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Abstract

This article deals with the regulation of water 6ow in open-channels modelled by Saint-Venant equations. By means of a Riemann
invariants approach, we deduce stabilizing control laws for a single horizontal reach without friction. The stability condition is extended
to a general class of hyperbolic systems which can describe canal networks with more general topologies. A control law design based
on this condition is illustrated with a simple case study: two reaches in cascade. The proof of the main stability theorem is based on a
previous result from Li Ta-tsien concerning the existence and decay of classical solutions of hyperbolic systems.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The so-called Saint-Venant equations are the partial dif-
ferential equations (PDE) that are commonly used in hy-
draulics to describe the 6ow of water in open channels (see
e.g. the textbooks in Chow, 1954 or Graf, 1998). These
equations are a standard tool for solving engineering prob-
lems regarding the dynamics of canals and rivers. In this
paper we will focus our attention on canals made up of a
cascade of reaches delimited by under6ow gates. Such sys-
tems typically occur in canalized water-ways and irrigation
networks. But we shall see that the results of the paper are
directly applicable to more complicated networks of canals
and other kinds of control gates.

We address the problem of regulating the water level and
the water velocity in a channel by using the gate openings
as control actions.
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This problem has been considered for a long time in the
literature as reported in the survey paper Malaterre, Rogers
and Schuurmans (1998) which involves a comprehensive
bibliography. Starting from rudimentary and heuristic
feedback control approaches, various advanced control
methods where progressively investigated. Among other
relevant references, we may mention for instance:

• LQ control methods which have been especially devel-
oped and studied in Balogun, Hubbard, and De Vries
(1988), Garcia, Hubbard, and De Vries (1992) and
Malaterre (1998). On the basis of Jnite-dimensional
discrete linear approximations of the Saint-Venant
equations.

• Robust H∞ control design techniques which are devel-
oped in Litrico and Georges (2001) and Litrico (2001)
on the basis of a model approximation by a simple linear
di>usive wave equation.

• Boundary PI regulation which is analyzed in Xu and Sallet
(1999) on the basis of a linear PDE model around a steady
state.

In this paper, we go a step further since the control de-
sign is derived and analyzed directly from the nonlinear
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Fig. 1. An horizontal reach delimited by under6ow gates.

Saint-Venant partial di>erential equations without any
model approximation, linearization or discretisation.
This approach has also been used previously in Coron,
d’Andr.ea-Novel, and Bastin (1999) and Leugering and
Schmidt (2002).

In Section 2, we start our analysis with the 6ow modelling
in the special case of a single reach. Two di>erent forms
of the model, respectively, in terms of 6ow velocity and
Riemann invariants are successively established. SuMcient
conditions for the system stability are then stated in Theorem
1. This theorem is due to Greenberg and Li (1984).

Section 3 deals with the boundary control design in a
single horizontal reach without friction. A control law is
proposed on the basis of the Riemann invariants whose sta-
bilizability is analyzed as an application of Theorem 1. Some
illustrative simulation experiments of the control law are
given in Section 4.

The main result of the paper is presented in Section 5.
The aim is to generalize the previous result to open channels
made up of several interconnected reaches in cascade. For
the sake of clarity, we treat the special case of two reaches
in cascade. Our stability result is given in Theorem 4 which,
as we will see in Appendix, is a consequence of a theorem
due to Li (1994).

The theorem provides a suMcient stability condition
which can be applied to the stability analysis of canal net-
works having more general topologies (like for instance
the star conJgurations considered in Leugering & Schmidt,
2002).

Some conclusions are given in Section 6.

2. Modelling in open channels

2.1. Saint-Venant equations

Let us consider a one-dimensional portion of a canal de-
limited by two under6ow gates as depicted in Fig. 1 under
the following modelling assumptions:

• the canal is horizontal,
• the canal is prismatic with a constant rectangular cross

section and a unit width,
• the friction e>ects due to walls are neglected.

The dynamics of the system are then described by the
Saint-Venant equations Saint-Venant (1871) (also called
shallow water equations):

@
@t

(
H

V

)
+ A(H; V )

@
@x

(
H

V

)
=

(
0

0

)
; (1)

where A(H; V ) is the characteristic matrix

A(H; V ) =

(
V H

g V

)
;

x∈ [0; L] is the space coordinate, L is the length of the reach,
t is time, V (x; t) and H (x; t) are the water velocity and depth
(at point x and time t) and g is the gravity constant.

The control actions are provided by two under6ow gates
located at the left end (x = 0) and the right end (x = L) of
the reach (see Fig. 1). The gate openings are denoted by
u1 and u2. A standard discharge relationship for under 6ow
gates is as follows:

V (0; t) |V (0; t) |H 2(0; t) = u1(Hup − H (0; t)); (2)

V (L; t) |V (L; t) |H 2(L; t) = u2(H (L; t) − Hdo): (3)

The left and right water levels outside the reach, denoted
Hup and Hdo, are supposed to be constant and satisfy the in-
equality Hup ¿Hdo. Eqs. (2) and (3) constitute the bound-
ary conditions at x=0 and L, associated with the PDEs (1).

2.2. Steady states

For given constant openings Ru 1 ¿ 0 and Ru 2 ¿ 0 there ex-
ists a constant steady-state solution ( RH; RV ) of Eq. (1) which
satisJes, from (2) and (3), the following relations:

RH =
Ru 1Hup + Ru 2Hdo

Ru 1 + Ru 2
; (4)

RV =
1
RH

√
Ru 1 Ru 2

Ru 1 + Ru 2
(Hup − Hdo): (5)

By inverting these relations, it is interesting to note that any
arbitrary steady state ( RH; RV ) satisfying the conditions

Hdo ¡ RH ¡Hup and 0¡ RV ;

can be assigned by an appropriate choice of Ru 1 and Ru 2.

2.3. Characteristic velocities

The eigenvalues c� and c� of the characteristic matrix
A(H; V ),

c�(H; V ) = V +
√

gH and c�(H; V ) = V −
√

gH; (6)

are called the characteristic velocities of the 6uid in the
canal. The 6ow is said to be subcritical or Buvial if the
characteristic velocities are of opposite sign:

c�(H; V )¡ 0¡c�(H; V );
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Fig. 2. Following the invariants along the characteristic curves.

which is equivalent to

|V |¡
√
gH:

2.4. Model in terms of Riemann invariants

Let us now consider the following change of coordinates:

� = V − RV + 2(
√

gH −
√
g RH);

� = V − RV − 2(
√

gH −
√
g RH):

(7)

With these new coordinates (�, �) system (1) is rewritten
in the following diagonal form:

@
@t

(
�

�

)
+

(
c�(�; �) 0

0 c�(�; �)

)
@
@x

(
�

�

)
=

(
0

0

)
;

(8)

where c� and c� are the characteristic velocities now ex-
pressed in terms of �, �:

c�(�; �) = 3
4 � + 1

4 � + RV +
√

g RH;

c�(�; �) = 1
4 � + 3

4� + RV −
√

g RH:

The solutions �(x; t) and �(x; t) of (8) are classically called
Riemann invariants (see e.g. Serre, 1996, Vol. I, p. 96).
The reason is that, for any given smooth solution H (x; t),
V (x; t) of (1), the corresponding solutions �(x; t) and �(x; t)
of (8) are easily shown to be constant along the characteri-
stic curves (see Fig. 2 in Section 3.2) (x(t); t) which are
deJned as

for �;
dx
dt

= c�(�(x; t); �(x; t))¿ 0;

for �;
dx
dt

= c�(�(x; t); �(x; t))¡ 0:

Note that the change of coordinates (7) is a bijection.

2.5. Stability analysis

It is obvious that the equilibrium RH , RV expressed in the
�, � coordinates is

R� = 0 and R� = 0:

The stability of the 6ow in a neighborhood of this steady
state in a single reach can be analyzed with the following
theorem. The theorem is stated here in a rather general form
because it will be used also later on for the control stability
analysis.

We consider the Saint-Venant equations (8), expressed
in (�,�) coordinates, deJned on the domain (x; t)∈ [0; L] ×
[0;∞). The boundary conditions are supposed to be given
in the following general form:

f0(�0; �0) = 0 and fL(�L; �L) = 0;

where (�0; �0) := (�(0; t); �(0; t)) and (�L; �L) := (�(L; t);
�(L; t)), and with the functions f0 and fL being of class C1.
By di>erentiating these boundary conditions with respect
to t and using Eq. (8), we have the following so-called
boundary compatibility conditions on the initial state
(�(x; 0); �(x; 0)) = (�#(x); �#(x)):

f0(�#(0); �#(0)) = 0; fL(�#(L); �#(L)) = 0;

@�f0(�#(0); �#(0))c�(�#(0); �#(0))@x�#(0)

+@�f0(�#(0); �#(0))c�(�#(0); �#(0))@x�#(0) = 0;

@�fL(�#(L); �#(L))c�(�#(L); �#(L))@x�#(L)

+@�fL(�#(L); �#(L))c�(�#(L); �#(L))@x�#(L) = 0: (9)

To state the following result, we need to deJne the classical
norms on C0([0; L]) and C1([0; L]). Given � continuous on
[0; L] and � di>erentiable continuous on [0; L], we denote

|�|C0([0;L]) = max
x∈[0; L]

|�(x)|;

|�|C1([0;L]) = |�|C0([0;L]) + |�′|C0([0;L]):

Theorem 1. Assume that the initial conditions (�#(x);
�#(x))∈C1([0; L])2 satisfy the boundary compatibility
conditions (9) and that the following inequality holds:

A0AL ¡ 1

with

A0 =
∣∣∣∣ (@f0=@�0)(0; 0)
(@f0=@�0)(0; 0)

∣∣∣∣ and

AL =
∣∣∣∣ (@fL=@�L)(0; 0)
(@fL=@�L)(0; 0)

∣∣∣∣ : (10)

Then, for all �¿ 0 such that

�¡
( RV 2 − g RH) ln(A0AL)

2L
√
g RH

; (11)

there exist positive constants �, M , such that, if the initial
condition is small enough:

|�#(·)|C1([0;L]) + |�#(·)|C1([0;L])6 �;
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there is a unique solution �(x; t), �(x; t) of class C1 on
[0; L] × [0;∞) which decays to zero with an exponential
rate: ∀t ∈ [0;+∞[,

|�(·; t)|C1([0;L]) + |�(·; t)|C1([0;L])6Me−�t :

If the product A0AL=0, the right-hand side of (11) is equal
to +∞.

This theorem, which is a direct application of Theorem 2
in Greenberg and Li (1984), can be used for instance for the
stability analysis of the steady state in a single reach with
constant gate openings Ru 1 and Ru 2. In that case, indeed, the
functions f0 and fL are as follows:

f0(�0; �0) =
(

RV +
�0 + �0

2

)2
(

(�0 − �0 + 4
√
g RH)2

16g

)2

− Ru 1

(
Hup − (�0 − �0 + 4

√
g RH)2

16g

)
;

fL(�L; �L) =
(

RV +
�L + �L

2

)2
(

(�L − �L + 4
√

g RH)2

16g

)2

− Ru 2

(
(�L − �L + 4

√
g RH)2

16g
− Hdo

)
:

It follows that A0, AL are given by

A0 =

∣∣∣∣∣2
RV RH ( RH

√
g− RV

√
RH) − Ru 1

√
RH

2 RV RH ( RH
√
g + RV

√
RH) + Ru 1

√
RH

∣∣∣∣∣ ;
AL =

∣∣∣∣∣2
RV RH ( RH

√
g + RV

√
RH) − Ru 2

√
RH

2 RV RH ( RH
√
g− RV

√
RH) + Ru 2

√
RH

∣∣∣∣∣ :
If the gate openings Ru 1 and Ru 2 are chosen such that
A0AL ¿ 1, the steady state is unstable and the trajectories
diverge as it will be illustrated in Section 4.2. In such a case,
the stabilization of the steady state may be achieved with
the feedback control techniques that are presented hereafter.

3. Feedback control design for a single reach

3.1. Statement of the control problem

The control objective is to regulate system (1) at the set
point ( RH; RV ). The control actions are the two gate openings
u1 and u2. The water levels H (0; t) and H (L; t) are supposed
to be measured online at each time instant t. The external
constant water levels Hup and Hdo are known.

3.2. Control design based on Riemann invariants

From (7), it is obvious that the set point ( RH , RV ) expressed
in the (�, �) coordinates is

R� = 0 and R� = 0:

The control objective can thus be reformulated as the prob-
lem of Jnding boundary controls able to regulate �(x; t) and
�(x; t) at zero.

Consider a solution �(x; t) along its characteristic curve,
starting from (0; t0). By the invariance property and
for |�(·; 0)|C0([0;L]) + |�(·; 0)|C0([0;L]) suMciently small,
there exist obviously a time instant t1 ¿t0 such that
�(L; t1) = �(0; t0). Suppose now that we are able to ap-
ply a boundary control at the right gate (x = L) such that
�(L; t1) = −kL�(L; t1) with 0¡kL. Obviously, there ex-
ists a time instant t2 ¿t1 such that �(0; t2) = �(L; t1). We
now apply a boundary control at the left gate such that
�(0; t2) = −k0�(0; t2) with 0¡k0 and so on. This implies
clearly that, for any arbitrary t0 there is a monotonically in-
creasing sequence of time instants ti; i=0; 1; 2; : : : such that

�(0; t2j) = (k0kL)j�(0; t0);

�(L; t2j+1) = (k0kL)j�(L; t1); j = 1; 2; : : : :

We choose k0 and kL such that 06 k0kL ¡ 1, this allows
to understand why this boundary control will guarantee the
convergence of �(x; t) and �(x; t) to zero. The required
boundary control is thus implicitly deJned as

�(0; t) = −k0�(0; t) and �(L; t) = −kL�(L; t): (12)

By using the change of coordinates (7), we get the fol-
lowing explicit expressions in the (H; V ) coordinates:

V0 = RV − �0(
√
gH0 −

√
g RH);

VL = RV + �L(
√
gHL −

√
g RH)

with

�0 = 2
1 − k0

1 + k0
and �L = 2

1 − kL
1 + kL

:

The feedback control actions (i.e. the gate openings) are
then deduced from (2) and (3):

u1 =
( RV − �0(

√
gH0 −

√
g RH))2H 2

0

Hup − H0
;

u2 =
( RV − �L(

√
gHL −

√
g RH))2H 2

L

HL − Hdo
: (13)

Obviously, these control laws are positive and well de-
Jned only if Hup ¿H0 and HL ¿Hdo. The stability of the
closed-loop system in a neighborhood of the set point is
trivially analyzed with Theorem 1. Indeed, the functions f0

and fL representing the boundary conditions are immedi-
ately given by (12)

f0(�0; �0) = �0 + k0�L;

fL(�L; �L) = �L + kL�L:

It follows readily that A0 = k0, AL = kL and the stability
condition A0AL ¡ 1 is satisJed for any positive constants
k0; kL such that 06 k0kL ¡ 1.
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Fig. 3. Evolution of the entropy. Legend: solid line for Riemann control,
dashed for open-loop control.

It must be emphasized that the practical implementation
of the feedback control law (13) is very simple since it in-
volves on-line measurements of the water level H0(t) and
HL(t) at the gates only. Thus, neither water level measure-
ments inside the reach nor any water velocity measurements
(which are much more diMcult to carry on in practice) are
needed. Furthermore, the control laws are totally decentral-
ized: the control u1 at the left gate depends only on the local
measurement H0 at the same gate but not on the measure-
ment HL at the other gate, and vice versa.

4. Simulation experiments

4.1. Comparison with a unit-step open-loop control law

The control design method is illustrated with some re-
alistic simulation experiments. In this section, we consider
a small channel which is typical in local irrigation net-
works. Simulations for larger waterways will be given in
the next section. The simulation parameters are L= 100 m,
width ‘ = 1 m, Hup = 2 m, Hdo = 0:5 m, H (x; 0) = 1:4 m,
Q(x; 0) = 3 m3 s−1, RH = 0:7 m, RQ = 1 m3 s−1.

The Saint-Venant equations are integrated numerically
using a standard Preissman scheme (see e.g. Graf, 1998,
Chapter 5) with a spatial step size Tx = 1 m, a time step
Tt = 1 s and a weighting coeMcient " = 0:57. Along the
solutions, we will keep a subcritical 6ow with a Froude
number around 0.35. The Riemann control is implemented
with gain values

k0 = 0:1 and kL = 0:45:

These gain values have been roughly optimized in order to
get reasonably smooth control actions.

The deviation of the water state with respect to the equi-
librium is measured by the entropy of the 6uid (see Coron
et al., 1999):

E =
∫ L

0
H

(V − RV )2

2
+ g

(H − RH)2

2
dx: (14)

In Fig. 3, the evolution of the entropy E is represented for
the closed-loop system and compared with the open-loop
system where unit-step gate openings are applied at the ini-
tial time instant (i.e. without any on-line feedback). In this
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Fig. 4. Water depth curves H (x; t) for t = 20; 50; 100 s. Legend: solid
line for Riemann control, dashed for open-loop control.

Jgure, we can Jrst observe that the Riemann control law ef-
fectively stabilizes the system at the desired set point. More
important, we can appreciate the acceleration of the conver-
gence compared with the open-loop behavior.

In Fig. 4, the proJles of the water levels in the channel
are displayed at time instants t=20; 50 and t=100 s. It can
be observed that the closed-loop control strategy provides
a fast convergence compared to the open-loop control with
waves of relatively small amplitudes.

In Fig. 5, the evolutions of the control actions u1(t) and
u2(t) are displayed.

4.2. Simulation with an unstable open-loop

We now consider simulation conditions such that
A0AL ¿ 1 for the open-loop control: Hup=2 m, Hdo=0:1 m,
L = 12 m, RH = 1:93 m, RV = 1:76 ms−1. For these settings,
the product A0AL = 1:05. The open-loop is compared with
a closed-loop control with tuning parameters k0 = 0:2 and
kL = 0:8.

The evolution of the entropy is depicted in Fig. 6. One
can see that the feedback control loop e>ectively stabilizes
the canal while the open loop diverges.
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Fig. 5. Gate openings. Up: u1, Down: u2. Legend: solid line for Riemann
control, dashed for open-loop control.
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Fig. 6. Evolution of entropy. Legend: solid line for Riemann control,
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Fig. 7. A canal with two reaches and three under6ow gates.

5. Control of multireach canals

The aim of this section is to generalize the previous suM-
cient stability condition to open channels made up of several
interconnected reaches and to show how this condition can
be used for control law design.

However, for the sake of clarity, we shall treat explicitly
the special case of two reaches in cascade separated by three
under6ow gates as depicted in Fig. 7.

5.1. Modelling

The following notations are introduced (see Fig. 7 and
Section 2.1 above). For the sake of simplicity, we assume
without loss of generality that the two reaches have the same
length L.
Hi(x; t) is the water level in the ith reach (i = 1; 2):

Hi;0 = Hi(0; t) and Hi;L = Hi(L; t):

Vi(x; t) is the water velocity in the ith reach:

Vi;0 = Vi(0; t) and Vi;L = Vi(L; t):

Hup and Hdo(¡Hup) are the left and right water levels out-
side the canal. The Saint-Venant equations (1) are written
for each reach i = 1; 2:

@
@t

(
Hi

Vi

)
+ A(Hi; Vi)

@
@x

(
Hi

Vi

)
=

(
0

0

)
: (15)

The 6ows are sub-critical in each reach:

|Vi|¡
√
gHi: (16)

The control actions are provided by the three gate openings
denoted u1 for the left gate, u2 for the intermediate gate
and u3 for the right gate. The discharge relationships for the
three gates are similar to 2, 3. The discharge relationships
for the three gates are written as

V1;0 |V1;0 |H 2
1;0 = u1(Hup − H1;0);

V1;L |V1;L |H 2
1;L = u2(H1;L − H2;0);

V2;L |V2;L |H 2
2;L = u3(H2;L − Hdo):

(17)

Note that an equation of 6ow conservation is involved at the
intermediate gate:

H1;LV1;L = H2;0V2;0: (18)

Eqs. (17) and (18) are the four boundary conditions associ-
ated with PDEs (15).

5.2. Steady states

As for the single reach case, for given constant gate
openings Ru 1, Ru 2, Ru 3 there exists a steady-state solution
( RH 1; RH 2; RV 1) of the Saint-Venant equations. Any arbitrary
steady state ( RH 1; RH 2; RV 1) satisfying the conditions

Hdo ¡ RH 2 ¡ RH 1 ¡Hup and 0¡ RH 1 RV 1

can be assigned by an appropriate choice of Ru 1, Ru 2 and Ru 3.

5.3. Statement of the control problem

The control objective is to stabilize the water levels H1

and H2 and the velocity V1 and V2 at given set points
( RH 1; RH 2; RV 1). The control actions are the three gate open-
ings u1, u2 and u3. The levels H1;0(t), H1;L(t), H2;0(t) and
H2;L(t) are supposed to be measured on-line at each time
instant t. The external water levels Hup and Hdo are known.
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5.4. Control analysis from Riemann invariants

The Riemann invariants for the ith reach (i = 1; 2) are
denoted �i(xi; t) and �i(xi; t) with

�i;0 = �i(0; t) and �i;L = �i(L; t):

In terms of Riemann invariants, model (15) is written

�i;0 = �i(0; t); �iL = �i(L; t);

�i;0 = �i(0; t); �i; L = �i(L; t);
(19)

with ci;�(�i; �i)¡ 0¡ci;�(�i; �i). As we have seen above,
the control objective is to stabilize the system at the ori-
gin. We are looking for decentralized boundary control
laws where the control action at a given gate is a feedback
function of the state variables at the same gate only. Let us
assume that such decentralized feedback control laws are
selected for the three gate openings:

u1(�1;0; �1;0); u2(�1;L; �1;L; �2;0; �2;0); u3(�2;L; �2;L):

Introducing these expressions in (13) and using the change
of coordinates (�i; �i) ↔ (Hi; Qi), the four boundary condi-
tions (17) may be formally written as

f1(�1;0; �1;0) = 0;

f2(�1;L; �1;L; �2;0; �2;0) = 0;

f3(�1;L; �1;L; �2;0; �2;0) = 0;

f4(�2;L; �2;L) = 0:

(20)

We deJne the following vectors �−(x; t), �+(x; t), �(x; t) by

�−(x; t) =

(
�1(x; t)

�2(x; t)

)
; �+(x; t) =

(
�1(x; t)

�2(x; t)

)

and

�(x; t) =

(
�−(x; t)

�+(x; t)

)
:

Model (19) is equivalent to

@�
@t

+ V(�) @�
@x

= 0; (21)

where � �→ V(�) is a diagonal matrix in R4×4 deJned by

V(�) = diag(c1;�(�); c2;�(�); c1; �(�); c2; �(�)):

We deJne the vector of boundary functions f

f(�−(0; t); �−(L; t); �+(0; t); �+(L; t))

=(f1; f2; f3; f4)T: (22)

Note that due to (17), we have

f(0) = 0: (23)

x

t

0 x0

β1

α1

Reach 1 Reach 2

x

t

0 x0

α1 β2

x

t

0 x0

α2

x

t

0 x0

α2

β2

(a) (b)

(c) (d)

β1

α1 β2

Fig. 8. Illustration of (25).

According to the Inverse Function Theorem (see e.g. Cartan,
1967, Theorem 4.7.1), these four equations are solvable with
respect to (�−(L; t); �+(0; t)) in a neighborhood of the origin
if the functions f are continuously di>erentiable and satisfy
the following conditions:

det∇[�−(L;t);�+(0;t)]f(0) �= 0; (24)

where∇[�−(L;t);�+(0;t)]f denotes the Jacobian of f with respect
to the vector [�−(L; t)T; �+(0; t)T]T.

Then the boundary conditions (20) may be rewritten as
follows in a neighborhood of the origin:(
�−(L; t)

�+(0; t)

)
= g

(
�−(0; t)

�+(L; t)

)
; (25)

where g : R4 → R4 is a suitable function. The Jacobian of
g is deJned at the equilibrium by

∇g(0) = −(∇[�−(L;t);�+(0;t)]f(0))−1∇[�−(0;t);�+(L;t)]f(0);

where ∇g denotes the Jacobian of g with respect to the
vector [�−(0; t)T; �+(L; t)T]T.

Remark 2. A natural justiJcation of the form of Eq. (25)
is that, at each boundary, the outgoing invariants �−(L; t)=
(�i(L; t)) and �+(0; t) = (�i(0; t)) are expressed in terms of
the incoming invariants �−(0; t) = (�i(0; t)) and �+(L; t) =
(�i(L; t)). This is illustrated in Fig. 8 where the arrows
denote the characteristic curves and the direction of the
invariants.

Di>erentiating (25) with respect to t and using (21), it
can be shown that(

V−(�(L; t))@x�−(L; t)

V+(�(0; t))@x�+(0; t)

)

=∇g

(
�−(0; t)

�+(L; t)

)(
V−(�(0; t))@x�−(0; t)

V+(�(L; t))@x�+(L; t)

)
; (26)

where V−(�) = diag(c1;�(�); c2;�(�)) and V+(�) =
diag(c1; �(�); c2; �(�)).
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For a matrix A∈Rm×p, A=(aij); 16 i6m; 16 j6p,
we deJne the following norms:

|A| := max




p∑
j=1

|aij|: i∈{1; : : : ; m}

 ;

abs(A)∈Rm×p such that (abs(A))ij = |aij|;

&(A) := lim|Al|1=l

= max{|z|: z ∈C and det(A− zI) = 0}:
Eqs. (25) and (26) lead to the deJnition of the compatibility
condition (C):

De$nition 3. The function �# ∈C1([0; L];R4) satisJes the
compatibility condition (C) if(
�#
−(L)

�#
+(0)

)
= g

(
�#
−(0)

�#
+(L)

)
;

(
V−(�#(L))@x�#

−(L)

V+(�#(0))@x�#
+(0)

)
=∇g

(
�#
−(0)

�#
+(L)

)

×
(

V−(�#(0))@x�#
−(0)

V+(�#(L))@x�#
+(L)

)
:

The main result of this section is the following.

Theorem 4. If

&(abs(∇g(0))¡ 1;

then there exists �¿ 0, �¿ 0 and C¿ 0 such that, for all
�# ∈C1([0; L];R4) satisfying condition (C) and such that

|�#|C1([0;L])6 �;

there exists one and only one function � ∈C1([0; L] ×
[0;+∞[;R4) satisfying (21)–(25) and

�(x; 0) = �#(x) ∀x∈ [0; L]: (27)

Moreover, this function decays to zero with an exponential
rate

|�(:; t)|C1([0;L])6Ce−�t |�#|C1([0;L]) ∀t¿ 0:

Proof. This theorem is a special case of the more general
Theorem 6 which is proved in Appendix A. As explained in
the appendix, this theorem is a consequence of a previous
result of Li (1994) on the stability of hyperbolic
systems.

5.5. Example of application

Our purpose in this section is to illustrate how the above
theorem can be used to analyze the stability of a particular
control structure for a channel with two reaches in cascade.

We intend to apply the Riemann invariant approach of
Section 3.2. We choose to select the gate opening u2 to
stabilize the water velocity of the upstream reach:

V1;L = RV 1 + 2
1 − k2

1 + k2
(
√
gH1;L −

√
g RH 1);

or, expressed in Riemann invariants,

f3(�1;L; �1;L) = �1;L + k2�1;L

for the positive gain k2 in [0; 1[ that can be used to tune the
control sensitivity.

The other control laws are identical to the single reach
case

f1(�1;0; �1;0) = �1;0 + k1�1;0;

f4(�2;L; �2;L) = �2;L + k3�2;L:

The boundary conditionf2 is given by the 6ow conservation
condition (18):

f2(�2;0; �1;L; �2;0; �1;L)

=(�1;L + �1;L + 2 RV 1)(�1;L − �1;L + 4
√

g RH 1)2

−(�2;0 + �2;0 + 2 RV 2)(�2;0 − �2;0 + 4
√

g RH 2)2:

For these boundary conditions, we can compute ∇g:

∇[�−(L;t);�+(0;t)]f(0)

=




0 0 1 0

16
√
g RH 1(

√
g RH 1 − RV 1) 0 0 −16

√
g RH 2(

√
g RH 2 + RV 2)

1 0 0 0

0 1 0 0




;

∇[�−(0;t);�+(L;t)]f(0)

=




k1 0 0 0

0 −16
√
g RH 2(

√
g RH 2 − RV 2) 16

√
g RH 1(

√
g RH 1 + RV 1) 0

0 0 k2 0

0 0 0 k3




;

∇g(0)

=




0 0 −k2 0

0 0 0 −k3

−k1 0 0 0

0 −
√

g RH2− RV 2√
g RH2+ RV 2

√
g RH1(

√
g RH1(1−k2)+ RV 1(1+k2))√
g RH2(

√
g RH2+ RV 2)

0




;

and, Jnally,

&(abs(∇g(0))) = max




√
|k1 k2|√

|k3

√
g RH 2− RV 2√
g RH 2+ RV 2

|


 :
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Fig. 9. Evolution of the entropy. Legend: solid line for Riemann control,
dashed for open-loop control.

This control design is illustrated with a realistic simulation
experiment for a channel with a constant rectangular cross
section (unit width) and two reaches of length L= 1000 m.
The two external water levels areHup=2 m andHdo=0:2 m.
The set points are selected as

( RH 1; RH 2) = (1; 0:8) m RQ = 0:5 m3 s−1:

The initial conditions are, for x∈ [0; L]

(H1(x; 0); H2(x; 0)) = (1:5; 1:2) m; Q(x; 0) = 1:5 m3 s−1:

The control gains k1, k2 and k3 are set to 0.2. With these
numerical values,

&(abs(∇g(0))) = 0:89 for the open loop;

&(abs(∇g(0))) = 0:35 for the closed loop; (28)

which satisJes the required inequality of Theorem 4.
The Saint-Venant equations are integrated numerically

with a spatial step Tx = 10 m, a time step Tt = 5 s and a
weighting coeMcient " = 0:6.

In Fig. 9 the evolution of the entropy function

E =
∫ L1

0

[
H1

(V1 − RV 1)2

2
+ g

(H1 − RH 1)2

2

]
dx

+
∫ L2

0

[
H2

(V2 − RV 2)2

2
+ g

(H2 − RH 2)2

2

]
dx:

is represented for the closed-loop system and compared
with the open-loop system where unit-step gate openings
are applied at the initial time instant. In this Jgure, we
can observe the acceleration of the convergence with re-
spect to the open-loop behavior since the response time in
closed-loop is much smaller than in open-loop: around 500 s
(8 min 20 s) for the closed-loop simulations and more than
2500 s (41 min 40 s) for the open-loop.

In Fig. 10, the deviations of the water levels in the channel
are displayed at time instants t = 500; 1000 and 1500 s.

6. Conclusions

In this paper, a general suMcient stability condition for
water velocities and water levels in open channels has been
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Fig. 10. Deviation of the water depth, H (x; t) − RH (x), at time instants
500, 1000 and 1500 s. Legend: solid line for Riemann control, dashed
for open-loop control.

described and analyzed. A control law design based on this
stability condition has been proposed and applied to reaches
in cascade.

The main theoretical result of the paper is an application
of a previous result of Li Ta-tsien given in Theorem 6. For
the sake of simplicity, the theorem has been applied to a pro-
totype canal made up of two horizontal reaches in cascade
with a rectangular cross section and under 6ow gates.

Theorem 6 as such does not give a fully systematic method
for the design of stabilizing boundary control laws for gen-
eral canal networks. It is, however, worth to emphasize that
Theorem 6 is valid for any hyperbolic PDE system (A.1)
with boundary conditions of the form (A.2) as long as the
damping condition (A.3) is satisJed. Hence, as it is clearly
illustrated in this paper, Theorem 6 provides a very eMcient
tool for verifying the stabilizability properties of boundary
control laws for canal networks with more general topolo-
gies, with reaches having non-rectangular cross sections and
other kinds of hydraulic gates like mobile spillways (see e.g.
de Halleux & Bastin, 2002), provided they can be cast in
the form (A.1) with boundary conditions of the form (A.2).
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The control laws analyzed in this paper are based on Rie-
mann invariants. An alternative Lyapunov approach is stud-
ied in Coron et al. (1999), de Halleux, d’Andr.ea-Novel,
Coron, and Bastin (2001) with the entropy function intro-
duced in Section 4 of this paper as Lyapunov function.
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Appendix A. Proof of Theorem 4

As mentioned after the statement of Theorem 4, we give
in this section a more general result than Theorem 4 and
explain how this general result is a direct application of
Theorem 1.3 in Li (1994, Chap. 5). Let 06m6 n be two
integers. Let V :Rn → Rn×n be a continuously di>erentiable
function in a neighborhood of 0∈Rn such that

V = diag(�1; : : : ; �n)

with �i(0)¡ 0; ∀i∈{1; : : : ; m} and �i(0)¿ 0; ∀i∈{m +
1; : : : ; n}.

Let V− :Rn → Rm×m and V+ :Rn → R(n−m)×(n−m) be
the two functions deJned by

V− = diag(�1; : : : ; �m); V− = diag(�m+1; : : : ; �n):

For all � = (*1; : : : ; *n)T ∈Rn, let �− = (*1; : : : ; *m)T ∈Rm

and �+ =(*m+1; : : : ; *n)T ∈Rn−m. We consider, for x∈ [0; L]
and t ∈R, the hyperbolic system

@�
@t

+ V(�)@�
@x

= 0; (A.1)

together with the boundary condition(
�−(L; t)

�+(0; t)

)
= g

(
�−(0; t)

�+(L; t)

)
; (A.2)

where g :Rn → Rn is a continuously di>erentiable function
in a neighborhood of 0∈Rn satisfying g(0) = 0.

Similarly as in DeJnition 3 for (12) and (25), we deJne
the compatibility condition for (A.1) and (A.2):

De$nition 5. The function �# ∈C1([0; L];Rn) satisJes the
compatibility condition (C) if(
�#
−(L)

�#
+(0)

)
= g

(
�#
−(0)

�#
+(L)

)
;




V−(�#(L))
@�#

−
@x

(L)

V+(�#(0))
@�#

+

@x
(0)


=∇g

(
�#
−(0)

�#
+(L)

)




V−(�#(0))
@�#

−
@x

(0)

V+(�#(L))
@�#

+

@x
(L)


 :

Theorem 4 is a consequence of the following result by
choosing n = 4 and m = 2.

Theorem 6. If

&(abs(∇g(0))¡ 1; (A.3)

then there exists �¿ 0, �¿ 0 and C¿ 0 such that,
for every �# ∈C1([0; L];Rn) satisfying condition (C) and
such that

|�#|C1([0;L])6 �;

there exists one and only one function � ∈C1([0; L] ×
[0;+∞);Rn) satisfying (A.1), (A.2) and

�(x; 0) = �#(x) ∀x∈ [0; L]: (A.4)

Moreover, this function � satisDes
|�(:; t)|C1([0;L])6Ce−�t |�#|C1([0;L]) ∀t¿ 0: (A.5)

This theorem is a special case of (the proof of) Theorem
1.3 in Li (1994, Chapter 5) if the boundary condition (A.2)
has the following particular form:(
�−(L; t)

�+(0; t)

)
=

(
g1(�+(L; t))

g2(�−(0; t))

)
; (A.6)

where g1 :Rn−m → Rn and g2 :Rm → Rn are of class C1

on neighborhoods of 0∈Rn−m and of 0∈Rm respectively. 1

But one can use Li (1994) to prove Theorem 6 even if (A.6)
does not hold by doubling the size of the state as follows.
Consider the hyperbolic system

@�̃
@t

+ Ṽ(�̃) @�̃
@x

= 0; (A.7)

with

�̃ = (�T
1−; �T

2−; �T
1+; �T

2+)T;

where �1− ∈Rm, �2− ∈Rn−m, �1+ ∈Rn−m, �2+ ∈Rm and
Ṽ :R2n → R2n×2n is deJned by

Ṽ(�̃) = diag




V−((�T
1−; �T

1+)T)

−V+((�T
2+; �T

2−)T)

V+((�T
1−; �T

1+)T)

−V−((�T
2+; �T

2−)T)


 :

1 Let us point out that with the deJnition of ‖A‖min given in Li (1994,
p. 170) one has ‖A‖min = ‖abs(A)‖min = &(abs(A)). See Lemma 2.4 in
Li (1994, p. 146).
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The boundary condition for (A.7) is deJned by(
�1−(L; t)

�2−(L; t)

)
= g

((
0 1

1 0

)(
�1+(L; t)

�2+(L; t)

))
;

(
�1+(0; t)

�2+(0; t)

)
=

(
0 1

1 0

)
g

(
�1−(0; t)

�2−(0; t)

)
:

This boundary condition can be written in the following
form:(
�̃−(L; t)

�̃+(0; t)

)
= g̃

(
�̃+(L; t)

�̃−(0; t)

)
=

(
g̃1(�̃+(L; t))

g̃2(�̃−(0; t))

)
(A.8)

with

�̃− = (�T
1−; �T

2−)T; �̃+ = (�T
1+; �T

2+)T; (A.9)

g̃1 = g ◦
(

0 1

1 0

)
; g̃2 =

(
0 1

1 0

)
◦ g: (A.10)

In particular, the boundary condition for �̃ has the special
form required by Theorem 1.3 in Li (1994, Chap. 5) and

&(abs(∇g̃(0))) = &(abs(∇g(0)))2: (A.11)

Let �# ∈C1([0; L];Rn) satisfying condition (C) and such
that |�#|C1([0;L]) is small enough. We choose as initial con-
dition for �̃ at t = 0,

�#
1−(x) = �#

−(x); �#
2−(x) = �#

+(L− x);

�#
1+(x) = �#

+(x); �#
2+(x) = �#

−(L− x): (A.12)

One easily sees that �̃# := (�#T
1−; �#T

2−; �#T
1+; �#T

2+)T satisJes
the compatibility condition associated to (A.7) and (A.8).
Hence there exists a unique C1-solution �̃ of (A.7) and
(A.8) such that

�̃(x; 0) = �̃#(x): (A.13)

Let

�̃∗(x; t) =




�2+(L− x; t)T

�1+(L− x; t)T

�2−(L− x; t)T

�1−(L− x; t)T


 :

Then, as one easily checks, �̃∗ satisJes as �̃ hyperbolic sys-
tem (A.7), boundary condition (A.8) and initial condition
(A.13). Hence by the uniqueness of the C1-solution of the
Cauchy problem associated to (A.7) and (A.8), one has

�̃∗ = �̃:

In particular,

�1−(x; t) = �2+(L− x; t);

�1+(x; t) = �2−(L− x; t): (A.14)

Hence, if

�−(x; t) := �1−(x; t); �+(x; t) := �1+(x; t);

then � = (�T
−; �T

+)T satisJes (A.1), (A.2) and (A.4).
Conversely, if � = (�T

−; �T
+)T satisJes (A.1), (A.2) and

(A.4), then �̃ deJned by

�1−(x; t) := �−(x; t); �1+(x; t) := �+(x; t);

�2+(x; t) := �−(L− x; t); �2−(x; t) := �+(L− x; t);

satisJes hyperbolic system (A.7), boundary condition (A.8)
and initial condition (A.13). Hence, see also (A.11), Theo-
rem 6 for the hyperbolic system (A.1) and the boundary con-
dition (A.2) is a consequence of (the proof of) Theorem 1.3
in Li (1994, Chap. 5) (see also Qin, 1985; Zhao, 1986) for
the hyperbolic system (A.7) and boundary condition (A.8).
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