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Abstract

Several solutions of the problem of stabilizing linear systems with bounded control rely on a one-parameter family of low-gain linear11
control laws u=K(�)x. This paper presents an online scheduling of the parameter ensuring, in addition to closed-loop stability, the fastest
possible transient between two extreme values of �, chosen for stability and performance, respectively. ? 2002 Elsevier Science Ltd. All13
rights reserved.
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1. Introduction

The design of feedback control laws for linear systems17
subject to magnitude constraint on the control variable,

ẋ = Ax + bu; u∈R; |u|6 1

is recognized as a signi8cant nonlinear control problem, both19
theoretically and practically. Recently, special emphasis has
been put on the design of stabilizing control laws that guar-21
antee “large” regions of attraction (Sontag & Sussmann,
1990; Teel, 1992; Lin & Saberi, 1993; Megretski, 1996).23
Several of the proposed solutions rely on a one-parameter
family of linear control laws u = K(�)x. As the parameter25
� → 0, the norm ‖K(�)‖ decreases (hence the name “low-
gain” designs), so that the magnitude constraint |u|6 1 is27
satis8ed in a large domain. At the same time, the guaran-
teed region of attraction of x = 0 increases and may tend29
to the entire state space if A has no eigenvalue with strictly
positive real part.

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor
under the direction of Editor .
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In such designs, the tuning of the low-gain parameter � 31
involves two conAicting objectives: on the one hand, large
regions of attraction require small values of �¿ 0 so that the 33
input bound is never attained along the solutions. Obviously,
this leads to cautious designs, resulting in slow convergence. 35
In contrast, local performance dictates a larger value of �,
resulting in a reduced guaranteed region of attraction. 37
Based on the rationale that a small value �0 is needed far

from the origin and that a larger value �f is needed close to 39
the origin, the present paper proposes an online adaptation
of �(t) aimed at the fastest possible evolution from �0 to 41
�f while guaranteeing closed-loop stability for the a priori
selected set of initial conditions. Without loss of generality, 43
�f can be normalized to one (�f = 1).
Our design combines two ideas that have been recently 45

discussed in the same context: the high–low gain philosophy
of Saberi, Lin and Teel (1996), which explicitly uses the 47
in8nite gain margin of Riccati based linear control laws
u = K(�)x, and the gain scheduling proposed in Megretski 49
(1996), where �(x) is chosen at every point so that x lies on
the boundary of the guaranteed region of attraction. 51
Our algorithm enforces invariance of the manifold

K(�)x = 0 while enforcing the fastest possible increase 53
of �. An analytical example and simulations suggest that
these heuristics lead to accelerated convergence of the 55
closed-loop solutions.
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This paper is organized as follows. In Section 2, we1
expose methods to generate low-gain control laws. The
general algorithm is presented in Section 3, while the design3
of the scheduling controller is detailed in Section 4. The
algorithm is then illustrated on the double integrator in5
Section 5, with a comparison with the earlier scheme
proposed in Megretski (1996) and the time-optimal solution.7
Finally, we give some conclusions.

2. Design and tuning of low-gain control laws9

In this paper, we restrict our attention to saturated linear
low-gain control laws in the form11

u=−sat(bTP(�)x) (1)

with sat(y) = sign(y)min(|y|; 1), based on the quadratic
Control Lyapunov Functions V (x; �) = xTP(�)x.13
The �-family of control laws (1) can be generated in var-

ious ways; one method uses the Riccati equation15

P(�)A+ ATP(�)− P(�)bbTP(�) =−Q(�); �∈ (0;∞) (2)

with Q(�)¿ 0 (positive de8nite), continuous, such that
lim�→0 Q(�) = 0 and dQ(�)=d�¿ 0 (Lin, Stoorvogel, &17
Saberi, 1996; Teel, 1995). Usually Q(�) = �I .
If (A; b) is asymptotically null controllable, that is (A; b) is19

stabilizable and all the eigenvalues of A are in the closed left
half-plane, then lim�→0 P(�)=0, A−bbTP(�) is Hurwitz for21
all �¿ 0, and dP(�)=d�¿ 0 (Lin, 1998). In the remainder
of the paper, null controllability of the considered linear23
system will always be assumed. EIcient constructions of
P(�)¿ 0, that do not require the online solution of (2), are25
discussed in Megretski (1996).
For a 8xed �¿ 0, the maximal level set of V (x; �) inside27

which |bTP(�)x|6 1 provides a guaranteed region of attrac-
tion for x= 0. This level is the solution of the optimization29
problem

JV (�) = min
x∈Rn

xTP(�)x such that bTP(�)x = 1; (3)

which yields JV (�) = 1=bTP(�)b and |bTP(�)x|6 1 within31
the set

T(�) =
{
x∈Rn|xTP(�)x6 1

bTP(�)b

}
:

Finding �(x0) then amounts to look for the largest � such33
that x0 lies within the set T(�), that is

�(x0) = max{�∈ (0; 1] : (xT0P(�)x0)(b
TP(�)b)6 1}: (4)

The family of low-gain control laws (1) achieves semiglobal35
stabilization because T(�) → Rn as � → 0. Because large
regions of attraction require small values of the parameter,37
the resulting design is “cautious” and slow: it uses little
actuation near the origin.

A 8rst improvement of the above low-gain design is the 39
“high–low” gain modi8cation based on the observation that
the control laws (1) have in8nite gain margin. As a conse- 41
quence, the region of attraction achieved with the control
law u=−sat(kbTP(�)x) still includes the setT(�(x0)) with 43
any gain k¿ 1. The limiting case for k → ∞ results in the
sliding mode control 45

u=−sign(bTP(�)x): (5)

In this situation, full actuation is used throughout. However,
the motion along the sliding surface bTP(�)x = 0 induces 47
chattering and can be very slow when � is small.
On the other hand, the idea that � should be small far 49

from the origin (for stability) and larger near the origin (for
performance) suggests that the performance of low-gain de- 51
signs will improve with an on-line adaptation of �. Megret-
ski (1996) proposes the online adaptation of rule (4). It is 53
shown that V (x; �(x)) then decreases along the solutions
in the whole state space. If the initial condition is far from 55
the origin, the parameter �(x) will be initially small. How-
ever, it will increase as the solution approaches the origin. 57
This gain scheduling can be stopped once � has reached a
value judged acceptable for local performance (�=1 in this 59
paper).
The design Aexibility of multiplying the control law by 61

any gain k¿ 1 can be combined with online adaptation of
�, k proportional to 1=� being suggested in Lin (1998). 63

3. Algorithm

The online adaptation of � presented in this paper is based 65
on the following observation: multiplying the low-gain con-
trol law by a large gain enforces the near-invariance of 67
ker bTP(�), at least near the origin. In this region, render-
ing this subspace truly invariant will be less conservative 69
and more relevant than ensuring V̇ ¡ 0 in the entire set
T(�(x0)). As a consequence, � will be allowed to increase 71
faster along the solutions.
A key point in this procedure is to characterize a reason- 73

able set of initial conditions that can be steered to the origin
under the two constraints bTP(�)x=0 and |u(t)|6 1. For a 75
8xed �¿ 0, invariance of bTP(�)x=0 implies convergence
to the origin because 77

V̇ |ker bTP(�) = xTPAx + xTATPx =−xTQ(�)x¡ 0:

For �¿ 0 8xed, the following proposition identi8es a subset
of the subspace ker bTP(�) that can be made invariant with 79
|u|, based on a Lyapunov estimate:

Proposition 1. Let �¿ 0; the set 81

�� = ker bTP(�) ∩ {x | q(x; �)6 g(�)}
= ker bT P(�) ∩ {x |V (x; �)6 JV (�)} (6)
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with1

q(x; �) = ((bTPAP−1ATPb)(bTPb)− (bTPAb)2)(xTPx);

g(�) = (bTPb)3;

JV (�) =
(bTPb)3

(bTPAP−1ATPb)(bTPb)− (bTPAb)2

(7)

can be made controlled invariant with |u|6 1.

Proof. Invariance of the subspace ker bTP(�) means3

d
dt
(bTP(�)x) = bTP(�)Ax + bTP(�)bu= 0;

which imposes the control u=−bTP(�)Ax=bTP(�)b. When
ker bTP(�) is A-invariant; the whole subspace ker bTP(�)5
can be made controlled invariant with u = 0 (6 1). Also;
A-invariance implies bTP(�) = �bTP(�)A for some � 
=0.7
Then q(x; �) = 0 and �� = ker bTP(�).
Otherwise, let JV (�) be the maximum level set of V (x; �)9

such that, when V (x; �)6 JV (�) and bTP(�)x=0, we have |−
bTP(�)Ax=bTP(�)b|6 1. This amounts to 8nd the minimal11
level set where the bound | − bTP(�)Ax=bTP(�)b| = 1 is
attained when bTP(�)x = 0, that is13

JV (�) = min
x∈Rn

xTP(�)x (8)

s.t.

bTP(�)Ax = bTP(�)B and bTP(�)x = 0

The unique solution of (8) is given by (7).15

Presumably, the additional constraint of (8) compared to
(3) ensures a larger value of the level JV (�), so that similar17
performance can be obtained inside a larger set.
In the following, we denote � =

⋃
�∈(0;1] �� = {x ∈Rn|19

∃�∈ (0; 1] : bTP(�)x = 0 and V (x; �)6 JV (�)}.
The proposed algorithm consists of three phases:

21
• Controller 1 (stabilizing controller): Steer x0 to the inte-
rior of � with the static state feedback:23

u=−sat(k0bTP(�0)x) k0�1: (9)

This controller has a guaranteed basin of attractionT(�0)
that can be made arbitrarily large by selecting �0 small25
enough.

• Controller 2 (scheduling controller): for x ∈� and27
� ∈ (0; 1], design a Lipschitz continuous dynamic feed-
back control law:29

u= �(x; �);

�̇= �(x; �);
(10)

which maximizes �̇ while making � invariant, under the
constraints31

bTP(�)x = 0; |u|6 1; �6 1:

The construction of controller (10) is detailed in Section
4. Upon initialization with x in the interior of � and � 33
such that bTP(�)x = 0, we prove convergence of x(t) to
the origin. 35

• Controller 3 (local controller): For x∈T(1) =
{x|xTP(1)x6 1=bTP(1)b}, apply the stabilizing feed- 37
back u = −sat(bTP(1)x). This controller has T(1) as
guaranteed basin of attraction. 39

Along a closed-loop solution, the control law undergoes at
most two discontinuities, determined by the switching times 41
between Controllers 1 and 2, then between Controllers 2 and
3. Controllers 1 and 3 are initialized in T(�0) and T(1), 43
respectively.

Initialization of Controller 2: Online checking that x ∈� 45
is not an obvious task because it requires to solve the nonlin-
ear equation bTP(�)x = 0. One way to initialize Controller 47
2 properly is to 8x some �̃¿ 0 a priori and to wait until
x(T )∈��̃ to initialize Controller 2 with �(T )= �̃. In fact, T 49
is guaranteed to be 8nite if �̃= �0 and u=−sign(bTP(�0)x),
which is the limit of Controller 1 for k0 → ∞. 51
This strategy is feasible, but does not take advantage

of the fact that x(t) will usually enter the set � before it 53
reaches � J�. Several options are possible to reduce this con-
servatism; a practical recommendation is to check the con- 55
dition x(t)∈��i for a few �i in the interval (0; 1].

Performance evaluation: The proposed algorithm is de- 57
signed to have the fastest possible scheduling from the “sta-
bilizing controller” to the “local controller”. The heuris- 59
tics behind this performance criterion are that controllers
u=−sat(kbTP(�)x) are less cautious with large values of � 61
and perform “better” in that sense. Our algorithm is designed
to speed up the transfer of � from �0 to 1 (inside the set �). 63
As it will be illustrated in Section 5, the set � extends well
beyondT(1) and is not con8ned to a local neighborhood of 65
the origin, which suggests an improvement of the behavior
in a large domain of the state space. 67

4. The scheduling controller

The scheduling controller (10) is determined as the solu- 69
tion of

max �̇ (11)

s:t:
d
dt
(bTP(�)x) = 0; (12)

�̇6 sat[0; �̇max]

(
�̇max
�

(1− �)
)
sat[0;1]

( JV − V
� JV

)
; (13)

|u|6 1: (14)

The solution of the problem (11)–(14), under the constraint 71
that V stays smaller or equal to JV , achieves the fastest trans-
fer of � from �0 to 1. This might require �=+∞ or a discon- 73
tinuous control function. Constraint (13) and the parameters
�̇max�1 and 0¡��1 then ensure the Lipschitz continuity 75
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of the feedback controller inside �. Constraint (13) is im-1
posed so that � and V (x; �) do not reach their upper bound
1 and JV (�) in 8nite time.3

Theorem 2. The solution of the optimization problem
(11)–(14) is5

�̇=min



sat[0; �̇max](

�̇max
�

(1− �)) sat[0;1](
JV − V
� JV

);

−bTPAx − bTPb sign(bT(dP=d�)x)
bT(dP=d�)x


 ; (15)

u=−bTP(�)Ax + bT(dP(�)=d�)x�̇
bTP(�)b

(16)

When �(0) is such that bTP(�(0))x(0) = 0; the Controller
(15)–(16) renders the origin x = 0 attractive with the in-7
terior of � as basin of attraction.

Proof. The control law (16) is determined by (12). In (15);9
�̇ is selected as the minimum value that renders one of
Constraints (13)–(14) active.11
Invariance of � is direct from (12) and (13). Indeed,

those ensure that bTP(�)x = 0, V (x; �)6 JV (�), and �6 113
stay satis8ed.
A problem of de8nition of solutions could arise on the15

boundary of � because the vector 8eld is not de8ned out-
side �. Because this vector 8eld is continuous inside �, its17
de8nition can formally be extended to the whole state space
through Tietze’s theorem, so that solutions are well de8ned19
in the classical sense on the boundary of � (invariance of
� ensures that the exact knowledge of this extension is not21
necessary because x(t) never quits �).
Next, we prove that �(t) is not decreasing along the23

closed-loop solutions. Indeed, �̇=0 is always admissible. The
control law ensuring (12) is then u=−bTP(�)Ax=bTP(�)b,25
which satis8es (14) because V (x; �)6 JV (�). This guaran-
tees that �̇, solution of (11)–(14), is non-negative.27
Because �(t) is an increasing function with an upper

bound, there exists J�6 1 such that �(t) converges to J�6 129
as t → ∞.
Next, we prove that a solution x(t) is bounded. The deriva-31

tive of the Lyapunov function is

V̇ (x; �) =−xTQ(�)x + xT
dP(�)
d�

x�̇:

Continuity of dP(�)=d�¿ 0 on [�0; J�] implies that one can33
8nd �¿ 0 such that xT(dP(�)=d�)x6 �V (x; �), which im-
plies35

V̇ (x; �)6 ��̇V (x; �):

and

V (x(t); �(t))6V (x0; �0)e
∫ t
0 ��̇(!) d!:

The ensuing upperbound V (x(t); �(t))6V (x0; �0)e�( J�−�0)37
for all t¿ 0 guarantees boundedness of x(t) along the
solutions.

Invariance of ��(x(t)) implies that x(t) converges to the set 39
� J�. Boundedness of x(t) implies that the limit set of x(t) is
compact and invariant, and that it is contained in the largest 41
invariant set of � J�, which is the origin. This completes the
proof. 43

Remark 3. The proposed Controller 2 steers every initial
condition to the origin. This steering property is not robust to 45
errors on �(0); since (15) and (16) enforces bTP(�(t))x(t)=
bTP(�(0))x(0) along the closed-loop solution. A remedy to 47
this lack of robustness is to replace constraint (12) by

d
dt
(bTP(�)x) =−�(bTP(�)x);

where �¿ 0 is a damping parameter. It must also be noted 49
that; in the proposed algorithm; the controller is only re-
quired to steer initial conditions in � to the set T(1). This 51
property is robust to small errors on �(0); even with the
original constraint (12). 53

We summarize the convergence properties of the pro-
posed algorithm as follows:

55
• With any of the Controllers 1, 2, and 3, the equilibrium

x=0 is an attractor of the closed-loop system with basin 57
of attraction T(�0), �, and T(1), respectively.

• x=0 is locally exponentially stable and, for any x0 ∈Rn, 59
there exists �0 ∈ (0; 1] such that x0 belongs to the basin of
attraction when the following switching algorithm is used: 61
apply Controller 1 until x∈�; switch to Controller 2 with
�(0) such that bTP(�(0))x = 0 and V (x; �(0))6 JV (�(0)) 63
and apply Controller 2 until x∈T(1); then switch to
Controller 3 which guarantees local exponential stability. 65

5. The double integrator

The algorithm is now illustrated on the double integrator 67

ẋ1 = x2;

ẋ2 = u; |u|6 1:
(17)

The simplicity of this second-order system allows for ana-
lytical calculations: if we consider that the behavior obtained 69
with the pole placement in (−√

3± i)=2 (which is achieved
with Q= I) is satisfying, we can solve the Riccati equation 71
(2) with

Q(�) =
(

�4 0
0 �2

)
(18)

so that the family of low-gain controls is then 73

u=−bTP(�)x =−�2x1 −
√
3�x2; �¿ 0; (19)

which is a typical low-gain control for second-order systems
in Brunovski form. We see that the set�� is characterized by 75

x2 +
�x1√
3
= 0 and xTP(�)x6

6
√
3

�
(20)
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Fig. 1. The regions � (shaded) and T(1).

or, equivalently1

x2 +
�x1√
3
= 0 and

�|x2|√
3
6 1: (21)

The boundary of the region � is, therefore, characterized by

V (x; �) = JV (�) : x1 + x2|x2|= 0 and |x2|¿
√
3;

�= 1 : x2 +
x1√
3
= 0 and |x2|6

√
3;

�= 0 : x2 = 0:

This results in the region �, which is shaded in Fig. 1.3
For the 8rst controller, implemented only for initial con-

dition outside �, we follow (9) and use5

u=−sat
(
k0

(
x2 +

�(x0)x1√
3

))

with

�(x0) = max

{
�∈ (0; 1] :√
3�3x201 + 2�2x01x02 +

√
3�x2026

1√
3
�

}
:

For Controller 2, in order to expose the geometry of the7
solution, we consider the limit case �̇max = +∞ and �= 0.
We use the maximum �̇, while verifying9

d
dt

(
x2 +

�x1√
3

)
= 0 ≡ x1�̇√

3
+ u+

�x2√
3

and V (x; �)6 JV (�) (�|x2|=
√
36 1).

The control algorithm (15)–(16) is then
11

• When V (x; �)¡ JV (�) and �¡ 1:

�̇=min

{
+∞;−−√

3 sign(x1) + �x2
x1

}
;

u=− �x2 + x1�̇√
3

=−sign(x1):
(22)

• When V (x; �) = JV (�) and �¡ 1 (that is x1 + x2|x2|= 0): 13

�̇=min

{
0;−−√

3 sign(x1) + �x2
x1

}
;

u=− �x2 + x1�̇√
3

=−sign(x2):
(23)

• When V (x; �)6 JV (�) and �=1 (that is x2+(x1=
√
3)=0):

�̇=min

{
0;−−√

3 sign(x1) + x2
x1

}
;

u=−x2 + x1�̇√
3

=− x2√
3
:

(24)

When � = 0, the closed-loop vector 8eld becomes dis- 15
continuous on 9� and solutions chatter between (22) and
(23) on 9� (as long as �(t)¡ 1). This forces the solution 17
to slide along the manifold x1 + x2|x2|=0 and results in the
equivalent control (see Utkin, 1992) 19

�̇=
�2

2
√
3
;

u=− 1
2 sign(x2):

The equivalent control is thus the control u = ± 1
2 that

keeps the manifold x1 + x2|x2| = 0 invariant (this equiva- 21
lent control is what is used to draw Fig. 2). The chattering
phenomenon disappears when �¿ 0. 23
If no upper bound is chosen for �, such that it can diverge

towards +∞, a 8nite escape time is observed for �, which 25
corresponds to 8nite time convergence of the solutions to
the origin. The resulting control law is reminiscent of the 27
time-optimal solution. The control law is bang–bang and the
switching surface is the one of the time-optimal control for 29
a constraint |u|6 1

2 .
If the adaptation of �(t) is stopped once � reaches 1, 31

controller (24) is used, which forces invariance of x2 +
(x1=

√
3) = 0, and x(t) converges to T(1). 33

Our control algorithm and the control algorithm proposed
in Megretski (1996) can be compared based on the time 35
taken by both schemes to reach the set T(1) (the ellipses
on Figs. 1 and 2). Faster convergence of the proposed algo- 37
rithm results from a faster adaptation of � (see Fig. 2): for a
solution to reach T(1) from the initial condition (−10; 0), 39
the stars indicate that it takes 6.79 for our control algorithm
versus 10.25 for the algorithm in Megretski (1996), to be 41
compared with 5.64 for the time-optimal solution.

6. Conclusion 43

The control algorithm presented in this paper aims at
improving the control performance of linear systems with 45
bounded input. Starting from low-gain designs u=−bTP(�)x
with in8nite gain margin, we take advantage of the fact 47
that, with high gain, the condition bP(�)x ≈ 0 holds after a
8nite time. We explicitly use this observation in the adap- 49
tation rule �̇, which leads to less conservative designs. Our
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Fig. 2. Phase plane and time evolutions with (x10; x20) = (−10; 0):
time-optimal method (dotted), controller of Megretski (1996) with k=1=�
(dash–dotted) and proposed controller. Stars indicate the time instants or
the points in state space at which the solutions reach T(1).

design can be seen as a sliding mode design for which the1
sliding surface is calculated online. Though this paper only
deals with single input systems, the design can be extended3
to multiple inputs systems. This algorithm can also be ex-
tended to linear systems subject to other kinds of constraints:5
input rate and magnitude constraints and aIne constraints
(see Grognard, Sepulchre, & Bastin, 2000).7
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