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ABSTRACT

This paper deals with the control of waste treatment plants by
anaerobic digestion. Continuous-time adaptive schemes are proposed for
single-step (methanization) and two-step (acidification plus methaniza-
tion) plants. .The stability of the algorithms is demonstated by using

Lyapunov functions, in both the disturbance-free and the bounded
disturbance cases. The effectiveness of the algorithms is illustrated
by simulation experiments. An important feature of the proposed

algorithms is that they do not require any analytical description of
the microbial specific growth-rate.

INTRODUCTION

The bioclogical treatment of organic wastes by anaerobic digestion with
methane production has been described for a long time in the scientific
literature [1]. One of the first comprehensive model was developed by
Andrews [2] and has evolved through many -other contributions, e.g. [3]
- [8]. The anaerobic digestion of organic materials is commonly
considered as a two-step process : acidification and methanization. 1In
this paper we consider a continuous flow stirred tank reactor fed with-
soluble organics. In the acidification stage, the soluble organics are
fermented into volatile acids by a group of acidogenic bacteria. In the
methanization stage, a group of methanogenic bacteria converts the
products of the acidification phase into methane (CH,) and carbondioxy-
de (CO_.). The biological behavicur of the two phases is described by
the usSual state model of the microbial growth but with unspecified
growth-rate functions. The aim of this paper is to present and analyse
adaptive algorithms for the regulation of the anaerobic digestion
process when it is used for waste treatment purpose (in food industries
for instance). The control objective is to regulate the output
pollution concentration at a prescribed level despite the input
pollution fluctuations by acting on the dilution rate. Adaptive
algorithms are presented for the methanization stage alone, and for the
complete two-step process. The disturbance-free case and the bounded
disturbance case are considered. An important feature is that, with
these adaptive algorithms, stability and convergence properties of the
overall system ‘(process plus controller) have been emphasized under
rather mild assumptions : it is worth noting that, for instance, the
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adaptive control algorithms are valid for any positive and bounded
specific growth-rate. The theoritical proofs are not given here but can
_be found in an extended version of this paper [9].

ADAPTIVE CONTROL OF THE METHANIZATION STAGE

Description of the systém

We consider first the case of the methane reactor in a two-phase
process or an anaerobic digestion plant in which the methanogenic step
is rate 1limiting. We assume that the dynamic biological behaviour of
the anaerobic digestion process can be described by the following set
of material balance equations (e.g. [6]) :

dX

— = - t ) 1

i3 pltIXxX(t) D(tIX(t) | (1)
95 L k,ult)X(t) + D(t) [S_(t) -~ S(t)] (2)
dt 1 a

a(t) = kult)X(t) - (3).
‘with X(t) the bacterial concentration, S({t) the volatile acids
concentration, S_(t) the influent volatile acids concentration, D(t)

the dilution ratg. Q(t) the methane gas flow rate, u(t) the specific
growth-rate, k, and k, the vield parameters.

The specific growth-rate u{t) is known to be a complex function of the
fermentation variables and many different analytical expressions have
been suggested to account for the influence of substrate inhibition, pH
and temperature on the bacterial growth in an anaerobic digester (e.g.
(21.[81.010] - [12]).

In this paper, we do not impose a specific analytical expression for
the growth-rate u(t). On the contrary, the adaptive algorithms we
present are valid for any growth-rate, provided that it fulfills the
following (quite physical) conditions:

H1 : 0 € ult) < u¥® (4)
H2 : u{t) = 0 if S(t) = 0@ ' (5)

*
where 4 is the maximum growth rate.

Statement of the control objective

As we said in the introduction, we consider the problem of regulatirg
the anaerobic digestion process when it is used for waste treatment
purpose. Sa(t) is the input pollution level and D(t)sa(t) is the rate

of the pollutant inflow while S(t) is the output pollution level and
D{t)sS(t) is the rate of the pollutant outflow. The control objective is

x
to regulate the output pollution S(t) at a prescribed level Z , despite
the fluctuations of the input pollution level sa(t). by acting on the
dilution rate. :

To achieve this objective, we assume that :

1) the influent and effluent waste concentrations Sa(t) and S(t) are.
observed on line (through COD measurements for examplel

2) the methane gas flow rate Q{t) is an auxiliary measurable output of
the process )

3) the dilution rate D(t) is the control input.

Furthermore, we assume that the growth-rate u(t) and the yvield parame-
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ters k,, k2 are a priori unknown and cannot be used in the control law.

To solve this regulation problem, the non 1linear structure of the
system is explicitely used for the design of adaptive control schemes.
such an approach has already been used by the authors in the derivation
of discrete time adaptive algorithms of both substrate concentration
and production rate control of fermentation processes [13]. Here
continuous time non linear adaptive controllers are proposed and their
stability properties are analysed by using Lyapunov functions, in the
disturbance-free case and in the bounded disturbance case.

The disturbance~free case

From equations (1)-(3), we have :

ds _ _ - '

aFt ° K Q(t) + D(t) [ Sa(t) S(t)] (6)
Ky

with K = — (7)
ko

Equation (6) can be viewed as a first . order dynamic model of the
methanization phase with a bounded time varying parameter Q(t) ( the
boundedness of Q(t) results from lemma 1 in {13]). This equation is the
basis for the derivation of the control algorithm.

The adaptive control algorithm

: *
For a given desired output waste concentration Z , we define :
* ~
Cl(t) [ 2 - S(t)] + K(t) Q{t)
Sa(t) - S(t)

(8a)

Dit) =

with €, (t) a strictly positive function (C,{t) > 0) and R(t) an
adaptive estimate of K, and we calculate the control input as follows :

D{t) = D(t) if 0 < D(t) < O ' {8b)
max

D(t) = 0 if D(t) < 0 {8c)

D(t) = b . if D(t) >0 (8d)

The zero lower bound on D(t) is evident since a dilution rate cannot be
negative. The upper bound Dmax is needed to ensure realistic operating

conditions if D(t) is infinite.
The adaptive estimation of K is as follows :

— ' *
if D(t) > Dm and S(t) < Z

] ax
dk
-d_E. = 0 * (Be)
if K = 0 and S{t) > 2
9K . aer ¢ 2* - ' i
gt - C2 L S(t)] otherwise (8f)
A
K(g) > o (8h)
C2 is a positive constant.
It is interesting to notice that if we define :
* A
e, = {Z - s(t)) and e, = (K - K(t)) (9)

K .
*he closed loop system (6) -~ (8) can be written, when D(t) = D(t) :
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3

e - Cc {t) Ql{t) e
1 2 .
z ] [ (109
1] eK

e, - C, )

i.e. as a linear time-varying unforced. system.

Stability analysis of the closed loop system

— o o e — o . g e gem e o G G eww e mm mm e

The stability'of the closed loop system (6} - (8) is analysed under the
following assumptions:

H3 : The input pbllution level is bounded as follows :

Spin S Sa(t) € s . (11)
He 1 0 € SI0) 0 < X(0) S(0) » kyX(0) < S . (12)
b 4 N
WS 120 < s .o | _ (13)
* s
_ u
HE : D > —max ‘ (14)
s . -2
min

We have the following stability results :

Theorem 1 : under assumptions H1 to H6, the closed loop system (6) (8)

1s stable. i .

ﬁrgoi : see [141]. )

Theorem 2 : under assumptions H1 to HE6 and if Q(t) > € > 0 for all t,

with € an arbitrary constant, then :
*

a) 1im S({t) = 2

T~

b) there exists t, such that D(t) = D(t) for all t > t,

c) if Cl(t) = aQ(t) (@ > 0), then the closed loop system is exponen-
tially stable for t > t,;. :

Proof : see [9].

Comments : 1) Theorem 2 is based on the assumption that the methane gas
flow rate Q{t) is strictly positive for all t : Q(t) > 0. Within the
framework of our previous assumptions, it is not possible to prove that
Q(t) > 0 since Q(t) depends on ult) which is unspecified. However, for
simple models of u{(S(t)), it is fairly easy to show that Q(t) 1is

effectively > 0 for all t.

2) It is worth noting that the controller achieves a zero
steady-state error even with a varying input disturbance S (t), since
the algorithm (8) includes a feedforward action (i.e. %akes into
account the influence of the measured disturbance Sa(t)).

~

The bounded disturbance case

In this paragraph, we consider the more realistic situation where a
bounded disturbance term is added to equation (6) :

ds

gt - - K Q{t) +« D(t) [ Sa(t) - S{t)] + W(t) . (15)

with 1W(t)i € A for all t.
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The term W(t) represents model inaccuracies, external non measured
disturbances and measurement noise.

\

In this case, the "error system” (10) is modified as follows :

a_ e, - - C,() Q(t) e, + - W(t)

dt (16)
ey - C,(t) 0 ey 0 .

We have the following stability result

Theorem 3 : under assumptions of theorem 2, the system {16) is BIBS
stable.

Proof : see [19].

Comments : 1) under more restrictive assumptions, it can also be shown
1im 1s(t) - 2% < B8 A, where 8 can be made arbitrarily small by a pro-
t~oo

per choice of the design parameters « and C,.
2) In case of a constant disturbance, the controller achie-

ves a perfect static accuracy (i.e. lim S{t) = z%) since the adaptation
of K includes an integral action. to=

Simulation experiments

We consider a methanization system with
a) a Haldane specific growth-rate (i.e. with substrate inhibition]

*
pit) = L2 (17)
K '+ S(t) + ST(t)/K.
m i Cx
b) K = 0.4 g/1, K, = 2.5 g/1l, # = 0.4 day™?
c) a time varying input pollution ievel : Smin = 3 g/1, Smax = 5 g/l
The desired output is constant : Z = 1.66 g/l
This value corresponds, in open laoop, to an unstable stationary state
([151,0161).
The control algorithm is applied with D = 0.4 day—1, ¢, = C, = 10 and

a measurement noise is added to Q(t).
Fig. 1 shows that the process is effectively stabilized by the
controller. In order to prove the stability, we have assumed that Cl(t)
= aQ(t) but in the experiment, stabilization has been obtained with a
constant C,. ' :

ADAPTIVE CONTROL OF THE TWO-STEP ANAEROBIC DIGESTION PROCESS

We consider now the complete anaerobic digestion process where
acidification and methanization are present simultaneously.
The process is described by the following equations (e.g. [6]) :

dX ’ .
1
icidificgtiog - ul(t)xl(t) - D(t)X,(¢t) (18)
dS1 .
FE - Kaky ()X (8] + DIEID S_(t) - s5(t)] (19)
. . dX -
Teﬁhinizitioﬁ : gf o Lit)X(t) - D(tIX(t) _ : {20)
95 L kLu(t)IX{t) - DIEISIt) + k,u (t)X, (t) (21)
at 1B P! 1
Qlt) = kyu(t)X(t) (22)
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Fig.l. Adaptive control of an (unstable) methane reactor
with a Haldane specific growth-rate.

589



with X, §, D; G, u, ky, k, as in section 2 and X,(t) the acidogenic
pacterial concentratian, Sl(t) the soluble organics concentration,
s (t) the influent soluble organics concentration, ul(t) the specific

T

growth-rate of the acidogenic bacteria, k3 and k4 yield parameters.
From (18)-(21), the following first order model is readily derived

%% = - KQ(t) + DIEIL S_(t) - S(E)] + olt) (23)
with 2(t) = S(t) + S (t)

Plt) (kg = kg) u (E)X,(t)

It can he shown that p(t) is bounded as follows [13] :

Iky-kgyl
0 € I1p(t)l & —m ., s7"3% = 4 v (24)
k3 1 T

This disturbance-free model of the two-step process is, in fact,
completely equivalent to the bounded disturbance single phase model
[15) with 2(t), Sr(t) and plt) instead of S(t), Sa(t) and WI(t)

respectively. Then we can use the same control algorithm (8) and the
same stability results will hold (theorem 3). However, the bound A on
the "pseudo-disturbance” p{t) can be very large and the conditions for
stability are likely to be violated in most cases.

An alternative way that we will now investigate 1is to estimate Q(t) on
line and to incorporate Q(t) into the control law. Such an estimation
of p(t) is clearly analogous to the on 1line estimation of OUR in
activated sludge processes ([17],[18]).

The adaptive control algorithm

We define
C(t) [ 27 - z(t)] + Kitralt) - Bty : |
1 C - 11+ P (25)

Dle) = S.t) -Z(t]

. A .
The computation of D{(t) and the adaptation of K(t) are given by (8b) to
(8h) like for the single stage case.

The adaptation of H(t) is as follows

a .
=02 - zten (28)
Then, if we define e = po(t) - Q(t) and e_ = Z* - Z(t), we have the
following error systemp(when D(t) = D(t)) :z .
%f [ e, ] - [ - C,(t) a{t) -1 ] [ ez] - [ 0

1 e - c,elt) o 0 ey 0 (27)

e, c, 0 0 e, de/dt :

A complete stability analysis of the closed loop system is more

involved than in the single stage case and has not yet been achieved.
We present the following partial result :

Theorem 4 : under assumptions H1 to H6
if C () = aQ(t) (0<alw)
if Q(t) » € > 0 for all t
if there exists t, such that D(t)=D(t) for all t > t,
. de .
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T : .
then the error vector e = (ez, eK, ep) is asymptotically

bounded as follows :

lim tes < yaA'!

t-o=

with ¥ a positive constant.
Prgof : see [9].

Comment : clearly, this stability property is much weaker than those
deTrived in section 2. However, it is worth noting that, with theorem 4,
the bound on the regulation error depends on the derivative of pl(t)
rather than on p{t) itself : with algorithm (25)(26), when D(t) = D(t),
the regulation error ez is small provided the fluctuations of o(t) are

smooth, even if p(t) is large.

Simulation experiments

We consider a plant consisting of equations (18)-(22) with :

a) Michaelis-Menten growth-rates,

b} an additive measurement noise on Q{t). ]

Fig. 2 shows a succesful simulation result when the control algorithm
{8) is applied to the system (i.e. without estimation of %), in the
case of a square wave set point. .

Fig. 3 shows a simulation result when the algorithm (25)(26) is used
{i.e. with an on-line estimation of $).

However, we must say that initial conditions have been tried without
success, and therefore that further analysis is needed to improve the
algorithms.
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CONCLUSIONS

This paper has dealt with the control of waste treatment plants by
anaerobic digestion. Various continucus-time adaptive schemes have been
proposed for methanization plants and for acidification-methanization

plants.

The stability properties of those algorithms have been analysed in both
the disturbance-free and the bounded disturbance cases, and their
effectiveness has been illustrated by some simulation experiments. It
is worth noting that the proposed algorithms does not require any
specific analytical description of the microbial growth-rates.
Moreover, they can be coupled, if such an information is desired, with
on line adaptive estimators of the specific microbial growth-rates

(20].
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