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SUMMARY 

The commonly used state-space models for the traffic description of urban underground railway lines are 
not suitable for practical on-line control. On the other hand, the proposed orginal linear formulation is 
very convenient for optimal state feedback control implementation. Results of simulations relative to  a 
theoretical line as well as to the Brussels Railway lines show the benefit to be expected using this new 
formulation for on-line traffic control. 
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1. INTRODUCTION 

The aim of this paper is to discuss three possible models of an underground public transport- 
ation system and to propose an original traffic control method, with particular application to 
the Brussels Underground Railway Line. 

An underground transportation system is known to have an unstable behaviour. Consider, 
for example, a delayed train. Because of this delay the time interval since the last train is 
increased and more people have to enter the vehicle, with a resulting increasing delay. In order 
to restore a disturbed traffic to an acceptable situation regulation is therefore necessary. 

I f  we consider an intra-city railway, with high traffic density and passengers arriving ran- 
domly at the stations and getting on the first available train regardless of the nominal schedule, 
it is necessary, from the passengers' viewpoint, to control the traffic in order to minimize the 
waiting time at the station, i.e. to keep the time intervals between successive trains as close as 
possible to their nominal values. On the other hand, if we consider connections with other 
transportation systems it is necessary to control the traffic according to the nominal schedule. 
For better service to the passengers the control has therefore to respect the trade-off between 
the two objectives. 

The control action consists of instructions (speed during the running time between stations, 
waiting time at the station, ...) given by the centralized traffic controller, on the basis of the 
available information, consisting mainly of the situation of each train in the system. Con- 
straints have of course to be imposed on the control, e.g. maximum speed, minimum waiting 
time at the station, security rules imposed by traffic lights. 

In sections 2 and 3 a mathematical model for the traffic dynamics is introduced; three state- 
space representations are described and compared with respect to their simplicity, their stability 
and the possibility of implementation in on-line traffic regulation. In section 4 a regulation 
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policy is proposed taking into account the two above objectives as well as the control limita- 
tions. In section 5 ,  we present numerical results for a simplified theoretical subway line, whereas 
section 6 shows how to implement the proposed regulation policy for a real system, taking into 
account the physical characteristics and constraints and gives simulation results relative to 
Brussels Railways Line. In the Appendix a more sophisticated model is proposed. 

2. THE MATHEMATICAL MODEL OF SASAMA AND OKHAWA 

In this section we shall briefly summarize the mathematical model for traffic dynamics proposed 
by Sasama and Okhawa. ' 

Consider I trains (upper index i = 1, . . . , I )  and a line with K + 1 stations (lower index 
k = 0, . . . , K). Defining 

t i  as the departure time of the ith train from the kth station 
rk as the running time of the ith train from the kth to the ( k  + 1)th station 
s i  as the staying time of the ith train at the kth station 
it follows immediately that 

r i , l= t i+r i+s i+ l  (1) 

t+ = &  + U i  (2) 

The running time r i  can be modelled further as 

where Rk is the nominal running time from the kth to the (k + 1)th station and u: is the control 
action applied to the ith train between the kth and ( k  + 1)th stations, in order to  increase 
( u i  > 0) or decrease ( u i  < 0) the running time. 

The staying time s i  depends on the time interval between the departure of the preceding train 
and the arrival of the present train. Sophisticated models of this staying time have been pro- 
posed (e.g. by Rice2), on the basis of queuing theory. Nevertheless the assumption of a linear 
relationship seems acceptable: the staying time increases proportionally to the number of 
passengers getting on the train, i.e. to the time elapsed since the departure of the last train, 
under the hypothesis of randomly arriving passengers. 

The staying time sk is therefore modelled as 

s i  = a i ( t i  - s i  - tl- ') + D + wi (3) 
where D is the minimal staying time at a station, when no passenger gets on the train and the 
driver closes the doors as soon as possible, where a i  is the delay rate representing the effect 
of the time interval since the departure of the last train on the staying time and where wi is 
a disturbance term. 

We propose in the appendix a more sophisticated linear model where the staying time 
modification is proportional also to the number of passengers leaving the train. 

Defining 

1 . and v i = b i w i  
ak i . , b i z -  (-i = - 

1 + a i  1 + a i  

relation (3) can be written 

Defining the nominal schedule representing the operating state without any control or distur- 
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bance ( u f  = 0 and v i  = 0), i.e. 

T Z + ~ = T i + R k + c i + i ( T i + i -  T L ; : ) + b i + i D  ( 5 )  

and x i  as the deviation of the actual departure time f i  from its nominal value T i ,  i.e. 
x i  = t f  - Tf it follows that 

(6) 
Equation (6) constitutes the basic equation for the transfer of the ith train from the kth to the 
( k  + 1)th station. 

In these relations D, Rk, c i  and bi are characteristic parameters of the line, to be estimated. 
The delay rate a: (and therefore c f )  can be estimated by linear regression on a large number 

of observations ( t i ,  s f )  at each station k, according to equation (4) under the following 
conditions: 

(1 - C i + l ) X f + l  + ci+1xi;:  = x i  + u i  + w i  

(a) no regulation at all (e.g. no traffic lights!) 
(b) no nominal schedule 
(c) the doors are closed and the train starts as soon as possible 
(d) nominal speed between stations. 

As it is rather unrealistic to operate the system under these conditions in order to identify the 
parameters c f ,  another method consists of measuring the passenger flow arriving at  the station 
and the riding time. 

Usual values of cf are, for Brussels Railways, in the range of 0.01 to 0.05. These parameters 
depend of course on th station (k) but also on the hour (through i). In the following we omit 
the upper index i in ck, without loss of generality. 

3. STATE-SPACE REPRESENTATIONS 

For I trains and (K + 1) stations consider the following array of deviations from the nominal 
schedule 

I /- RTM 

X A d  . . . 
Xt x: 
X: 

x6 . . ./ / x’o x: x: / 
I /  

’ /  X i  

- xr21 X i + 1 -  - - - - - SSM --- 
I / 

/ 
2 /  

X b X K  . .  I .  I xk . . .  

1, TSM 

(7) 

For a given sequence of control actions and disturbances ( u f  and v i )  this array is generated 
according to equation (6). 

State-space formulations of the traffic dynamics would be very convenient to apply the 
classical control theory. Two formulations are proposed in Reference ’: 
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(a) 'The stations sequential model' 
This can be written in matrix form as 

x k +  1 = A k X k  -I- A k U k  (8) 

where 

x k  is the vector of the deviations of all trains at the kth station (i.e. the kth row of array (7)) 
u k  is the vector of the controls applied at the kth station 
v k  is the vector of disturbances. 

More precisely, for k = 1, . . . , K 

and A k  = Ck;Ll where C k + l  is the following bidiagonal matrix: 

1 

l o  c k +  1 ' 1 - c k t 1 ]  

The matrix equation (8) describes the transfer of all trains from the kth to  the (k + 1)th station, 
i.e. it generates array (7) row by row, with as initial condition the first row, i.e. the deviations 
of all trains at the first station. The order of the representation is the number of trains (generally 
about IOO!). The dynamical matrix A k  is lower triangular with eigenvalues equal to 
1/(1 - C k + l ) ,  which, for usual values of C k + l  are greater than one. 

This means that, without control, the norm of the state vector increases from one row of 
the array to the next: this is the well-known intrinsically unstable behaviour of a high density 
public transportation system. 

(b) The train sequential model (TSM) 
This can be written in matrix form as 

where 

X i  is the vector of the perturbations of the ith train for the (k + 1)th station (i.e. the ith 
column of array (7)) 
U ;  is the vector of controls applied to  the ith train 
V ;  is the perturbation vector. 

More precisely 

u b +  xb 

i 
UK-1 

, V i =  V b  

i 
V K - 1  
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and 

Equation (1 1) describes the evolution of the time deviations at all stations from the i th train 
to the ( i  + 1)th train, with, as initial condition, the deviations of the first train. The order of 
this representation is the number of stations (for Brussels Railways about 25). The dynamical 
matrix A’ is lower triangular with negative eigenvalues - ck/(l - c k )  having absolute values less 
than one. This means that the norm of the state vector decreases from one column of array 
(7) to the next. 

(c) The real time model (RTM) 
We now propose an original state-space formulation based on information propagation 

considerations and which seems to be more promising than the two above formulations. Con- 
sider equation (6), generating array (7). A particular x i + 1  is generated, in addition to  the con- 
trol uk and the disturbance wk, by the two deviations  xi-?^ and xik.This generation process 
can be generalized. If  we consider successively the perturbations belonging to  the diagonal 
characterized by i + k = j ,  the elements of diagonal ( j  + 1 )  can be computed from the elements 
of diagonalj (in addition to the control and disturbance terms). It is therefore natural to  define 
as state vector the elements of such a diagonal. The corresponding state-space formulation 
becomes, in matrix form: 

Xj+ 1 = AXj + BUj + BVj (14) 
where 

respectively), requiring no matrix inversion: 

A =  B =  
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Equation (14) describes the evolution of the deviations from one diagonal (characterized by a 
sum of indices equal to j) to the next (sum = j  + 1 ) .  The order of the representation is the 
number of stations. The dynamical matrix is bidiagonal and its eigenvalues are - C k / ( l  - ck), 
the same as for TSM. 

An interesting property of this last formulation is that the components of the state vector 
are known nearly simultaneously. Because of the traffic security requirements (e.g. no more 
than one train at a time in a line section between two successive stations) the deviations x{ ( j th  
train at the ith station) and x!;; (preceding train at the next station), are known in a short 
time. It will be seen in the next section that this property makes possible real time practical 
implementation of a state feedback control policy. It is the reason why we call this model the 
‘real time model’ (RTM). 

4 .  TRAFFIC REGULATION 

(a) Performance index 
A wide variety of optimization criteria can be considered depending on the control purposes. 

The following criterion takes into account the objectives discussed in the introduction: regu- 
larity of the intervals between successive trains and regularity with respect to the nominal 
schedule 

The first term penalizes the deviations from the nominal schedule; the second term penalizes 
the deviations of the time intervals between trains and is therefore related to the average waiting 
time for the passengers and the congestion of trains. The third term is a measure of the 
amplitude of the control actions, which are zero for the nominal schedule. The values of the 
coefficients pk and q k  depend on the control purpose and reflect the trade-off between the 
regulation objectives. 

(b) Theoretical optimal control 
The control minimizing the quadratic criterion (17) under linear constraints (the dynamical 

equations (8), (1 1 )  or (14)) is known to be a linear function of the state vector (linear state feed- 
back control), with a gain matrix obtained recursively from the backward evolution of the 
Riccati equation (see for example Reference3). 

For a given set of initial conditions the array (7) can be generated optimally by use of this 
state feedback control. 

For SSM the initial condition consists of the first row of array (7) (i.e. the deviations of all 
the trains at the first station), for TSM it is the first column (i.e. the deviations of the first train 
at all the stations) whereas for RTM the initial condition consists only of the deviation of the 
first train at the first station. As less information is involved in the initial condition for RTM 
than for SSM and TSM the performance index takes a better value. In fact RTM allows one 
to elaborate the optimal choice of the first row and the first column of array (7), as opposed 
to both other formulations where these initial conditions are imposed a priori with corres- 
ponding loss of degrees of freedom. The optimal control based on RTM produces therefore 
a better value of the performance index then the policies based on TSM and SSM. 
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(c) Optimal control implementation 
The practical implementation of the optimal state feedback control is impossible for SSM 

and TSM, because this control is a function of future deviations and would imply long-term 
prediction of these deviations. For instance the control to  apply to the ith train at the kth 
station is a linear combination of all the deviations relative to  this station for the complete 
operation period (SSM) or to this train for its transfer from the first station to  the last one 
(TSM). For SSM the control to be applied at 8 a.m. at a given station could be a function of 
the deviations of trains passing through the station 12 hours later! A simplified implementable 
procedure proposed in Reference consists of computing the complete optimal feedback gain 
and applying a truncated control involving only two known deviations. This solution is 
absolutely not optimal but requires nevertheless the computation of the complete gain matrix 
(and therefore the solution of a large dimension Riccati equation). 

For RTM however the numerical values of the state vector components can be known nearly 
simultaneously by the centralized traffic controller. Because of the tramc security requirements 
(e.g. at most one train at a time in each direction in a section between two successive stations) 
the deviations x i  with i +  k = j  (i.e. x i  =deviation of a train i at the kth station, 
xp?, = deviation of the next train at the preceding station, xp?~ . . .) are known in a short 
time interval, so the index j characterizing the state vector in RTM reflects the time evolution 
of the system. On-line state feedback control is therefore implementable: the control to  be 
applied to the ith train between the kth and (k  + 1)th stations is a linear combination of devia- 
tions x ;  with OL + p = i + k.  These deviations are known or can be easily predicted by a short- 
term predictor (at most a two step predictor). Among the three discussed formulations it is 
therefore the only one allowing complete on-line state feedback control. 

(d) One-step optimization 
The control law can be significantly simplified by restriction of the problem to a one-step 

optimal control problem. Consider, for the real time model the state vector Xj corresponding 
to deviations x i  with i + k =j. The restricted one-step criterion is defined as 

(18) 
where P and Q are diagonal matrices characterized, by the P k  and q k  respectively, 

Jo’) = xT+ lPXj+ 1 + (Xj+ 1 - Xj)TQ(Xj+ 1 - Xj) + UTUj 

The original performance criterion J defined in (17) is the sum on all diagonals (indexj) of the 
partial criterion J u ) .  The restricted problem consists of minimizing, for a given j ,  the partial 
criterion J ( j ) ,  subject to the constraint (14). This restriction to  a one-step criterion means that, 
given a set of perturbations on a diagonalj, we want t o  restore an acceptable situation at step 
( j +  1). 

Because of the particular forms of the dynamical matrices A and B which characterize the 
RTM, optimal one-step control takes the very simple form 
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or, in scalar notation, 

where 

The control uk is therefore a weighted sum of the deviation of the ith train at the kth station 
and of the preceding train at the next station. When u i  is calculated x i  is known, x i . ’ ~  is either 
known or is to be predicted (one or at most two steps predictor). 

It must be noted that this simple form of the one-step optimal control is directly related to 
the particular form of matrices A and B and appears therefore only for the RTM. For both 
other models no benefit can be expected from the restriction to the one-step optimization 
criterion. 

It is interesting to introduce the control (20) into the dynamical equations in order to in- 
vestigate the closed-loop behaviour for the three models. The closed loop eigenvalues are 

for the SSM: 

(23) f k  - c k  q k  - c k ( l  - c k )  - 
l - c k  ( l - C k ) ’ + P k + q k  

For the SSM, the eigenvalues are always positive and depend on the sum P k  + q k .  For ( P k  + q k )  
larger than c k ( 1  - c k )  they are less than one (stability) For the TSM and the RTM the eigen- 
values are zero for q k  = C k ( 1  - c k ) ,  positive for q k  2 C k ( 1  - c k )  and negative for q k  < c k ( 1  - C k )  

\ c = 0.1 

0.5 1.0 P 

Figure I .  Cuves of iso-eigenvalues for SSM (closed loop) 
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Figure 2. Curves of iso-eigenvalues for TSM and RTM (closed loop) 

Figures 1 and 2 give the iso-value curves of the eigenvalues in the @, q )  plane for a given 
c k  (Ck = 0.1). These curves are useful for the choice of the weighting coefficients Pk and q k  with 
respect to the desired transient behaviour of the traffic regulation. 

5 .  THEORETICAL SIMULATIONS 

A first set of simulations consists of the generation of the deviations array (7), on the basis of 
the RTM (equation (14) to (16)), with implementation of the one-step optimal control policy 
(equations (20) and (21)), without any reference to  the nominal time schedule. Clearly the 
generated array is not realistic: when compared to the nominal time schedule physical impossi- 
bilities immediately occur, such as violation of security requirements, shorter transfer times 
between stations, crossing of trains . . . . The only interest of these simulations is t o  compare 
the effects of several control policies. Simulation results corresponding to  the actual Brussels 
transportation system, taking into account the physical and security constraints, are given in 
the next section. 

The following basic assumptions are adopted: 
(a) We consider 15 trains ( I =  15) and 7 stations ( K =  6). 
(b) The cb are taken equal and constant (cb = 0.1). 
(c) An initial delay of 60s is imposed on the first train at the first station. 
The simulation results are visualized by diagrams giving the deviations of all the trains at the 

third and seventh stations (a positive deviation means a delay). With these diagrams it is easy 
to compare the actual waiting times at these stations to  their nominal values, according to  

- xi- ' = ( t i  - t i -  1 ) - ( T i  - Ti- 1 ) 
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Figure 3 .  Free system 

where (ri - ri-') and ( T i  - Ti - ' )  are, respectively, the actual and the times 
at station k ,  between trains ( i  - 1) and i. The slope of the segment [ x i - ' ,  x i ]  is therefore pro- 
portional to this difference (a positive slope means an increased waiting time). Several control 
policies are implemented. 

Case 1. Free system: no control is applied. It can be seen in Figure 3 that the deviation of 
the first train increases dramatically (from 60 s at the first station to 112 s at the seventh station) 
and that important deviations are induced for the other trains. The regularity of the waiting 
times is very bad: several waiting times are increased (for instance between trains 2 and 3), 
others are reduced (for instance between trains 1 and 2). This unstable behaviour is quite 
uncomfortable, from the passenger's point of view. 

Case 2. Optimal control policy (equations (20), (21)) with p = 1 and q = 0 (Figure 4). 
Case 3. Optimal control policy with p = 0 and q = 5 (Figure 5 ) .  
Case 4. Optimal control policy with p = 1 and q = 5 (Figure 6). 
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Figure 6. Controlled system with p = 1 and q = 1 

The vertical scale is not the same for Figures 4, 5 and 6 as for Figure 3.  The difference between 
these policies consists of the choice of the weighting coefficients p and q characterizing the 
performance index (18). 

The effects of p and q are to ensure a better regularity with respect to the nominal schedule 
or with respect to the nominal waiting times respectively. It can be observed that the regularity 
with respect to the nominal schedule is better for case 2 than for case 3,  but that the regularity 
of the waiting times is better for case 3 (smooth curves). Case 4 is an acceptable trade-off 
between both objectives. In any case the system behaviour is much better than for the free 
system. Table I gives for the four policies the maximum train deviations and the maximum 
waiting time deviations at the third and the seventh stations. 

Table I. 

Case 1 Case 2 Case 3 Case 4 
Station free p = l , q = O  p = o ,  q = 5  p =  1, q =  1 

~~ 

Maximum train 3 74-1  14-8 18.2 6.2 
deviation 7 112-9 0.9 3.2 0.2 

Maximum waiting 3 94.8 17 2.7 2.1 
time deviation 7 200.7 1.2 0.5 0.1 

6. PRACTICAL IMPLEMENTATION AND SIMULATION RESULTS 

We now study the problem of implementation of the proposed traffic control policy for an 
existing transportation system with its physical characteristics and constraints. 

The implementation of the policy needs a preliminary analysis of the system, providing: 
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(a) the topological structure of the line and the values of the parameters of the linear model 

(b) the physical constraints: maximum speed, security constraints (minimal distance between 

(c) the nominal time schedule, which of course has to be coherent with the linear model 

Consider now the system under operating conditions. The theoretical control u i  to  be applied 
to the kth train at the ith station is calculated by the centralized controller according to 
equations (20) and (21). The necessary information is the deviation of the considered train at 
this station and that of the preceding train at the next station. Practically this control can be 

( R i ,  D and c i )  obtained from a statistical analysis as discussed in section 2 

successive trains, . . .) imposed by use of traffic lights, 

(equation ( 5 ) ) .  

considered as an instruction given t i  the driver, in order t o  modify the staying time at the 
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Figure 7 .  Brussels Underground configuration (standard running times) 
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station and the running time to the next station. The driver has to follow this theoretical instruc- 
tion, but conforming himself to the other security requirements. The modification of the stay- 
ing time can be imposed by use of the traffic light at the station. The modification of the running 
time can be realized by the choice between three nominal running speeds (low, normal or high). 

The implementation of this traffic control policy has been investigated for the Brussels 
Underground Transportation System. This system consists of two lines (A and B) with a long 
common section where trains of both lines are operated alternately. The structure of the line 
as well as the standard running times are given in Figure 7. The minimum waiting time D is 
7 s  and the delay rate parameters (ck) have been estimated from statistical data. As the 
passenger flow is not high, compared with the maximum embarkment rate, even during 
rushhours, the values of c i  are small (about 0.03). A nominal time schedule has been generated 
on basis of these values of the parameters. 

A program has been implemented for the simulation of the complete system, taking into 
account branching, traffic security requirements, minimal distances between trains, . . . This 
program generates the absolute times ?i, in connection with the nominal schedule ( T i ) .  It 
allows the introduction of control terms ( u k )  as well as disturbance terms for any train at any 
station. The proposed traffic policy has been tested on the basis of the simulation program. 
Several results were obtained under the following conditions: 

(a) For the simulations the ck are considered as Gaussian random variables with mean 0.03 
and standard deviation 0.01. The array of ck is the same for all simulations. 

(b) The constraints on the control are the following: in addition to the respect of the security 
requirements the staying time may not be reduced by more than 5 s and the running time 
modifications may not exceed 1/10 of the standard running time. 

(c) For all simulations a delay of 240 s is imposed on the first train at the first station of the 
common section (Merode). 

The results are summarized in diagrams giving the deviations of the trains at the first and last 

loo t  

J Traln Index 
c 

1 2  3 4 5 6 7 8 9 10 

Figure 8. Free system 
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Figure 9. Controlled system with p = 5 ,  q = 0 

stations of the common section (Merode and Etangs-Noirs, respectively). Odd train numbers 
refer to trains of line A, even numbers to trains of line B. 

Several control policies are implemented. 
Case 1. Free system: no control is applied. It can be seen in Figure 8 that the delays at the 

last station become very important ( 5 0 0 s  for the first train and 180s for the 9th train). The 
delays are propagated because a minimum distance between successive trains has to be ensured. 

Case 2. Optimal control law (equations (20), (21)), with constraints, with p = 5 and q = 0. 
i t  can be seen in Figure 9 that the delays are smaller than for the free system and that, from 
the 4th train, the delays are reduced from one station to the other. 

Case 3. Optimal control law with constraints, with p = 0 and q = 5 .  The delays are larger 
than in case 2, but the interval regularity is good. In fact all the trains show the same delay, 
increasing slowly from one station to the next (Figure 10). 
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Etangs - Noirs (last station) 

Merode (first station) 
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Figure 1 1 .  Controlled system with p = 1, q = 1 

* 

Case 4. Optimal control law with constraints, with p = 1 and q = 1 (Figure 11). This case 
constitutes an acceptable trade-off between the two objectives. 

Clearly the regulation significantly improves the behaviour of the system. A better result can 
of course be obtained if the severe constraints on the control variables are somewhat relaxed. 

7. CONCLUSION 

1. The real time state-space representation has been shown to present significant advantages: 
the simple form of the corresponding dynamical matrices, the possibility of implement- 
ation for real control and the simple form of the one-step optimal control. It is therefore 
particularly suited to on-line traffic regulation. 

2. It is easy to extend the basic presentation to take into account several problems: con- 
straints on the control, physical and security constraints, complex network with merging 
and branching. These extensions have been investigated in simulations of the Brussels line. 

3. It is possible to consider a more sophisticated model for the system. The staying time 
model (equation (3)) can be modified in order to involve not only the passengers entering 
the vehicle, but also the number of passengers coming out of the train. Considering the 
load of the train as an additional variable the real time model structure is the same as for 
the present model. An example of model extension is given in the Appendix. 

APPENDIX: EXAMPLE OF MODEL EXTENSION 

Instead of considering as in eqution (3) that the modification of the staying time s i  is only pro- 
portional to the waiting time between two successive trains and therefore to the number of 
entering passengers, it is possible to take into account the effect of exiting passengers. Equation 
(3) then becomes 

(24) s i + ,  = D +  wi+1 f C Y ( O i + l  + m i + 1 )  
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where o f +  I and m f +  I are, respectively, the numbers of passengers exiting and entering train 
i at station ( k  + l ) ,  a is the delay rate representing the time necessary for one passenger to get 
on or off a train, and where D and wi+ l  have the same meanings as in equation (3). 

The number of exiting passengers is assumed to be proportional to the number of passengers 
in the train, i.e. the load of the train: 

0:+1 =/3:+1r: ( 2 5 )  

where li is the load of train i, between stations k and (k + l ) ,  and L3i+1 is a proportionality 
factor depending on the station (k+ 1 )  and on the hour (i). 

The evolution of the load is given immediately by 

(26) i 
1 1 + 1 =  I f  + m f + l -  O k + l  

The number of entering passengers is assumed to  be proportional to the waiting time between 
successive trains: 

m f + 1 =  y i + 1  (t i+, - s f + l -  ti;:) (27) 

where y i + l  represents the effect of the waiting time on the number of passengers. 

described by two linear equations relating the staying times and the loads of the trains. 
By elimination of and between equations (24) to (27), the system is completely 

s f + l =  a f + l l f + b f + l ( t f + l  - t i ; : ) + c f + ~ ( D +  w f + , )  (28) 

I f + i = d : + i I f + I f + l ( t ~ + ~ - t i ; : ) - ~ f + i c ~ + ~ ( D +  w f + l )  (29) 

and 

where a i + l ,  bi+l ,  c f + 1 ,  d f + l  and e f + l  are defined in terms of a, & + I ,  y k + i :  

ark+ I 1 
bh+ l=  , c i + 1 =  1 + ay:+1 1 + ayf+1 1 + a y f + 1 '  

aDi+ I a i+ l  = 

d i + l =  1 - / 3 f + 1 - y : + l U f + l ,  e f + l = y k + I  i ( l - b k + l )  i 

Defining a nominal evolution of t f  and I f ,  corresponding to w f  = uf = 0, i.e. 

T f  + 1 = T i  + Rk + af + 1L i + b f  + I (T i+  1 - TL;:) + c i +  iD 

L f + l  = d i + l L f  + eL+l (Tf+  1 - Tk-21) - y f + l c i + l D  

(30) 

and 

(31) 

and the two-dimensional vector of the deviations with respect to  the nominal values T i  and Llk, 
i.e. 

we obtain the following matrix equation for the evolution of X i  
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with 

A i + 1 =  

C i + 1 =  

G.  CAMPION ET AL.  

-I 

1 
1 - b i + l  

e i +  1 

1 - bi+1  

1 - bi+i 

c i +  1 

1 - b i + l  

Equation (33) is a linear relationship between X i + 1 ,  X i ,  X~>’I ,  u i  and w b + ~ ,  and is 
completely similar to equation (6 ) ,  with the difference that X i  is now a two-component vector. 
It is therefore straightforward to  extend the RTM to equation (33). We can define a quadratic 
performance index taking account not only of the deviations from the nominal time schedule 
and the deviations of the waiting time as in equation (17), but also of the deviations of the 
actual load from its nominal value L i .  The resulting optimal control policy is a linear state feed- 
back control. The implementation of the control policy needs not only the knowledge of the 
departure times but also of the actual load of the trains. This last information is obtained by 
counting the entering and exiting passengers. This model needs the estimation of the parameters 
of the line: a, and y i .  
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