the following state transformation is
de"ned:

A
y

zB"A
M

¸ Bm.

In the new state variables (y, z), the state-space model is
rewritten as two submodels

dy

dt
"r(m)#Mu, (2)

dz

dt
"¸u. (3)

The second part (3) of this transformed model does not
explicitly involve the reaction rates and can be used to
estimate the stoichiometric coe$cients without model-
ling the reaction rates. The method is described in detail
in Bernard and Bastin (1998) while the conditions under
which the stoichiometric coe$cients are identi"able with
this method are described in Chen and Bastin (1996). An
experimental application of this method can be found in
Bernard, Bastin, Stentelaire, Lesage and Asther (1999).

This paper focuses on the "rst part (2) of the trans-
formed model. Thus, it is assumed that the stoichiometric
coe$cients necessary to compute M are known or
have been identi"ed. In accordance with the minimal
modelling principle (see e.g. Bastin & Dochain, 1990,
Chapter 2), each reaction rate r

i
(m) is written in the form

r
i
(m)"u

i
(m)o

i
(m), (4)

where u
i
(m) is a known function and o

i
(m) (called partial

reaction rate) represents the unknown part of the model.
Obviously, when the reaction rate is assumed to be com-
pletely unknown, then u

i
(m)"1 and r

i
(m)"o

i
(m). The

interesting point is that the submodel (2) is written
elementwise

dy
j

dt
"u

j
(m)o

j
(m)#(Mu)

j
, j"1,2, m. (5)

In this way, it appears that each reaction rate is com-
pletely decoupled from the other ones: the reaction rate
r
j
only enters the dynamics of y

j
. It is then possible to try

to identify a model for o
j
(m) as if it were the only reaction

occurring in the reactor! The identi"cation is thus much
easier to perform than in the case where all the reaction
rates are to be identi"ed together.

Classical models of kinetic functions take the form of
a rational fraction (like Monod, Contois or Haldane
models, etc.). In this paper, we follow the hybrid model-
ling paradigm which has been proposed, e.g. in
Psichogios and Ungar (1992), Chen et al. (1995) and Feyo
de Azevedo, Dahm and Oliveira (1997): radial basis func-
tion neural networks (RBF-NN) are used as black-box
non-linear models for the representation of the unknown
part of the reaction rates as function of the species
concentrations

o
j
(m)"NN

j
(m)"w

0j
#

nh
+
i/1

w
ij
N

i
(m( j)), (6)

where nh is the number of neurons in the hidden layer
and w

ij
are the weights of the output layer. The notation

m( j) represents a subset of the components of m which are
the species that are supposed to in#uence the partial
reaction rate o

j
. The functions N

i
( . ) are the radial basis

functions de"ned as

N
i
(v)"expA!J!log0.5+

k

(v
k
!h

ik
)2

p2 B , (7)

where h
ik

are the weights of the hidden layer and p is the
spread parameter.

The identi"cation procedure is as follows.

(1) The data are "rst smoothed and interpolated with
cubic splines denoted mS and uS. Non parametric esti-
mates o(

j
(t) of the time evolution of the partial reaction

rates are then computed by using any appropriate
estimation algorithm (see e.g. Bastin & Dochain, 1990),
for instance an observer-based estimator of the form

dy(
j

dt
"u

j
(mS)o(

j
#(MuS)

j
#u(yS

j
!y(

j
), (8)

do(
j

dt
"ju

j
(mS)(yS

j
!y(

j
) (9)

with yS
j
"(¸mS)

j
and j, u the design parameters.

(2) For each o
j

separately, the training of the NN
model (6) is then carried out with the MATLAB Neural
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Net Toolbox. The weight coe$cients w
ij

and h
ij

are
optimized by minimization of the mean-square error

J
1
"P[o( j (q)!NN

j
(mS(q))]2dq. (10)

The number nh of hidden neurons and the spread para-
meter p are selected by trial and error as it will be
illustrated in the next section.

(3) A "nal re"nement of the model is achieved by
retuning the weights w

ij
of the output layer in order to

minimize the mean-square residual simulation error

J
2
"PDDmsim(q)!mS(q)) dqDD2, (11)

where the simulated value msim(q) is obtained from integ-
rating the model equation (1):

dmsim
dt

"Kr(msim)#uS

with each reaction rates de"ned as r
j
(msim)"

u(msim)NN
j
(msim). This is easily done since the w

ij
para-

meters enter the model (1) linearly.
Note that the quality of the interpolation using cubic

splines obviously has an important in#uence on the qual-
ity of the subsequent estimations and the choice of the
model structure. A trade-o! has to be made between the
smoothness and the accuracy of the approximation.

3. Case-study

In this section the methodology is illustrated with an
experimental case-study. This paper considers the typical
example of a fed batch process involving a single micro-
bial population growing on a single limiting substrate
with an enzyme catalysed production of a secondary
metabolite. The process is described by the following
two reactions:

Biomass growth: SPk
1
X,

Production: SPk
2
P,

where S represents the substrate, X the biomass, P the
product and k

1
, k

2
(pseudo) stoichiometric coe$cients.

The process takes place in a fed-batch stirred tank-
bioreactor with a progressive substrate feeding and occa-
sional withdrawals of the culture medium. The dynamics
of the process are described by the mass}balance model

dS

dt
"!k

1
(S)X!k

2
(S)X#

F
in
<

(S
in
!S),

dX

dt
"k

1
k
1
(S)X!

F
in
<

X, (12)

dP

dt
"k

2
k
2
(S)X!

F
in
<

X,

where S, X, P now denote the substrate, biomass and
product concentrations in the reactor, S

in
the inlet sub-

strate concentration, F
in

the volumetric in#ow rate,< the
volume of the culture medium, k

1
(S) the speci"c growth

rate and k
2
(S) the speci"c production rate. The volume

< is governed by the #ow balance equation

<Q "F
in
!F

out
(13)

with F
out

being the rate of withdrawals.
Model (12) is in the state-space form (1) with the

following notations:

m"A
S

X

PB , r"A
k
1
(S)X

k
2
(S)XB ,

K"A
!1 !1

k
1

0

0 k
2
B , u"

F
in
< A

S
in
!S

!X

!P B .

In the two reaction rates, there is a known part

u
1
"X, u

2
"X (14)

and an unknown part which is to be identi"ed

o
1
"k

1
(S), o

2
"k

2
(S). (15)

A set of experimental data collected in an industrial pilot
plant is used here as a benchmark for the case study (see
Figs. 1 and 2). The experiment lasts about 230 h. The
limiting substrate is a carbon source. The other nutrients
and substrates needed for the growth are assumed to be
non-limiting. The microorganism is a fungus and the
excreted product is an antibiotic species. The sampled
measurements of substrate S, biomass X and product
P are represented in Fig. 1. These measurements are
interpolated and smoothed with cubic splines also shown
in the "gure. The in#ow rate F

in
and the withdrawals

=
i
"F

out
/< are presented in Fig. 2. Observe that there

are only two pulses of withdrawals while there is a per-
manent constant piecewise feeding of the reactor. The
culture volume computed with Eq. (13) is also presented.
The in#uent substrate concentration is S

in
"300 g/l.

The yield coe$cients identi"ed from this data set are
k
1
"0.44 and k

2
"0.18.

In this example, a straightforward choice for the
matrix M is

M"A
0 k~1

1
0

0 0 k~1
2
B .

The model development then follows the three-step
procedure presented in the previous section.

Step 1: Data smoothing and computation of non-para-
metric estimates of k

1
and k

2
. In the "rst step the o!-

line data is smoothed and interpolated with cubic
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Fig. 1. Experimental data (L) and smoothed curves by cubic splines. Fig. 2. Experimental data: in#ow rate, withdrawals and volume.

splines. The interpolation is chosen such that the
degree of smoothness is good enough to avoid unreal-
istic oscillations in the interpolated values while main-
taining a satisfactory approximation to the original data
(see Fig. 1).

Non-parametric estimates k(
1

and k(
2

are computed
with the observer-based estimator (8) and (9). The result
is shown in Fig. 5.

Step 2: Identixcation of RBF-NN models. In the second
step, RBF-NN models NN

1
(S) and NN

2
(S) are identi"ed

for the two functions k
1
(S) and k

2
(S). For training the

neural nets, the input is the spline-smoothed substrate
concentration (Fig. 1) and the output is the non paramet-
ric estimate k(

1
or k(

2
. As for any black-box model identi-

"cation, the choice of the model is a trade-o! between
accuracy and complexity. In this paper, the criterion of
accuracy is the mean-square error J

1

J
1
"P[k(

j
(q)!NN

j
(S)]2 dq, j"1, 2, (16)

while the criterion for complexity is the condition num-
ber CN (the ratio between the smallest and the largest
singular values) of the matrix made up of the radial basis

functions considered over the range of available input
values. Two parameters are available to optimize this
trade-o!: the number of hidden nodes nh and the spread
coe$cient p (see Eqs. (6) and (7)). For each choice of nh
and p, the determination of the other parameters w

ij
and h

ij
is automatically performed with the MATLAB

Neural Net toolbox.
The identi"cation results for k

1
are presented in Fig. 3.

In Fig. 3(a) and (b) the mean square error J
1

and the
condition number CN are plotted with respect to the
number of hidden neurons nh and the spread parameter
p. A preliminary investigation has shown that values of
nh in the range 3}5 and of p in the range 0.02}0.04 are
relevant. It was observed that the smallest mean-square
error is achieved with models having nh"5 neurons but
with a bad condition number that indicates over-
parametrization. A good trade-o! seems to be a model
with parameters nh"4 and p"0.03. The radial basis
functions selected for this model are shown in Fig. 3(c).
The parameters h

ij
and w

ij
are given in Table 1. The

quality of the "tting may be appreciated in Fig. 5.
In a similar way a model with parameters nh"4 and

p"0.025 is selected for k
2
. The parameters h

ij
and

w
ij

are given in Table 2 and the radial basis functions
in Fig. 4.
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Fig. 3. First identi"cation of the hidden basis functions for k
1
. Fig. 4. Radial basis functions for k

2
.

c

Fig. 5. Successive models for the functions k
1

and k
2
.

Step 3: Final rexnement. A "nal re"nement is performed
by retuning the weights w

ij
of the two models in order to

minimize the mean-square simulation error for the sub-
strate S, the biomass X and the product P as de"ned in
(11). This is achieved using an iterative method. The
simulation is compared to the experimental data in
Fig. 6. The updated RBF-NN models of k

1
and k

2
are given in Fig. 5 while the re"ned values of w

ij
are in

Tables 1 and 2.
Comments. 1. In order to make a judicious choice of the

model structure most of the data points after 100 h (see
Fig. 1) are removed in step 2. Those repetitive points for
S close to 0 would put a too high weight on the accuracy
requirement for the model in that region which in turn
requires a large number of neurons and implies numer-
ical problems. However, the full data set is used in step
3 for the "nal re"nement after the model structure has
been chosen. One can see from Fig. 5 that the "nal
re"nement retunes the parameters and brings the model
to lower values for small S and higher values elsewhere.

2. The simulation quality of the state variables after the
"nal re"nement is considerably improved compared to

L. Chen et al. / Control Engineering Practice 8 (2000) 821}827 825



Fig. 6. Simulation results compared to the experimental data.

Table 1
Parameters for model k

1

k
1

RBFs Re"nement

h
11

3.6208e-02
h
21

6.8759e-02
h
31

4.8145e-02
h
41

1.0000e-04
w
11

1.3857e-01 1.1706e-01
w
21

8.6517e-02 1.6212e-01
w
31

!1.5073e-01 !9.8384e-02
w
41

!6.9741e-03 1.3616e-01
w
01

9.7893e-03 !1.8037e-01

Table 2
Parameters for model k

2

k
2

RBFs Re"nement

h
12

2.6119e-02
h
22

6.8759e-02
h
32

1.3220e-04
h
42

4.4496e-02
w
12

!1.0150e-02 6.0368e-02
w
22

!7.9774e-03 8.9921e-02
w
32

2.7995e-02 7.8907e-02
w
42

2.7444e-02 2.1014e-02
w
02

3.3479e-03 !9.1818e-02

the simulation results with observer-based model and the
"rst RBFs approximation (not shown in the paper). This
can be easily explained in the context of the identi"cation
theory. Both models from the "rst approximations are
obtained with an optimization criterion based on one-
step ahead prediction errors while in the "nal re"nement
simulation errors or output errors are used to achieve
a long-term optimization result.

4. Conclusions

A procedure for the identi"cation of hybrid models has
been proposed and illustrated with an experimental
case-study. The key feature is a state transformation that
allows the separate identi"cation of the kinetic models of
the reaction rates even if they occur simultaneously in the
reactor. This identi"cation procedure is divided into
three steps. The "rst step consists of complementing data
information by the interpolation of o!-line data and
building observer-based non-parametric estimation of
the reaction rates that are modelled in the subsequent
steps. In step 2, the model structure of each reaction rate
is identi"ed based on the separate target values provided
by the observer-based estimates. The use of the radial
basis functions and the explicit target for the func-
tion being modelled makes it easy in practice to
choose a suitable model structure using qualitative
and quantitative information. The procedure suggests
the retuning of the output layer parameters by minimiz-
ing the simulation errors of the state variables, which
is a more global optimization criterion. The case study
has indeed shown the easy practice of this procedure and
the model accuracy improvement through progressive
modelling.

The procedure presented in this paper involves some
empirical knowledge to achieve a good model result.
For instance, the interpolation using cubic splines has
an important e!ect on the choice of model structure.
A trade-o! between the smoothness and the accuracy of
the approximation has been used in the paper. The
choice of the number of hidden nodes (here number of
radial basis functions) is an another example. Notice that
according to the condition number criterion, a slightly
better choice for nh was 3 but nh"4 was chosen so that
the model has more #exibility in the "nal re"nement.
Further analysis would be useful to derive more general
guidelines for this procedure.
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