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ABSTRACT

This paper deals with the control of waste treatment plants by
anaerobic digestion. Continuous-time adaptive schemes are proposed for
single-step (methanization) and two-step ( a c i d i f i c a t i o n plus methaniza-
tion) plants. The s t a b i l i t y of the algorithms i s demonstated by using
Lyapunov functions, in both the disturbance-free and the bounded
disturbance cases. The effectiveness of the algorithms i s i l l u s t r a t e d
by simulation experiments. An important feature of the proposed
algorithms i s that they do not require any analytical description of
the microbial specific growth-rate.

INTRODUCTION

The biological treatment of organic wastes by anaerobic digestion with
methane production has been described for a long time in the s c i e n t i f i c
l i t e r a t u r e [ 1 ]. One of the f i r s t comprehensive model was developed by
Andrews [2] and has evolved through many other contributions, e.g. [3]

[8]. The anaerobic digestion of organic materials i s commonly
considered as a two-step process : a c i d i f i c a t i o n and methanization. In
th i s paper we consider a continuous flow s t i r r e d tank reactor fed with
soluble organics. In the a c i d i f i c a t i o n stage, the soluble organics are
fermented into v o l a t i l e acids by a group of acidogenic bacteria. In the
methanization stage, a group of methanogenic bacteria converts the
products of the acidi f i c a t i on phase into methane (CH ) and carbondioxy-
de ICO I. The biological behaviour of the two phases i s described by
the usual s t a t e model of the microbial growth but with unspecified
growth-rate functions. The aim of t h i s paper i s to present and analyse
adaptive algorithms for the regulation of the anaerobic digestion
process when i t i s used for waste treatment purpose (in food industries
for instance). The control objective i s to regulate the output
pollution concentration at a prescribed level despite the input
pollution fluctuations by acting on the dilution r a t e . Adaptive
algorithms are presented for the methanization stage alone, and for the
complete two-step process. The disturbance-free case and the bounded
disturbance case are considered. An important feature i s that, with
these adaptive algorithms, s t a b i l i t y and convergence properties of the
overall system (process plus controller ) have been emphasized under
rather mild assumptions : i t i s worth noting t h a t , for instance, the
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adaptive control algorithms are valid for any positive and bounded
specific growth-rate. The theoritical proofs are not given here but can
be found in an extended version of this paper [9].

ADAPTIVE CONTROL OF THE METHANIZATION STAGE

Description of the system

We consider f i r s t the case of the methane reactor in a two-phase
process or an anaerobic digestion plant in which the methanogenic step
i s rate limiting. We assume that the dynamic biological behaviour of
the anaerobic digestion process can be described by the following set
of material balance equations (e.g. [6]) :

^ = it(t)XU) - OU)X(t) (1 )

ox.

^ i = - k j i t m x t t ) + D(t) [S a ( t) - S ( t ) ] (2)

Q(t) = k2it(t)X(t) (3) .
with X(t) the bacterial concentration, S(t) the v o l a t i l e acids
concentration, S (t) the influent v o l a t i l e acids concentration, D(t)
the dilution rate, Q(t) the methane gas flow rate, nit) the s p e c i f i c
growth-rate, kx and k2 the yield parameters.

The s p e c i f i c growth-rate filt) i s known to be a complex function of the
fermentation variables and many different analytical expressions have
been suggested to account for the influence of substrate inhibition, pH
and temperature on the bacterial growth in an anaerobic digester (e.g.
[2],[8],[10] - [12]).

In this paper, we do not impose a s p e c i f i c analytical expression for
the growth-rate fii t ) . On the contrary, the adaptive algorithms we
present are valid for any growth-rate, provided that i t f u l f i l l s the
following (quite physical) conditions:

HI : 0 < ti(t) < n* (4)

H2 : M(t) = 0 i f S ( t ) = 0 (5)

where n i s the maximum growth r a t e .

Statement of the control o b j e c t i v e

As we said in the introduction, we consider the problem of regulating
the anaerobic d i g e s t i o n process when i t i s used for waste treatment
purpose. S ( t ) i s the input p o l l u t i o n l e v e l and D(t)S ( t ) i s the rate

of the p o l l u t a n t inflow while S ( t ) i s the output p o l l u t i o n l e v e l and
D ( t ) S ( t ) i s the rate of the p o l l u t a n t outflow. The control o b j e c t i v e i s

to r e g u l a t e the output p o l l u t i o n S ( t ) at a prescribed l e v e l Z , d e s p i t e
the f l u c t u a t i o n s of the input p o l l u t i o n l e v e l S ( t ) , by acting on the
d i l u t i o n r a t e . a

To achieve t h i s o b j e c t i v e , we assume that :
1) the i n f l u e n t and e f f l u e n t waste concentrations S ( t ) and S ( t ) are

observed on l i n e (through COD measurements for example)
2) the methane gas flow rate Q(t) i s an a u x i l i a r y measurable output of

the process
3) the d i l u t i o n rate D(t) i s the c o n t r o l input.

Furthermore, we assume that the growth-rate ¿t(t) and the y i e l d parame-
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ters kx, k2 are a priori unknown and cannot be used in the control law.

To solve this regulation problem, the non linear structure of the
system is explicitely used for the design of adaptive control schemes.
Such an approach has already been used by the authors in the derivation
of discrete time adaptive algorithms of both substrate concentration
and production rate control of fermentation processes [13]. Here
continuous time non linear adaptive controllers are proposed and their
stability properties are analysed by using Lyapunov functions, in the
disturbance-free case and in the bounded disturbance case.

The disturbance-free case

From equations (1)-(3), we have :

~ = - K Q(t) • 0(t) [ S (t) - S(t)] (6)
at a

k i
w i t h K = -r—• ( 7 )

K 2

Equation (6) can be viewed as a f i r s t order dynamic model of the
methanization phase with a bounded time varying parameter Q(t) ( the
boundedness of Q(t) r e s u l t s from lemma 1 in [13]). This equation i s the
basis for the derivation of the control algorithm.

The adaptive control algorithm
*

For a given desired output waste concentration Z , we define :

_ C j j t ) [ Z * - S ( t ) ] + K i t ) Q ( t )
o m = s a ( t ) - s ( t )

with CaU) a stri c t l y positive function (CjU) > 0) and Mt) an
adaptive estimate of K, and we calculate the control input as follows :

DU) = ÏÏU) if 0 < ÏÏU) < D (8b)
max

DU) = 0 if ÏÏ(t) < 0 (8c)
D(t) s Dmax if ÏÏ(t) > ° max (8d)

The zero lower bound on DU) is evident since a dilution rate cannot be
negative. The upper bound D is needed to ensure realistic operating

conditions if DU) is infinite.

The adaptive estimation of K is as follows :

r i f ÏÏU) > D and S U ) < Z*
die I m a x

d t [ i f K = 0 and S ( t ) > Z*
A

dK *
^ = C2 Q(t) [ Z - SU)] otherwise (8f)

MO) > 0 (8h)

C2 i s a positiv e constant.

I t i s i n t e r e s t i n g to notice that if we define :

e 2 = (Z - SUM and e = (K - Mt]) (9)

*he closed loop system (6) - (8) can be wri t t e n, when DU) = DU) :
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i . e . as a l i n e a r time-varying unforced system.

S t a b i l i t y a n a l y s i s of t h e closed loop system

The s t a b i l i t y of t h e closed loop system (6) - (8) i s analysed under t h e
fo l l o w i n g assumptions:
H3 : The i n p u t p o l l u t i o n l e v e l i s bounded as f o l l o w s :

Smin * S a ( t ) < Smax (11>
H* : 0 < S(0) 0 < X(0) S(0) + k.X(O) < S (12)

1 max
H5 : 2* < Smi n (13)

H6 : D
max *

min"

We have t h e f o l l o w i n g s t a b i l i t y r e s u l t s :

Theorem 1 : under assumptions H1 t o H6, t h e c l o s e d loop system (6) (8)
Ts s t a b l e .
ü r £ o í . : s e e C 1 ^ ] -
Theorem 2 : under assumptions H1 t o H6 and i f 0 ( t ) > e > 0 f o r a l l t ,
with i i"ñ a r b i t r a r y c o n s t a n t , then
a) lim S ( t ) = Z*

b) t h e r e e x i s t s t x such t h a t Dit) = D(t) f o r a l l t > t x

c) i f ( ^ ( t ) = e»0 ( t ) (o > 0 ) , then t h e clo s e d loop system i s exponen-
t i a l l y s t a b l e f o r t > t x .

Proof : see [ 9 ] .

Comments : 1) Theorem 2 i s based on t h e assumption t h a t t h e methane gas
flow r a t e Q(t) i s s t r i c t l y p o s i t i v e f o r a l l t : Q(t) > 0. Within the
framework of our pr e v i o u s assumptions, i t i s not p o s s i b l e t o prove t h a t
0 ( t ) > 0 s i n c e Q(t) depends on /i{t) which i s u n s p e c i f i e d . However, f o r
simple models of ¿ t ( S ( t ) ) , i t i s f a i r l y easy t o show t h a t Q(t) i s
e f f e c t i v e l y > 0 f o r a l l t .

2) I t i s worth noting t h a t t h e c o n t r o l l e r achieves a zero
s t e a d y - s t a t e e r r o r even with a varying i n p u t d i s t u r b a n c e S ( t ) , s i n c e
t h e a l g o r i t h m (8) i n c l u d e s a feedforward a c t i o n ( i . e . rake s i n t o
account t h e i n f l u e n c e of t h e measured d i s t u r b a n c e S ( t ) ) .

The bounded d i s t u r b a n c e case

In t h i s p a r a g r a p h , we co n s i d e r t h e more r e a l i s t i c s i t u a t i o n where a
bounded d i s t u r b a n c e term i s added t o e q u a t i o n (6) :

~ = - K Q(t) + D(t) [ S g ( t ) - S ( t ) ] + W(t) . (15)

with IW(t)l < A f o r a l l t .
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The term W(t) represents model inaccuracies, external non measured
disturbances and measurement noise.

In t h i s case, the "error system" (10) i s modified as follows :

( 1 6 )

Me have the following s t a b i l i t y r e s u l t :

Theorem 3 : under assumptions of theorem 2, the system (16) i s BIBS
st a b l e .

Proof : see [19].

Comments : 1) under more r e s t r i c t i v e assumptions, i t can also be shown

lim IS(t) - 2*l < ß A, where ß can be made a r b i t r a r i l y small by a pro-
t-oo

per choice of the design parameters a and C2.

2) In case of a constant disturbance, the controller achie-
ves a perfect s t a t i c accuracy ( i . e . lim S(t) = Z*) since the adaptation
of K includes an i n t e g r a l action. t-*«>

Simulation experiments

We consider a methanization system with :
a) a Haldane s p e c i f i c growth-rate ( i . e . with substrate i n h i b i t i o n ) :

(17)M ( t )
K + S ( t ) + S ( t ) / K .
m x • £

b ) K = 0 . 4 g / 1 . K. = 2 . 5 g / l , ß = 0 . 4 d a y - i
m x

c) a time varying input pollution level : S . = 3 g/1, S =5 g/1
. f i l l i i iT13 X

The desired output i s constant : Z = 1 .66 g/1
This value corresponds, in open loop, to an unstable s t a t i o n a r y s t a t e
( [ 1 5 ] , [ 1 6 ] ) .
The c o n t r o l algorithm i s applied with D = 0.4 day—1, Cx = C2 = 10 and
a measurement noise i s added to Q(t).
Fig. 1 shows that the process i s e f f e c t i v e l y s t a b i l i z e d by the
c o n t r o l l e r . In order to prove the s t a b i l i t y , we have assumed that C j i t )
= aQ(t) but in the experiment, s t a b i l i z a t i o n has been obtained with a
constant Cx.

ADAPTIVE CONTROL OF THE TWO-STEP ANAEROBIC DIGESTION PROCESS

We consider now the complete anaerobic d i g e s t i o n process where
a c i d i f i c a t i o n and methanization are pr e s e n t s i m u l t a n e o u s l y .
The p r o c e s s i s d e s c r i b e d by the f o l l o w i n g e q u a t i o n s ( e . g . [ 6 ] ) :

i u 1 ( t ) X 1 ( t ) - D ( t ) X 1 ( t ) ( 18)

— = - k 3 M 1 ( t ) X 1 ( t ) + D ( t ) [ S r ( t ) - S ( t ) ] ( 1 9 )

m e t h a n i z a t i o n : ^ $ = ¿ t ( t ) X ( t ) - D ( t ) X ( t ) ( 2 0 )

^ | = - k . . / i ( t ) X ( t ) - D ( t ) S U ) + k . / i , ( t ) X , ( t ) ( 2 1 )
dt * 4 1 1

) = k 2 M ( t ) X ( t

588
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192.00 288.00 384.00 480.00

0.00 96.00 192.00 288.00 384.00 480.00

T . 00 9S'.OO 192.00 288.00 394.00 480.00

Fig.l. Adaptive control of an (unstable) methane reactor
with a Haldane specific growth-rate.
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with X, S, D, Q, M. kx
b a c t e r i a l concentration,

k_ as in sec t i o n 2 and X2(t) the
th e s o l u b l e o r g a n i c s

acidogenic
concentration.
the s p e c i f i c

S 1 ( t )
S ( t ) the influent soluble organics concentration.

growth-rate of the acidogenic bacteria, k3 and k4 yield parameters.
From (18)-(21), the following f i r s t order model i s readily derived :

££ = - KQ(t) + D(t)[ S ( t ) - S ( t ) ] + *>(t)
dt r
with Z(t) = S(t) + S x ( t )

,p(t) = (k4 - k3) u1i't)X1{t)

It can be shown that *>(t) i s bounded as follows [13]

0 < l * ( t ) l < ü /i 1 Sr = A

(23)

(24)

T his d i s t u r b a n c e - f r e e model of t h e t w o - s t e p p r o c e s s i s , i n f a c t ,
c o m p l e t e l y e q u i v a l e n t t o t h e bounded d i s t u r b a n c e s i n g l e phase model
X151 w i t h Z ( t ) , S ( t ) and *> ( t ) i n s t e a d of S ( t ) , S ( t ) and W(t)

r 3
r e s p e c t i v e l y . Then we can use t h e same c o n t r o l a l g o r i t h m (8) and t h e
same s t a b i l i t y r e s u l t s w i l l hold (theorem 3 ) . However, t h e bound A on
th e " p s e u d o - d i s t u r b a n c e " *>(t) can be v e r y l a r g e and t h e c o n d i t i o n s f o r
s t a b i l i t y are l i k e l y t o be v i o l a t e d i n most c a s e s .

An a l t e r n a t i v e way that we w i l l now i n v e s t i g a t e i s to estimate £ ( t ) on
l i n e and to incorporate £ ( t ) into the control law. Such an estimation
of -pit) i s clearly analogous to the on l i n e estimation of OUR in
activated sludge processes ( [ 1 7 ] , [ 1 8 ] ) .

The adaptive control algorithm

Me define

C1(t) Z* - Z ( t ) ] + K ( t ) Q ( t ) -
D(t ) = (25)

- Z ( t )

The computation of 0 ( t ) and t h e a d a p t a t i o n of K(t) are g i v e n by (8b) t o
(8h) l i k e f o r t h e s i n g l e s t a g e c a s e .

The a d a p t a t i o n o f £ ( t ) i s as f o l l o w s

dt " C 3 z - z ( t ) j

T h e n , i f w e d e f i n e e = * > ( t ) - p ( t ^ a n d
f o l l o w i n g e r r o r s y s t e m ^ f w h e n 0 ( t ) = D ( t ) )

d
dt

ez
eK
B-P

• - c 1 ( t )
- C 2 Q ( t )

C 3

CHt)
0

Q

"" 1 "

0

0

' e
e
e

*
= Z - Z(t), we

0

0

d^/dt

(26)

have t h e

(27)

A complete s t a b i l i t y analysis of the closed loop system i s more
involved than in the si n g l e stage case and has not yet been achieved.
We present the following p a r t i a l r e s u l t :

Theorem 4 : under a s s u m p t i o n s HI t o H6
i f Z x l t ) = aQ(t) (0<a<=»)
i f Q (t) > e > 0 f o r a l l t _
i f t h e r e e x i s t s t x such t h a t D ( t ) = D ( t ) f o r a l l t >

i f 1^1 < A»dt
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then the error vector e
bounded as follows :

lim lei < T'A'

K'
is asymptotically

with y a positive constant.
Proof : see [9].

Comment : clearly, t h i s s t a b i l i t y property i s much weaker than those
BVrivecF in section 2. However, i t i s worth noting that, with theorem 4,
the bound on the regulation error depends on the derivative of -pit)
rather than on -pit) i t s e l f
the regulation error e.

with algorithm (25)(26), when Dit) = ÏÏ(t),
i s small provided the fluctuations of -pit) are

smooth, even if is large.

Simulation experiments
We consider a plant consisting of equations (18)-(22) with :
a) Michaelis-Menten growth-rates,
b) an additive measurement noise on Q(t).
Fig. 2 shows a succesful simulation r e s u l t when the control algorithm
(8) i s applied to the system ( i . e . without estimation of $>) , in the
case of a square wave set point.
Fig. 3 shows a simulation r e s u l t when the algorithm (25)(26) i s used
( i . e . with an on-line estimation of $ ] .
However, we must say that i n i t i a l conditions have been tr i e d without
success, and therefore that further analysis i s needed to improve the
algorithms.

en

CJ

\ r ^ — —

•

1 1

/

V .
r

1

1 1 1 1 *
0.00 95.00 192.00 288.00 384.00 480.00

0.00 96.00
Fig. 3. Control with estimation of <J>
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CONCLUSIONS

This paper has dealt with the control of waste treatment plants by
anaerobic digestion. Various continuous-time adaptive schemes have been
proposed for methanization plants and for acidification-methanization
plants.

The stability properties of those algorithms have been analysed in both
the disturbance-free and the bounded disturbance cases, and their
effectiveness has been illustrated by some simulation experiments. It
is worth noting that the proposed algorithms does not require any
specific analytical description of the microbial growth-rates.
Moreover, they can be coupled, if such an information is desired, with
on line adaptive estimators of the specific microbial growth-rates
C20].
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