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Abstract In this paper we propose a methodology to
determine the structure of the pseudo-stoichiometric
coefficient matrix K in a mass balance-based model and
to identify its coefficients from a set of available data.
The first stage consists in estimating the number of
reactions that must be taken into account to represent
the main mass transfer within the bioreactor. This pro-
vides the dimension of K. Then we propose a method to
directly determine the structure of the matrix (i.e. mainly
its zeros and the signs of its coefficients). These methods
are illustrated with simulations of a process of lipase
production from olive oil by Candida rugosa.

Keywords Modelling Æ Nonlinear systems Æ
Bioreactors Æ Validation

Introduction and motivation

Macroscopic modelling provides simple dynamical
models which have proved of great interest in bioengi-
neering for the design of on-line algorithms for biore-
actor monitoring, control and optimisation [1, 2]. In
such works, the dynamical behaviour of a stirred tank
bioreactor is often described by the following general
macroscopic mass-balance model:

dnðtÞ
dt
¼ KrðtÞ þ vðtÞ; ð1Þ

In this model, the vector n ¼ ðn1; n2; . . . ; nnÞT is
made-up of the concentrations of the various species

inside the liquid medium. The term v(t) represents the
net balance between inflows, outflows and dilution
effects. The term K r(t) represents the biological and
biochemical conversions in the reactor (per unit of time)
according to some underlying reaction network. The (n ·
p) matrix K is a constant pseudo-stoichiometric (PS)
matrix. rðtÞ ¼ ðr1ðtÞ; r2ðtÞ; . . . ; rpðtÞÞT is a vector of
reaction rates (or conversion rates). It is supposed to
depend on the state n and on external environmental
factors such as temperature, light or pressure, etc

The PS matrix K is associated to a macroscopic
reaction network that lumps together the many intra-
cellular metabolic reactions of the various involved
microbial species. The reaction network summarises
then the main mass transfer throughout the bioreactor
by a few reactions involving mainly extracellular com-
pounds and biomasses without describing into all details
the intracellular behaviour. Each column of the matrix
corresponds to a chemical or biological reaction of the
underlying macroscopic reaction network. The coeffi-
cients kij j ¼ 1; . . . ; p are associated with the jth reac-
tion. A positive kij means that the ith species ni is a
product of the jth reaction, while a negative kij means
that ni is a substrate of the jth reaction. If kij=0 the
species ni is not involved in the jth reaction.

In this paper, we are concerned with modelling situ-
ations where the on-line concentrations ni of the involved
species are measured but the structure of the reaction
network is a priori questionable and therefore the matrix
K is partially unknown. The objective, as in [5], is to
provide guidelines to the user for the identification of the
structure of a macroscopic reaction network and the
determination of the PS matrix K from the available
data. Note that the method can also be applied to sim-
plify a known detailed intracellular metabolic network
and provide a simpler reaction network that represents
the main mass transfers throughout the system and di-
rectly connects initial substrates to final products. In such
a case the concentrations ni would result from simula-
tions of a model based on the detailed-known reaction
network and matrix K is to be found from these ‘‘data’’.
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The usual approach dedicated to the determination of
reaction networks relies on the linearisation of the
dynamics around a reference solution [9, 7] and identi-
fication of the local Jacobian matrix. This approach is
then suitable for data close to steady state. Here, in the
spirit of [6, 3], we use linear algebraic properties to
exploit the structure of the bioprocesses (Eq. 1) and our
arguments do not rely on any linearisation. As a con-
sequence we are not limited to steady state data and we
can exploit all the available measurements, even when
associated to transient states.

The problem is illustrated with the following exam-
ple.

Example: Let us consider the example of a competi-
tive growth on two substrates [12] which could represent,
for instance, the production of lipase from olive oil by
Candida rugosa. Here the microorganism is supposed to
grow on two substrates that are produced by the
hydrolysis of a primary complex organic substrate.

The following three-step reaction network has been
assumed in the literature [6]:

– Hydrolysis:

k11S1 þ E �! S2 þ k31S3 þ E

– Growth on S2:

k22S2 þ k62O �! X þ k72P

– Growth on S3:

k33S3 þ k63O �! X þ k43E þ k73P ;

where S1 is the primary substrate (olive oil, made of
several compounds, mainly triglycerides), S2 (glycerol)
and S3 (fatty acids) are the secondary substrates. E is the
enzyme (lipase), X the biomass (C. rugosa), O the dis-
solved oxygen and P the dissolved carbon dioxide.

The associated PS matrix is:

K ¼

�k11 0 0

1 �k22 0

k31 0 �k33
0 0 k43
0 1 1

0 �k62 �k63
0 k72 k73

0
BBBBBBBB@

1
CCCCCCCCA
;

with kij>0.
We shall assume that this reaction network is

unknown to the user and has to be discovered from data
of the species concentrations. Here, the data will be
simulated by a model but of course in practice the data
are obtained from experiments.

Generally, the choice of a reaction network and its
associated PS matrix K results from modelling assump-
tions. Sometimes, however, a complete description of the
reaction network is a priori not available. This can be a
consequence of a lack of phenomenological knowledge
in some of the involved mechanisms, letting a part of the

reaction network questionable. The problem can also
arise when it is desired to reduce a complicated given
reaction network to a much simpler model. This situa-
tion especially occurs for models describing wastewater
treatment processes involving a bacterial consortium
made of a broad range of bacterial species degrading a
mixture of organic substrates. For example, more than
140 bacterial species have been found [8] in an anaerobic
digestion wastewater treatment plant.

We first propose a method to determine the size of
matrix K i.e. the number of independent reactions that
are distinguishable from the available data. Then we
show how the structure of matrix K can be estimated,
using the a priori available knowledge on the process. By
structure we mean the sign and the location of the non-
zero entries of matrix K. In addition, the method can
also provide an estimate of the parameters kij if the
available knowledge is sufficient.

Determination of the number of reactions

Introduction

In this section, we intend to determine the minimum
number of reactions which are needed in order to
explain the observed behaviour of the process, without
any prior knowledge in the underlying reaction network.
We assume that the vectors n(t) of species concentrations
and v(t) of inflow/outflow balances are measured during
some time interval and exhibit significant variations with
time. We assume also that the number of measured
variables is larger than the number of reactions: n>p.
The PS matrix K and the vector of reaction/conversion
rates r(t) are unknown.

Theoretical determination of dimðImðKÞÞ

The model Eq. 1 can be viewed as a linear dynamical
system with state n and inputs r(t) and v(t) (although we
know obviously that r and v may be state dependent). If
we take the Laplace transform of this equation, we get:

sNðsÞ ¼ KRðsÞ þ V ðsÞ; ð2Þ

where N(s), R(s) and V(s) are the Laplace transforms of
n(t), r(t) and v(t) respectively. A linear filter or smoother
with transfer function G(s) can then be used in order to
clean the data (noise reduction, decrease of autocorre-
lations etc ...):

UðsÞ ¼ KW ðsÞ with UðsÞ ¼ GðsÞ½sNðsÞ � V ðsÞ�

and W(s)=G(s)R(s). Or, in the time domain:

uðtÞ ¼ KwðtÞ; ð3Þ

with u(t) and w(t) the inverse Laplace transforms of U(s)
and W(s), respectively. The vector u(t) can be computed
directly from the data by appropriate filtering/smooth-
ing techniques possibly involving delay operators.
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For example, the moving average is a very simple
filter that can be applied to Eq. 1, and provides an
expression of the form (3) with (T denotes the consid-
ered moving average window):

uðtÞ ¼ 1

T
nðtÞ � nðt � T Þ �

Z t

t�T
vðsÞds

� �
ð4Þ

and

wðtÞ ¼ 1

T

Z t

t�T
rðsÞds

� �
:

Now the question of the dimension of matrix K can
be formulated as follows: what is the dimension of the
image of K? In other words, what is the dimension of the
space where u(t) lives? Note that we assume K to be a full
rank matrix. Otherwise, it would mean that the same
dynamical behaviour could be obtained with a matrix K
of lower dimension, by defining other appropriate
reaction rates. The determination of the dimension of
the u(t) space is a classical problem in statistical analysis.
It corresponds to the principal component analysis (see
e.g. [11]) that determines the dimension of the vector
space spanned by the vectors ki which are the rows of K.
To reach this objective, we consider the n ·N matrix U
obtained from a set of N estimates of u(t):

U ¼ uðt1Þ; . . . ; uðtN Þð Þ:

We will also consider the associated matrix of reac-
tion rates, which is unknown:

W ¼ wðt1Þ; . . . ;wðtN Þð Þ:

We assume that matrix W is full rank. It means that
the reactions are independent (none of the reaction rates
can be written as a linear combination of the others). We
consider more time instants ti than state variables: N>n.

Property 1 For a matrix K of rank p, if W has full
rank, then the n · n matrix M=UUT=KWWTKT has
rank p. Since it is a symmetric matrix, it can be written:

M ¼ PTRP ;

where P is an orthogonal matrix (PTP=I) and

R ¼

r1 0 0
0 r2 0 0

..

. . .
.

rp

0
. .

. ..
.

0 0

0
BBBBBBBBB@

1
CCCCCCCCCA

with ri-1‡ri>0 for i2{2,...,p}.
Moreover, the eigenvectors associated with the ri

generate an orthonormal basis of ImK:
This property is a direct application of the singular

decomposition theorem [10] since rank ðMÞ ¼
rank ðKW Þ ¼ rank ðKÞ ¼ rank ðRÞ ¼ p:

Now from a theoretical point of view, it is clear that
the number of reactions can be determined by counting
the number of non zero singular values of UUT.

Practical implementation

In practice, the ideal case presented above is perturbed
for three main reasons:

– The reaction network that we are looking for is a first
approximation of chemical or biochemical reactions
which can be very complex. The ‘‘true’’ matrix K is
probably much larger. The reactions that are fast or of
low magnitude can be considered as perturbations of
a dominant low dimensional reaction network that we
are actually trying to estimate.

– The measurements are corrupted by noise. This noise
can be very important, especially for the measurement
of biological quantities for which reliable sensors are
not available.

– In order to compute u(t) we need a numerical imple-
mentation of the filter G(s). Moreover, an interpola-
tion is often required to estimate the values of n(ti)
and v(ti) at the same time instants ti. These processes
generate additional perturbations.

Data normalisation

In order to avoid conditioning problems and to give the
same weighting to all the variables, the data vectors u(ti)
are normalised as follows:

~uiðtjÞ ¼
uiðtjÞ � aðuiÞffiffiffiffi

N
p

sðuiÞ

where a(ui) is the average value of the ui(tk) for k 2
f1::Ng; and s(ui) their standard deviation.

Practical determination of the number of reactions

In practice, for the reasons we have mentioned above, it
is well known that there are no zero eigenvalues for the
matrix M=UUT.

The question is then to determine the number of
eigenvectors that must be taken into account in order to
produce a reasonable approximation of the data u(t). To
answer that question, let us remark that the eigenvalues
ri of M correspond to the variance associated with the
corresponding eigenvector (inertia axis) [11].

The method then consists in selecting the p first
principal axis which represent a total variance larger
than a fixed confidence threshold.

For instance, in the next example, we will consider a
threshold (depending on the information available on
noise measurements) at 95% of the variance. This leads
to the selection of three axis, and therefore p=3.

Remark: If rank(M)=n it means that rank(K)‡ n. In
such a case we cannot estimate p and measurements of
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additional variables are requested in order to apply the
method presented here.

Example: competitive growth on two substrates

We come back to the example which has been introduced
above. Consistently with Eq. 1, the model for the state

n ¼ ðS1; S2; S3;E;X ; 0; PÞt

involving three main reactions can thus be written:

dn
dt
¼ K

r1
r2
r3

0
@

1
Aþ vðtÞ;

where

vðtÞ ¼ Dðnin � nÞ � QðnÞ;

with nin ¼ ðS1in; S2in; S3in; 0; 0; 0; 0Þt the vector of influent
concentrations and QðnÞ ¼ ð0; 0; 0; 0; 0; qO2ðOÞ;
qCO2ðPÞÞt the vector of gaseous flow rates.

The matrix K was chosen as follows:

K ¼

�3 0 0
1 �5 0
0:3 0 �0:5
0 0 0:2
0 1 1
0 �2 �1
0 0:3 1:5

0
BBBBBBBB@

1
CCCCCCCCA
:

For the simulation purpose, we assume that the
kinetics of the three reactions are given by the following
expressions. They have not been selected on a realistic
basis, but more in order to illustrate our approach on a
broad variety of kinetics:

r1ðS1;EÞ ¼ c0
S1

S1 þ c8

E
E þ c9

X ;

r2ðS2;O;X Þ ¼ c1
S2

S2 þ c2

O

Oþ c3
X ;

r3ðS2; S3;OÞ ¼ c4
S3

ðS3 þ c5ÞðS2 þ c6Þ
O2

O2 þ c7
X :

The transfer between liquid and gaseous phase is
represented by the classical Henry’s law:

qCO2ðPÞ ¼ c10ðP � c11Þ and qO2ðOÞ ¼ c12ðO� c13Þ

The values of the coefficients ci can be found in Table 1.
A 30-day run of the model has been performed using

the initial conditions provided in Table 2. The collected
data have been corrupted with a white noise of high
magnitude (30% of the standard deviation of each
component) and sampled. Finally 380 data points are
available.

The data (after sampling) are presented in Fig. 2.
The state variables S2, S3, E, X, P, O and of the gas-
eous flow rates qO2

and qCO2
have been measured. We

assume here that the state variable S1 was not recorded
in order to illustrate the fact that our approach is
applicable even if the full set of state variables is not
available for measurement. Moreover, the dilution rate
and the substrate inflow rate (see Fig. 1) have been
selected in order to guarantee that the system is suffi-
ciently excited and therefore that the recorded signals
will have a sufficiently informative content to expect
good identification results.

The vectors u(ti) are then computed by applying a
simple moving average from these data and subse-
quently normalised as explained before. Finally, the
eigenvectors of UUT are computed.

Figure 3 represents the cumulated variance associ-
ated with the number of considered inertia axis. For
instance, we can see that two reactions are sufficient to
explain 82% of the observed variance. Since three
reactions explain 95% of the total variance, it seems
reasonable in this example to use three reactions for the
model.

The reader is referred to [4] for an application to real
data, for growth and vanillin production by cultures of
the fungus Pycnoporus cinnabarinus in bioreactors.

Estimation of the PS matrix K

Since we have a value for the number of involved reac-
tions, we are in a position to start the estimation of the
(totally or partially) unknown matrix K.

Table 1 Parameters values

Parameter Value Unit

c0 0.5 g l�1day�1

c1 3 day�1

c2 1 g l�1

c3 0.2 g l�1

c4 20 g�1 day�1 l�1

c5 1 g l�1

c6 0.2 g l�1

c7 2 g2 l�2

c8 2 g l�1

c9 0.2 g l�1

c10 5 day�1

c11 15 g l�1

c12 5 day�1

c13 0.5 g l�1

Table 2 Initial conditions used for the simulation

Initial condition Value Unit

S1(0) 10 g l�1

S2(0) 0 g l�1

S3(0) 5 g l�1

E(0) 5 g l�1

X(0) 15 g l�1

O(0) 0 g l�1

P(0) 0 g l�1
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Determination of ImK

Let us use Property 1 which states that ImK is spanned
by the eigenvectors qi associated with the non zero
eigenvalues of UUT. Now, from the experimental data
collected through the matrix UUT we get p eigenvectors
qi that span K. It means that each column ki of K is a
linear combination of the qi. In other terms, there exists
a p · p matrix G such that

K ¼ qG;

where, the columns of matrix q are the eigenvectors qj.
In other words, the family of possible PS matrices K is
parameterised by G.

Remark: In general, since the reaction rates are
unknown, matrix G (and therefore matrix K) is not
identifiable: this can be easily understood on a very
simple example. If r1(n) and r2(n) are two reaction rates,
the term K r(n) can be written:

KrðnÞ ¼ k1r1ðnÞ þ k2r2ðnÞ
¼ k1þk2

2 ðr1ðnÞ þ r2ðnÞÞ þ k1�k2
2 ðr1ðnÞ � r2ðnÞÞ:

And, therefore, both matrices K=[k1 k2] and
~K ¼ ½k1þk2

2
k1�k2

2 � can produce the same result. The reac-
tion rates associated with the second matrix are then:
~r1ðnÞ ¼ r1ðnÞ þ r2ðnÞ and ~r2ðnÞ ¼ r1ðnÞ � r2ðnÞ:

Additional hypotheses

In order to make matrix G (and K) uniquely identifiable,
we need to introduce additional structural constraints.
At this stage, all the a priori knowledge on the reaction
network should be considered to improve the estimation
process.

Normalisation

First, we shall impose (without loss of generality) that
each reaction rate is normalised with respect to one

species, and therefore that each column of matrix K
contains one +1 or one �1. This induces obviously
additional constraints on the possible matrices G. Note
that sometimes we may not know the sign of the ele-
ment: the two possible cases must then be considered.

Physical assumptions

One can impose the conservation of elementary mass
balances. For example if one wants the carbon to be
conserved in the model, if ci is the carbon content of one
unit of the state ni, it means that we should have for each
of the p reactions ðj 2 f1; . . . ; pgÞ :

Xn

i¼1
cikij ¼ 0: ð5Þ

Note however, that for macroscopic mass balance
where the state variables represent a collection of
compounds, the carbon content of the variable can be
undetermined. However, it can be bounded: c�i �
ci � cþi : Then Eq. 5 becomes an inequality.

An inequality can also be obtained if we assume that
some of the products are not measured, for example if
we have a loss of carbon through unmeasured products,
we get:

Xn

i¼1
cikij � 0:

Biological and biochemical assumptions

When additional constraints are still necessary, we use
biochemical assumptions.

When only a subset of the components are present in
the reaction at the initial time, the production of new
components with consumption or not of substrates is an
indicator of the variables that are necessary for the
reaction. It is clear, for example, that the first reaction
will involve only the substrates which were present at the
beginning of the fermentation.

We can, for example, deduce from this analysis that a
specific component is not involved in one of the p
reactions and therefore impose a zero in matrix K.

Other assumptions

One can also try to find a matrix K involving the mini-
mum number of components in each reaction (i.e. con-
taining the maximum number of zeros). If these
hypotheses are not sufficient, several matrices K can then
be identified, parameterised by some parameter, and
their biochemical meaning must then be assessed.

Validation

The main result provided by the previous analysis is the
determination of the variables which are substrates or
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Fig. 3 Total variance explained with respect to the number of
reactions for the production of lipase from olive oil by C. rugosa
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products in the reactions or, in other words, the
obtained signs of the entries of K. Another expected
result can be the determination of the variables which
are not involved in a reaction, corresponding to zero
elements in the matrix K. However, it is actually very
unlikely that the analysis will provide estimates of the
elements of K which are exactly zero. The idea consist
then in replacing the very small elements by zeros, and to
validate the corresponding reaction network using the
techniques presented in [3, 4]. These methods are based
on the five following steps (see [4] for more details):

1. Determination of the vectors which are in the left
Kernel of K, i.e. the vectors k2Rn such that:

ktK ¼ 0: ð6Þ

2. Determination of the associated regression, which is
directly deduced by left multiplying Eq. 3 by kt.
Using Eq. 6 it gives:
X

kiuiðtÞ ¼ 0: ð7Þ

3. Verification that the ui(t) involved in Eq. 7 are not
related by any other linear relation associated to
another left Kernel vector k (soundness of k).

4. Computation of the ui(t) from the available data and
test of the significance of regression 7.

5. Test of the positivity of the PS coefficients identified
in the previous step.

This validation procedure will be illustrated in the
example study.

Example (continued)

Statement of the problem and considered data

We shall now illustrate the proposed approach with the
simulation study of lipase production from olive oil.
From the previous study of the number of reactions, we
know that three reactions should be considered.

We assume here that the first reaction is known, and
therefore we only focus on the two other reactions. We
are thus in the process of estimating the submatrix �K
extracted from K by removing the first line and the first
column.

A set of noisy data of the state variables S2, S3, E, X,
P, O and of the gaseous flow rates qO2

and qCO2
is

produced by simulation as described in Sect. 2. The goal
is to determine the 6 · 2 matrix �K from this data set.
More specifically, a question that we want to address is
to determine, from the data, which of the two reactions
produces the enzyme E.

Estimation of �K

Now, using a moving average, we can compute the
quantities Ui associated with the six state variables. Next
we compute the matrix M=UTU. The eigenvectors qi

associated with the two largest eigenvalues are then the
basis of ImK: Since G is a 2 · 2 matrix, the columns �k1
and �k2 of �K can be written:

�k1 ¼ a11q1 þ a12q2 and �k2 ¼ a21q1 þ a22q2 ð8Þ

Now we proceed in two successive steps:

1. Normalisation. The PS coefficients associated with
the biomass growth are normalised : �k41 ¼ 1 and
�k42 ¼ 1. We get then:

�k41 ¼ 1 ¼ a11q41 þ a12q42
�k42 ¼ 1 ¼ a21q41 þ a22q42

ð9Þ

Using Eqs. 8 and 9 with the obtained values of q1 and
q2, we can now write matrix �K parametrised by a11

and a22 as follows:

�K ¼

�1:42a11 � 2:65 �1:2a22 þ 1:12

0:2a11 � 0:13 0:17a22 � 0:67

�0:08a11 þ 0:062 �0:071a22 þ 0:28

1 1

�0:19a11 � 1:2 �0:16a22 � 0:72

�0:53a11 þ 0:51 �0:45a22 þ 1:93

0
BBBBBBB@

1
CCCCCCCA
:

2. Biological hypotheses. Now to determine uniquely
matrix �K two additional assumptions must be intro-
duced.

Hypothesis: A reaction still takes place when only S2

[resp. S3] is present at the initial time, and no S3 [resp. S2]
is produced.

In other words this means that S2 is the only sub-
strate of one reaction and that S3 is the only substrate of
the other one. Thus, we will impose �k12 ¼ 0 and �k21 ¼ 0:

These additional constraints allows us to compute a11

(0.621) and a22 (0.93).
Finally, we end up with an estimate of matrix �K (see

Table 3). It is worth noting that the identified matrix �K
is close to the true one. The value of the (theoretically
zero) coefficient �k13 is 0.01 which can be neglected with
respect to the other coefficients of �K: Hence, the
unknown part of the structure of matrix �K has been
recognised. Moreover, the estimates of the non-zero
entries of the matrix �K are quite accurate.

Validation

Here we will validate the identified structure for K with
respect to the available data. As it was shown in the
previous step, the following structure for matrix K has
been identified:

�K ¼

��k11 0
0 ��k22
0 �k32
1 1
��k51 ��k52
�k61 �k62

0
BBBBBB@

1
CCCCCCA
:
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Now the kernel of KT is spanned by the following
four vectors:

�k1 ¼

0
�k32
�k22
1

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA
; �k2 ¼

�k52��k51
�k11
0

0

�k52
1

0

0
BBBBBBBBB@

1
CCCCCCCCCA

;

�k3 ¼

� �k32
�k11
0

1

��k32
0

0

0
BBBBBBBB@

1
CCCCCCCCA
; �k4 ¼

�k61��k62
�k11
0

0

��k62
0

1

0
BBBBBBBB@

1
CCCCCCCCA

The associated regressions are the following:

R1 :
�k32
�k22

u3ðtÞ þ u4ðtÞ ¼ 0;

R2 :
�k52��k51

�k11
u2ðtÞ þ �k52u5ðtÞ þ u6ðtÞ ¼ 0;

R3 : � �k32
�k11

u2ðtÞ þ u4ðtÞ � �k32u5ðtÞ ¼ 0;

R4 :
�k61��k62

�k11
u2ðtÞ � �k62u5ðtÞ þ u7ðtÞ ¼ 0:

ð10Þ

Note that these regressions are sound [4] in the sense
that they do not involve a set of components that are
related together by another linear relationship.

The numerical results obtained from the considered
regressions are presented in Table 4. It results that all
the regressions 10 are highly significant, showing that
the estimated reaction network is validated.

Moreover, the following quantities are estimated in
Table 4:

�k32
�k22

;
�k52 � �k51

�k11
; �k52;

�k32
�k11

; �k32;
�k61 � �k62

�k11
; �k62

� �

It is easy to compute the values of �k11 to �k62 from this
set, leading to the estimate of matrix �K proposed in
Table 3. The final step consists in verifying that the
estimates of the PS coefficients are all positive. This
concludes the validation procedure.

Conclusion

Determining a macroscopic reaction network for a
bioprocesses is a difficult issue mainly because of the
complexity inherent to biological systems. This problem
is fundamentally ill stated since the PS matrix K is
generally not identifiable from a data set. We show in
this paper how to identify the space generated by the
columns of K and how to add constraints in order to
determine a unique (or a set of) matrix K.

Through the studied example, we have demonstrated
that the proposed method can accurately estimate the
values of the PS coefficients in spite of noises due to
measurements and low sampling frequency.

It is worth noting that this approach does not nec-
essarily require the availability of all the state variables
ni measurements. Of course, if the measurement of the
ith biochemical component ni is not available the ith line
of matrix K cannot be determined by the method.

Acknowledgements This work has been carried out with the sup-
port provided by the European commission, Information Society
Technologies programme, Key action I Systems & Services for the
Citizen, contract TELEMAC number IST-2000-28256. It also
presents research results of the Belgian Programme on Inter-Uni-
versity Poles of Attraction initiated by the Belgian State, Prime
Minister’s office for Science, Technology and Culture. The scientific
responsibility rests with its authors.

References

1. Bastin G, Dochain D (1990) On-line estimation and adaptive
control of bioreactors. Elsevier, Amsterdam

2. Bastin G, VanImpe JF (1995) Nonlinear and adaptive control
in biotechnology: a tutorial. Eur. J. Control 1(1):1–37

3. Bernard O, Bastin G (1998) Structural identification of non-
linear mathematical models for bioprocesses. In: Proceedings of
the Nonlinear Control Systems Symposium, Enschede, pp 449–
454

4. Bernard O, Bastin G (2005) On the estimation of the pseudo-
stoichiometric matrix for mass balance modeling of biotech-
nological processes. Math Biosci 193:51–77

5. Bogaerts P, Vande Wouwer A (2001) Sytematic generation of
identifiable macroscopic reaction schemes. In: Proceedings of
the 8th IFAC Conference on Computer Applications in Bio-
technology (CAB8), Montréal
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