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Robust Stabilization of a Nonlinear Cement Mill Model

F. Grognard, F. Jadot, L. Magni, G. Bastin, R. Sepulchre, and V. Wertz

Abstract—Plugging is well known to be a major cause of instability in in-
dustrial cement mills. A simple nonlinear model able to simulate the plug-
ging phenomenon is presented. It is shown how a nonlinear robust con-
troller can be designed in order to fully prevent the mill from plugging.

Index Terms—Cement mill, plugging, robust state feedback, semiglobal
stabilization, saturation.

I. INTRODUCTION

This note is concerned with the feedback stabilization of industrial
cement mills. A schematic layout of a typical cement milling circuit
is shown in Fig. 1. The plant is made up of the interconnection of a
ball mill and a separator. The ball mill is fed with raw material (ce-
ment clinker). After grinding, the milled material is introduced in the
separator where the finished product (i.e., the particles that are small
enough) is separated from the oversize particles (also called tailings)
which are recycled to the ball mill.

Traditionally, the application of feedback control to cement mills
is limited to monovariable classical PI regulation of the circulating
load (the tailings flow rate) with either the feed flow rate or the sep-
arator speed as control action. Recently, linear multivariable control
techniques have been introduced to improve the performances of the
milling circuit (see, e.g., [1], [2] and the references therein). However
linear controllers based on a linear approximation of the process, are
stable and effective only in a limited range around the nominal oper-
ating point. On some occasions, it is observed on real plants that inter-
mittent disturbances (like for instance changes in the hardness of the
raw material) may drive the mill to a region where the controller cannot
stabilize the plant. This is well known by the operators as the so-called
plugging phenomenonof ball mills.

In order to cope with this problem, a simple nonlinear model of the
milling circuit has been presented in [4]. This model specifically in-
cludes the mill load (amount of material inside the mill) as a state vari-
able. It is able to reproduce the plugging phenomenon in a realistic way.
In [5], the authors also observe that this state variable is essential for a
better control of the process.

In [4], a state feedback controller based on this nonlinear model is
presented. It is build on a nonlinear predictive control strategy and, as
such, is really the extension of the previous linear quadratic channel
(LQG) controller of [1]. With this controller, the nominal performance
of the closed loop system is improved but the robust stability is not
guaranteed. The system has a larger stability region than with the linear
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Fig. 1. Schematic view of a milling circuit.

controller of [1], but the risk of mill plugging is nevertheless not fully
avoided.

The contribution of this note is then to describe a specificstatefeed-
back nonlinear controller such that the system has a single equilibrium
semiglobally stable(and therefore globally attracting) in the domain
of physical existence of the process. The controller is therefore able to
completely prevent the mill from plugging. Moreover this controller is
robust because it requires very littlea priori knowledge of the plant
(only the shapes of the grinding and separation functions need to be
known).

II. M ATHEMATICAL MODELING

The following notations are introduced (see Fig. 1). The mill is fed
with cement clinker at a feeding rateu [tons/h]. The separator is driven
by its rotational speedv [rpm]. The tailings are recycled at a rateyr
[t/h] to the mill while the finished product exits the plant at a rateyf
[t/h]. The plant is described by a simple dynamical model with three
state variables

Tf _yf =�yf + (1� �(v))'(z; d) (1)

Tr _yr =�yr + �(v)'(z; d) (2)

_z =�'(z; d) + yr + u (3)

whereTf ; Tr [h] are time constants,z [t] is the amount of material in
the mill (also called the mill load),d represents the clinker hardness,
�(v) is the separation function and'(z; d) is the ball mill outflow rate.

The grinding function'(z; d) is shown in Fig.2 for different values
of d. It is a non monotonic function of the mill loadz. Whenz is too
high, the grinding efficiency decreases and leads to the obstruction of
the mill (plugging). A low value ofz is also undesirable because it
causes a fast wear of the balls.

The separation function�(v), shown in Fig.3, is a monotonically in-
creasing function of the rotational speedv of the separator, constrained
between 0 and 1 with0 � v � vmax and�(vmax) < 1.

Of paramount importance is the fact that with this modeling of the
grinding and separation functions, the system (1)–(3) is positive (see,
e.g., [3]) in accordance with the physical reality:

if yf (0) � 0; yr(0) � 0; z(0) � 0; u(t) � 0

and0 � v(t) � vmax for all t � 0

thenyf (t) � 0; yr(t) � 0

andz(t) � 0 for all t � 0. Indeed, (1)–(3) show that whenever a
component of the state becomes zero, its derivative is nonnegative.

0018–9286/01$10.00 © 2001 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 4, APRIL 2001 619

Fig. 2. Grinding function.

III. STABILITY OF EQUILIBRIA

Assuming that the clinker hardnessd is constant, the equilibria of
the systemyf ; yr; z are parametrized by the constant inputsu andv

yf =u (4)

yr =
�(v)u

1� �(v)
(5)

'(z; d) =
u

1� �(v)
: (6)

In view of the shape of'(z; d), as illustrated in Fig.4, there may be
zero, one, or two equilibria. There are two distinct equilibria when the
following inequality is satisfied:

u < (1� �(v))'max(d) (7)

where'max(d) is the maximum value of the function'(z; d) with re-
spect toz. Linearizing the model (1)–(3) at these equilibria, the eigen-
values satisfy

�1 =�T
�1

f (8)

�2 + �3 =�'z(z; d)� T
�1

r (9)

�2�3 =T
�1

r 'z(z; d)(1� �(v)) (10)

where'z denotes the partial derivative of' with respect toz. From
(9)–(10), we conclude that the stability of the equilibria is determined
by the sign of'z(z; d). The equilibrium is exponentially stable if
'z(z; d) > 0, whereas it is unstable if'z(z; d) < 0. In Fig. 4, the
stable situation corresponds to equilibria to the left of the maximum
of the curve, while unstable equilibria are located to the right of the
maximum. When'z(z; d) = 0, one of the eigenvalues is zero and the
stability of the equilibrium is determined by the center manifold dy-
namics

_z = �'(z; d) + u+ yr: (11)

The equilibriumz = z of (11) is unstable since(z � z) _z > 0 for
z > z.

IV. THE PLUGGING PHENOMENON

The plugging phenomenon manifests itself under the form of a dra-
matic decrease of the production and an irreversible accumulation of
material in the mill due to intermittent disturbances of the inflow rate
and variations of clinker hardness.

Fig.3. Separation function.

Fig. 4. Equilibria and their stability.

In the model (1)–(3) with constant inputsu and v, plugging is a
global instability which occurs as soon as the state (yf ; yr; z) enters
the set
 defined by the following inequalities (see Fig. 5):

yf � 0; yr � 0; z � 0

(1� �(v))'(z; d) < yf < u

�(v)'(z; d) < yr

'z(z; d) < 0:

Indeed, it is not difficult to observe that
 is a positively invariant set
and that in


Tf _yf < 0

Tr _yr < 0

_z > 0:

Therefore, we have that in


yf ! 0; yr ! 0; z !1 ast!1: (12)

Hence, the levelz of material in the mill is accumulated without limi-
tation while the production rateyf goes to zero.

V. ROBUST GLOBAL STABILIZATION

The control objective considered in this paper is to regulate the pro-
duction rateyf and the mill loadz at desired set pointsy�f and z�

by acting on the feed rateu and the separator speedv. The controller
must prevent the mill from plugging and achieve global stabilization.
Moreover, the controller must be robust against modeling uncertainties.
More precisely, our design only relies on the shape of the grinding func-
tion'(z; d) and the separation function�(v) as illustrated in Figs. 2
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Fig. 5. The plugging set
.

Fig. 6. Block diagram of the controller.

and 3. No quantitative analytical model of these functions is assumed
to be known.

The control inflow rateu and the control separation speedv are phys-
ically constrained to be positive and saturated. The control objective
will be achieved with the following control law:

u =m( ) (13)

 =�yr + k1(z
�

� z) + � (14)
_� = k2(z

�

� z) + k2(m( )�  ) (15)

v = l(�) (16)

_� = k3(k2(yf � y
�

f) + k2(l(�)� �)) (17)

wherem( ) = sat[0; u ]( ) andl(�) = sat[0; v ](�).
This is a very simple control law made up of two saturated PI con-

trollers with anti wind-up and a “feedforward” ofyr into thez-regu-
lator, which decouples the two loops (see Fig.6).

The closed-loop system (1)–(3), (13)–(17) is then rewritten as

Tf _yf =�yf + (1� �(v))'(z; d) (18)

Tr _yr =�yr + �(v)'(z; d) (19)

_z =�'(z; d) + yr +m( ) (20)

Fig.7. Invariant triangleT .

_� = k2(z
�

� z) + k2(m( )�  ) (21)

_� = k3(k2(yf � y
�

f) + k2(l(�)� �)) (22)

 =�yr + k1(z
�

� z) + � (23)

v = l(�): (24)
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Fig. 8. The plugging phenomenon.

In the next theorem, the stability properties of this closed loop system
will be analyzed. Some technical notations must be introduced. The
clinker hardnessd is assumed to belong to an interval of admissible
values[d1; d2]. For each value ofd 2 [d1; d2], the grinding function
'(z; d) as depicted in Fig.2 is a twice differentiable Lipschitz function
of z, with a Lipschitz constant denotedk0(d). For each value ofz 2
+, '(z; d) is a decreasing function ofd. The maximal value of' is

denoted

'max = max
z2

'(z; d1):

The separation function�(v) as represented in Fig. 3 is also twice dif-
ferentiable with

�(0) = �
0(0) = �

00(0) = �
0(vmax) = �

00(vmax) = 0: (25)

Then, we have the following stability result where it is shown that the
closed loop system has a unique equilibrium which is semiglobally
stable in the domain of physical existence of the process.

Theorem: If d 2 [d1; d2], umax > 'max,
k1 > max(1; maxd2[d ; d ] k0(d)), k3 > 0. Then, for any compact
setsC(�; �) � [�k1z

�; ! [� andC(y ; y ; z) �
3
+, there exists

k�2 > 0 such that for all0 < k2 < k�2 the single equilibrium of the
closed-loop system (18)–(24) is asymptotically stable and its region
of attraction containsC(y ; y ; z) � C(�; �).

Proof: The domainA = f(yf ; yr; z; �; �)jyf � 0; yr �
0; z � 0; � � �k1z

�; � 2 g is invariant. Indeedyr andyf are
positive by nature, andz is positive by construction of the control law.
Moreover, if� = �k1z

�, then is necessarily negative and the control
is saturated at zero, which implies that

_� = k2((k1 � 1)z + yr + z
�) > 0: (26)

We may, therefore, assume that� is initialized such that� � �k1z
�

and restrict our attention to the behavior of the system inside the sub-
domainA.

The special case without integral action is first considered because
it is the reduced-order model for a subsequent singular perturbation
analysis.

1) Stability Proof Without Integral Action:Let us first consider the
case without integral action (i.e.,k2 = 0) and with the variables� and
� fixed at arbitrary values� � �k1z

� and� 2 . The closed-loop
system (18)–(24) reduces to

Tf _yf =�yf + (1� �(v))'(z; d) (27)

Tr _yr =�yr + �(v)'(z; d) (28)

_z =�'(z; d) + yr +m( ) (29)

 =�yr + k1(z
� � z) + � (30)

v = l(�): (31)

Any equilibrium(yf ; yr; z) must satisfy

0 =�yf + (1� �(l(�)))'(z; d) (32)

0 =�yr + �(l(�))'(z; d) (33)

0 =�'(z; d) + yr +m(�yr + k1(z
� � z) + �) (34)

Eliminatingyr in (33) and (34), we obtain

(�(l(�))� 1)'(z; d) +m(��(l(�))'(z; d) + k1(z
� � z) + �)

= 0:

This equation has no solutionz when(��(l(�))'(z; d) +k1(z� �
z) + �) > umax (becauseumax > 'max) or<0 (because this would
requirez = 0, and the argument ofm is � + k1z

� � 0 whenz =
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Fig. 9. Simulation of the closed-loop system.

0, which is a contradiction). Hence, solutions must lie in the region
without saturation and satisfy

'(z; d) + k1z = k1z
� + �: (35)

The left-hand side is a monotonic increasing function ofz [because
k1 > k0(d)] with value 0 atz = 0. The right-hand side is strictly
positive. Therefore, this equation has a unique solutionz > 0. The
unique corresponding equilibrium values(yf ; yr) follow from (32) to
(33).

We have just shown that a unique equilibrium exists for any value
of � � �k1z

� and � 2 , thus obtaining a family of equilibria
(yf (�; �); yr(�, �); z(�)) parametrized by� and�. These functions
yf (�; �), yr(�; �), andz(�) areC2 because'(z; d) and�(v) areC2

and because of (25).
We still have to show that(yf (�; �); yr(�, �); z(�)) is a globally

asymptotically stable (GAS) and locally exponentially stable (LES)
equilibrium of the system (27)–(31) for any fixed value of(�; �).

The system (27)–(31) is the cascade of the system (28)–(31) with the
globally exponentially stable (GES) scalar subsystem

Tf _yf = �yf + (1� �(v))'(z; d): (36)

We first show that the equilibrium of the subsystem (28)–(31) is
GAS-LES for any(�; �). Let us select the constantc > 0 large enough
such that

 = �yr � k1z + k1z
� + � < 0

for all (yr; z) in the set

S = f(yr; z): yr � 0; z � 0; Tryr + z = cg:

Since _z + Tr _yr < 0 when < 0, the triangleT bounded by the co-
ordinate axes and the straight lineS is invariant and globally attractive
(see Fig.7).

All the subsystem trajectories are bounded and reachT in finite
time. The limit set of any trajectory insideT is either the equilibrium
(yr(�; �); z(�)) or a limit cycle enclosing the equilibrium. The
segment of straight line joining the points(0; z(�)) and (yr(�; �),
z(�)) is invariant. Because any limit cycle should cross this segment,
the only possible limit set is the equilibrium which is, thus, GAS.
From the Jacobian linearization of the system, the equilibrium is
also LES. Now, the equilibrium of equation (18) is GES when
(yr; z) = (yr(�; �); z(�)). It follows from [8, Th. A] that the whole
subsystem (18)–(24) is GAS-LES.

2) Stability Proof with Integral Actions:We now come back to the
case wherek2 6= 0 and there is an integral action in the loop. We will
establish semiglobal stabilizability when� and� are slowly varying.
This can be achieved by takingk2 = � small enough. With the change
of time scale� = �t, the system is rewritten in a two-time scale form
as follows:

_� = z
� � z +m( )�  (37)

_� = k3(yf � y
�

f) + k3(l(�)� �) (38)

�Tf _yf =�yf + (1� �(v))'(z; d) (39)

�Tr _yr =�yr + �(l(�))'(z; d) (40)

� _z =�'(z; d) + yr +m( ) (41)
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 =�yr + k1(z
�

� z) + �: (42)

The fast subsystem (39)–(41) is the system which has been analyzed
above, without integral action. When� = 0, the fast variables are
at their equilibrium(yf (�; �); yr(�; �); z(�)). The slow subsystem
(37), (38) then reduces to

_� = k3((1� �(l(�)))'(z(�); d)� y
�

f + l(�)� �) (43)
_� = z

�

� z(�) +m( )�  : (44)

Sincez can reach an equilibrium only whenm( ) =  , (44) becomes

_� = z
�

� z(�) =
'(z(�); d)� �

k1
(45)

and the equilibrium� = '(z�; d) of (45) is GES. Now, (43) with
� = '(z�; d) andz = z('(z�; d)) = z� [see (35)] is

_� = k3((1� �(l(�)))'(z
�

; d)� y�f) + k3(l(�)� �):

This equation has a unique equilibrium��. It is easily seen that_� <
0 when� > �� and _� > 0 when� < �� and consequently that
the equilibrium�� is GAS-LES. It follows from [8, Th. 8.1] that the
equilibrium of the slow subsystem (37), (38) is GAS-LES.

The proof is completed by applying the singular perturbation anal-
ysis in [6, Th. 3.18]. For any compact setsC(�; �) � [�k1z

�; ! [�
andC(y ; y ; z) �

3
+, there existsk�2 > 0 such that for all0 < k2 <

k�2 the equilibrium of system (18)–(23) is asymptotically stable and its
region of attraction containsC(�; �) � C(y ; y ; z). Q.E.D.

VI. SIMULATION RESULTS

The effectiveness of the proposed control law has been assessed
through simulations where the model (1)–(3) represents the plant with
analytical forms for the' and� functions which satisfy the shape as-
sumptions given in Sections II and V:

'(z; d) = 20z exp �
dz

80

�(v) = 9
v

vmax

3

� 13:5
v

vmax

4

+ 5:4
v

vmax

5

vmax =200; �max = 0:9

and the time constantsTf = 0:3 [h], Tr = 0:01 [h].
These functions have been tuned in order to match experimental step

responses of an industrial cement grinding circuit (see [4]).
The plugging phenomenon is first illustrated in Fig. 8. The mill is

initially running at a stable steady statez = 78; yf = 140, yr =
448:4, u = 140, v = 141:5, d = 1 during the first two hours. At time
t = 2 hours, a small change of clincker hardness (d = 1:33) occurs.
This disturbance produces plugging in the mill, as it can be seen in the
figure, with an exponential unbounded accumulation of the mill load
while the two other state variables tend to zero as expected.

Various aspects of the closed-loop behavior are then illustrated in
Fig. 9 with the design parameters set tok1 = 10; k2 = 10; k3 = 0:2.
During the first six hours, the mill is at the equilibrium withy�f = 120,
z� = 58 andd = 1. A step change is then introduced on the mill load
setpoint (z� = 78) at t = 5 hours. This is followed by a step change

on the finished product setpoint (y�f = 140)at t = 10 hours and by a
hardness change (d = 1:33) at t = 15 hours. Note that this hardness
change is identical to that of Fig. 8 and would destabilize the mill in
open loop. Furthermore, the same hardness change would also produce
a destabilization of theLQG controller described in [1].

The following comments can be drawn from these figures.

1) The mill level is fairly well decoupled from finished product set-
point variations. This is mainly due to the feedforward compen-
sation present in (14).

2) The rejection of the hardness change disturbance by the mill load
controller is very fast, which indeed prevents the mill from going
into plugging. The effect of hardness changes on the finished
product takes a longer time to disappear, but it is also less critical
since it does not destabilize the plant.

VII. CONCLUSION

The goal of this note was essentially to show that it is effectively
possible to fully prevent industrial mills from plugging by state feed-
back, provided it includes the mill load. In [5], the authors had also ob-
served that this state variable is essential. Stability was, therefore, the
main issue of this note. Obviously, many other issues, for instance, the
limits of performance imposed by the stability requirement or the op-
timal selection of set points for productivity, are interesting and should
be investigated.
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