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Abstract

In this paper we propose a methodology to determine the structure of the pseudo-stoichiometric coeffi-
cient matrix j in a macroscopic mass balance based model. The first step consists in estimating the minimal
number of reactions that must be taken into account to represent the main mass transfer within the biore-
actor. This provides the dimension of j. Then we discuss the identifiability of the components of j and we
propose a method to estimate their values. Finally we present a method to select among a set of possible
macroscopic reaction networks those which are in agreement with the available measurements. These meth-
ods are illustrated with three examples: real data of the growth and biotransformation of the filamentous
fungi Pycnoporus cinnabarinus, real data of an anaerobic digester involving a bacterial consortium degrad-
ing a mixture of organic substrates and a process of lipase production from olive oil by Candida rugosa.
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Nomenclature

ai yield coefficients for substrate
bi yield coefficients for product
ca vector of all the state variables
cain vector of influent concentrations
cm vector of measured variables
cmin vector of influent concentrations
cu vector of unmeasured variables
d(k) number of components in k
du(k) number of unknown components in k
d vector of external environmental factors
D dilution rate
E enzyme
K pseudo-stoichiometric matrix
kij entries of matrix K
nr number of reactions in the reaction network
nm number of measured variables
na number of state variables
P product
Q vector of gaseous flow rates
r(ca,d) vector of reaction rates
S substrate
X biomass
k left kernel vector of K
Q vector of gaseous flow rates
j pseudo-stoichiometric matrix
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1. Introduction and motivation

For a long time the macroscopic perspective of modelling of biotechnological processes has
proved to be efficient for solving many bioengineering problems [1,2]. In this perspective the total
cell mass in the reactor is considered as a �black-box� (see e.g. [3, Chapter 4]) for the conversion of
initial substrates into final products. The transformations are described by a small set of macro-
scopic (overall) reactions that lump together the many intracellular metabolic reactions of the var-
ious involved microbial species. Such macroscopic reaction networks represent the main mass
transfers throughout the system and directly connect initial substrates to final products without
describing the intracellular behaviour. On this basis, dynamical mass balance models can then
be established. They rely on the category of the so-called �unstructured� models in the standard
terminology reported e.g. in [4]. The goal of macroscopic modelling is clearly to derive simple
dynamical models which have proved of great interest in bioengineering for the design of on-line
algorithms for process monitoring, control and optimisation [2,5].
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This paper clearly relies on this macroscopic perspective and our goal is to describe an ap-
proach for the determination of the minimal number of macroscopic reactions that should be in-
volved in a mass balanced model in order to ensure constant pseudo-stoichiometric coefficients
and to represent the main mass transfers within the system.

To motivate our objectives, let us consider a simple biotechnological process which could be
represented by the simplest reaction network made of a single overall reaction:
XnS

i¼1

aiSi ! X þ
XnP
i¼1

biP i;
where Si, Pj denote the substrates and products, X is the total biomass (possibly made of multiple
microbial species) and ai, bi are the pseudo-stoichiometric coefficients. In this case, as explained in
[3], the pseudo-stoichiometric coefficients ai and bi are exactly the yield coefficients that can be di-
rectly computed from experimental data.

The main problem with a single overall reaction is obviously that it is often not able to de-
scribe accurately the process all along a transient operation with the same constant yield coef-
ficients. A classical and efficient way to overcome this difficulty, without relying on complicated
intracellular metabolic descriptions is to consider a network of some macroscopic reactions
which involve only the initial substrates and the final products (without the intracellular spe-
cies) but which are able to describe the process accurately with constant stoichiometric
coefficients.

Whenever more than one macroscopic reaction are considered it should be emphasised that
there is no longer an equivalence between the yield coefficients and the pseudo-stoichiometric
coefficients.

We are thus interested in macroscopic reaction networks achieving a tradeoff between simplicity
for process monitoring and control applications, and accuracy in order to match available exper-
imental data.

In many applications, especially for cultures involving only a single or a few microbial species,
it is clear that a detailed description of the metabolic and biosynthetic pathways may be available.
In such a case, a macroscopic reaction network may be simply obtained by network reduction, i.e.
by lumping or aggregating elementary metabolic reactions together (for instance by using the
technique of �elementary flux modes� as described in [6]). It must however be noticed that the
lumping of reactions corresponding to competing pathways may induce the appearance of pseu-
do-stoichiometric coefficients that are a priori unspecified and have to be calibrated from the
experimental data. Hence the issue of the pseudo-stoichiometric parameter estimation that we ad-
dress in this paper may be a relevant issue even in the case where the metabolism is perfectly
known.

The following simple illustration clarifies this point. Consider a culture of E. coli with anaerobic
production of both lactate (L) and acetate (A) from glucose (G). It is obvious that there are two
metabolic pathways that can be summarised by the two following reactions (stoichiometry in
moles):
G ! 2L;

G ! 3A:
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These two reactions have perfectly known stoichiometric coefficients (2 and 3). Suppose now that
these two reactions are aggregated into a single reaction. It is clear that any lumped reaction of the
form:
G ! 2aLþ 3ð1� aÞA

is valid for any value 0 6 a 6 1. In fact a represents the fraction of glucose going through the first
pathway and (1 � a) the fraction going through the second pathway. The parameter a can be
interpreted as a pseudo-stoichiometric coefficient which is a priori unspecified but can be cali-
brated from the data if measurements of the three species (G,L,A) in the culture medium are
available. For instance, from the data reported in [7] with strain TC4 growing in anaerobic con-
ditions we have a = 0.82.

Depending on the assumptions made to lump the metabolic pathways, several macroscopic net-
works can be obtained. For example some pathways may or may not be neglected leading to dif-
ferent macroscopic reaction networks. In the previous simple example this would correspond e.g.
to choosing a = 1 and thus neglecting the acetate production. In Section 4.2 we present a more
complicated example where 3 possible lumped networks are a priori considered for the aerobic
growth of the fungus Pycnoporus cinnabarinus.

It is worth noting that proposing a reduced macroscopic reaction network can be very difficult
for some complex cases. For instance anaerobic wastewater treatment bioreactors involve more
than 140 coexisting microbial species [8] and many different complex substrates whose proportion
varies with time.

Once the nr macroscopic reactions have been assumed involving na biological or chemical spe-
cies (microorganisms, substrates, metabolites, enzymes. . .), the dynamical behaviour of the stirred
tank bioreactor can be described by a general mass-balance model of the following form (see e.g.
[2]):
dca
dt

¼ jrðca; dÞ þ Dðcain � caÞ � Qðca; dÞ: ð1Þ
In this model, the vector ca ¼ ðca1; ca2; . . . ; canaÞ
T is made-up of the concentrations of the various

species inside the liquid medium. The term cain represents the influent concentrations. The matrix
D is the dilution rate matrix representing the hydraulics mechanisms (inflows and outflows and
possible retention) associated with the various species in the reactor. The exchange of matter in
gaseous form between the surrounding and the reaction medium is represented by the gaseous
flow rate Qðca; dÞ.

The term jr(ca,d) represents the biological and biochemical conversions in the reactor (per unit
of time) according to the underlying macroscopic reaction network. The (na · nr) matrix j is a
constant pseudo-stoichiometric coefficient matrix. The term rðca; dÞ ¼ ðr1ðca; dÞ; r2ðca; dÞ; . . . ;
rnrðca; dÞÞ

T is a vector of reaction rates (or conversion rates). Qðca; dÞ and r(ca,d) are supposed
to depend on the state ca and on external environmental factors (represented by d) such as tem-
perature, light, aeration rate, etc.

Matrix j is associated with the assumed macroscopic reaction network and plays a key role in
the mass balance modelling. Each line of the matrix corresponds to one (bio)chemical species in-
volved in the process. Each column of the matrix corresponds to a (bio) chemical reaction between
some of the species. A positive entry kij means that the ith species is a product of the jth reaction
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while a negative entry kij means that it is a reactant or a substrate of the reaction. If kij = 0, the ith
species is not involved in the jth reaction.

The objective of this paper is to propose a method to guide the user in the identification of the
entries of pseudo-stoichiometric matrix j. It is worth noting that the determination of matrix j is
a problem equivalent to that of determining the structure of the reaction network. The usual ap-
proach dedicated to the determination of reaction networks relies on the linearisation of the
dynamics around a reference solution [9,10]. Here, in the spirit of [11,12], we use linear algebraic
properties to exploit the structure of the system (Eq. (1)) and our arguments are not based on any
linearisation. As a consequence we are not limited to steady state data and we can exploit all the
available measurements, even when associated to transient states.

We will show how to use a set of available data consisting of measurements of ca, Q, D and cain
at sampling instants, to determine the size of the matrix j (i.e. the number of reactions that must
be taken into account) and to address the problem of the identification and validation of its
coefficients.

Note that it is quite rare for bioprocesses that all the involved variables are measured (some-
times it is even unclear which variables are involved). For this reason we will focus on the estima-
tion of K the submatrix of j associated with the available measurements cm.

We stress the fact that the methodology that we discuss is the first modelling stage. The second
stage in the modelling, which is not discussed here, would consist in determining the reaction rates
as functions of the state variables. This second problem is difficult and suffers as well from a lack
of tools to assist the modeller. But this delicate step can be avoided for a large number of appli-
cations, where the knowledge of the mass balance (i.e. matrix j) is sufficient to design controllers
or observers [2].

The paper will address the three following problems:

• How many reactions (i.e. how many columns for matrix j) must be taken into account to
reproduce the available data set?

• Which reactions must be taken into account? Which are the most plausible macroscopic reac-
tion networks?

• What are the values of the pseudo-stoichiometric coefficients?

We will successively consider these three problems, without any a priori knowledge on the reac-
tion rates r(ca,d). The approaches will be illustrated with three examples of significant complexity:
real data of the growth and biotransformation of the filamentous fungi Pycnoporus cinnabarinus,
real data of an anaerobic digester involving a bacterial consortium degrading a mixture of organic
substrates and a process of lipase production from olive oil by Candida rugosa.
2. Determination of the minimum number of reactions

2.1. Statement of the problem

In this section, we address the first problem, consisting in determining nr the minimum number
of reactions to explain the observed dynamics of the fermenter. We assume that we measure a sub-



56 O. Bernard, G. Bastin / Mathematical Biosciences 193 (2005) 51–77
set cm of nm components of ca that are involved in the system (i.e. which present significant vari-
ations along time). Indeed the measurements of the other state components (denoted cu) may not
be available, but we assume however that we measure more variables than the number of reac-
tions: nm > nr. If these components have a gaseous phase, we assume that the associated gaseous
flow rates Q(cm,cu,d) are measured.

The equation associated with cm is thus:
dcm
dt

¼ Krðcm; cu; dÞ þ Dðcmin � cmÞ � Qðcm; cu; dÞ: ð2Þ
The matrices K and Q are submatrices of j and Q, respectively, associated with cm. Note now that
K is a rectangular matrix with more rows than columns. In the expression of the mass balance
model (2), only the term Kr(cm,cu,d) needs to be mathematically expressed.

2.2. Theoretical determination of dim(Im(K))

Let us integrate Eq. (2) between 2 time instants t�T and t (T denotes the considered time
window):
cmðtÞ � cmðt � T Þ �
Z t

t�T
DsðcminðsÞ � cmðsÞÞ þ QðcmðsÞ; dðsÞÞds ¼ K

Z t

t�T
rðcaðsÞ;dðsÞÞds:

ð3Þ

Let us denote:
umðtÞ ¼ cmðtÞ � cmðt � T Þ �
Z t

t�T
DsðcminðsÞ � cmðsÞÞ þ QðcmðsÞ; dðsÞÞds; ð4Þ
and
wrðtÞ ¼
Z t

t�T
rðcaðsÞ; dðsÞÞds:
Eq. (3) can then be rewritten:
umðtÞ ¼ KwrðtÞ: ð5Þ

The vector um(t) can be estimated along time from the available measurements. The value of the
integral in (4) can be computed e.g. with a trapeze approximation.

In order to improve the cleaning of the data (noise reduction and diminution of autocorrela-
tion) it may be useful to apply any linear scalar filter (i.e. any combination of integration, differ-
entiation and delay h) to Eq. (2) leading to a linear relationship of the same type as (5):
uðtÞ ¼ KwðtÞ; ð6Þ

where u(t) and w(t) denote respectively the signal derived from um(t) and wr(t) after filtering. The
moving average (3) that we have presented for sake of simplicity is of course only one example of
such a filtering.

Now the question of the dimension of matrix K can be formulated as the determination of the
dimension of the image of K or in other words, of the dimension of the space where u(t) lives. Note
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that we assume K to be a full rank matrix. Otherwise, it would mean that the same dynamical
behaviour for u(t) could be obtained with a matrix K of lower dimension.

Determining the dimension of the u(t) space is a classical problem in statistical analysis. It can
be solved by a principal component analysis (see e.g. [13]) that determines the dimension of the
vector space spanned by the vectors ki, rows of K. In order to reach this objective, we consider
N time instants t1, . . . , tN (we choose N > nm). The way to select these time instants will be dis-
cussed in the sequel. We build then the nm · N matrix U made of N vectors u(t) at these time
instants:
U ¼ ðuðt1Þ; . . . ; uðtNÞÞ:
We will also consider the associated matrix of reaction rates, which is unknown:
W ¼ ðwðt1Þ; . . . ;wðtNÞÞ:

We assume that matrix W has full rank. It means that the reactions are independent (none of the
reaction rates can be written as a linear combination of the others).

Property 1. For a matrix K of rank nr, if W has full rank, then the nm · nm matrix
M = UUT = KWWTKT has rank nr. Since it is a symmetric matrix, it can be written:
M ¼ PTRP ;
where P is an orthogonal matrix (PTP = I) and
R ¼

r1 0 . . . 0

0 r2 0 0

..

. . .
.

rnr

0

. .
. ..

.

0 . . . 0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
;

with ri�1 P ri > 0 for i 2 {2, . . . ,nr}.

This property is a direct application of the singular decomposition theorem [14]. Since rank (M) =
rank (KW) = rank (K) = rank(R) = nr, it provides the result.

Now from a theoretical point of view it is possible to determine the number of reactions in the
macroscopic reaction network: it corresponds to the number of non-zero singular values of UUT.
This theoretical approach must however be adapted in the real case where the available measure-
ments are discrete data points perturbed by a noise.

2.3. Practical determination of the number of reactions

In the reality, the ideal case presented in the previous paragraph is perturbed for four main
reasons:
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• The macroscopic reaction network that we are looking for results from lumping of chemical or
biochemical reactions which can be very complex. The �true� matrix K is probably a very large
matrix. The reactions which are fast or of low magnitude can be considered as perturbations of
a dominant reaction network. It is this central (perturbed) macroscopic reaction network that
we want to estimate.

• The measurements are corrupted by noise. This noise can be very important, especially for the
measurement of biological quantities for which reliable sensors are rarely available.

• The measurements are performed on a discrete basis. Moreover they are rarely all available
exactly at the same time instant ti, and therefore they must be interpolated if we need a state
estimate cm(ti) at N time instants ti in order to build vector U.

• In order to estimate u(t) in Eq. (4) we need to compute the approximate value of an integral.
This may generate additional perturbations.

2.3.1. Data processing: interpolation and smoothing
The data collected on a biotechnological process often result from various sampling strategies

carried out with various devices. As a consequence the data are seldom sampled simultaneously.
In order to apply the proposed transformations vector U has to be computed with values of the
state variables at the same time instants ti. A large number of tools are available in the literature to
interpolate and smooth the data. We suggest here to use spline functions [15] which will at the
same time interpolate and smooth a signal. The trade-off between interpolation and smoothing
can be chosen by the user.

In the sequel we assume therefore that the set of measurements is available at the (irregular)
time instants sj (depending on the variable), and that after a smoothing and interpolation process
all the variable estimates are available at the time instants ti.

We hypothesise that the estimates cm(ti) are of reasonably good quality and in particular that
the sampling frequency is in adequation with the time constants of the process.

2.3.2. Data normalisation
To avoid conditioning problems and to give the same weighting to all the state variables, we

normalise each component ui of the vector u as follows:
~uiðtjÞ ¼
uiðtjÞ � aðuiÞffiffiffiffi

N
p

sðuiÞ
;

where a(ui) is the average value of the ui(tk) for k 2 {1, . . .,N}, and s(ui) their standard deviation.
2.3.3. Conclusion for the determination of the minimal number of reactions
In the reality, the noises due to model approximations, measurement errors or interpolation

perturb the analysis. Therefore in practice there are no zero eigenvalues for the matrix M = UUT.
The question is then to determine the number of eigenvectors that must be taken into account

in order to represent a reasonable approximation of the data u(t). To solve this problem, let us
remark that the eigenvalues ri of M correspond to the variance associated with the corresponding
eigenvector (inertia axis) [13].
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The method will then consist in selecting the nr first principal axis which represent a total var-
iance larger than a fixed threshold.

For instance, in the next example, we have fixed a threshold (depending on the information
available on noise measurements) at 95% of the variance. This led to the selection of 6 axes,
and therefore nr = 5.

Remark 1. If rank (M) = nm it means that rank (W) P nm. In such a case we cannot estimate nr
and measurements of additional variables are requested to apply the proposed method.

Finally, Fig. 1 summarises the full procedure to compute the minimal number of reactions that
are to be considered in order to reproduce an experimental data set.

2.4. Example 1: vanillin production by the filamentous fungi Pycnoporus cinnabarinus

We consider here the production of vanillin from vanillic acid by the filamentous fungus Pyc-
noporus cinnabarinus [16]. The species involved in this biotransformation process are the carbon
sources (maltose and glucose), the nitrogen source (ammonium), oxygen, carbon dioxide, fungal
biomass and phenolic compounds (vanillic acid, vanillin, vanillic alcohol and methoxyhydroqui-
none). This results from a complicated set of reactions [17], most of them being ill known.

The process generally proceeds in two steps. In a first step (which generally lasts the first
3 days), the fungus uses the available substrates (nitrogen, maltose and glucose) to grow. The
growth is aerobic, and therefore oxygen is consumed and CO2 produced.

In a second step, the biosynthesis is triggered with addition of cellobiose 2 h before continuous
addition of vanillic acid. Then the fungus transforms the vanillic acid either in methoxyhydroqui-
none, or in vanillin. In this last case, vanillin can also be degraded into vanillic alcohol.
mc

cm
u    compute       for all the

mcavailable measurements

and compute 

apply a filtering procedure to u

u

compute matrix U from

 the        at several time instantsu(t)

 and determine the reactions number

compute the singular values of U

Fig. 1. Scheme of the procedure to compute the minimal number of reactions that are to be considered in order to
reproduce an experimental data set.
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For illustration purpose, Fig. 2 presents the typical evolution of some of the key variables dur-
ing the fermentation. The figure presents also the splines used to smooth and interpolate the data
in order to build the vector u(t) made of the 10 measured species. The data set consists in 9 exper-
iments which have been resampled to get 4 time instant ti per day. Finally, 619 data points u(ti)
were considered.

Fig. 3 represents the cumulated variance associated with the number of reactions. Four reac-
tions are sufficient to explain 80% of the observed variance. Five reactions explain 95% of the total
variance. This analysis motivated the structure of the model presented in [18].

2.5. Example 2: an anaerobic digestion process for wastewater treatment

In this second example we study a more complicated case where the biotechnological process is
an anaerobic digester used for wastewater treatment [1]. The anaerobic process involves a complex
consortium of bacteria degrading a mixture of substrates. Fig. 4 presents a schematic overview of
the degradation pathway from the set of macromolecules (proteins, carbohydrates, lipids, etc.,. . .)
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Fig. 4. Schematic overview of the anaerobic digestion reaction network.
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up to methane, carbon dioxide and hydrogen. Obviously this general overview lumps together a
large number of simpler reactions involving single substrates. It turns out that more than 140 bac-
terial species can be found in the considered anaerobic digester [8].

The considered process for experimental data generation is a pilot-scale up-flow anaerobic fixed
bed reactor processing raw industrial distillery wastewater [19]. The experimental results [20] were
obtained for a period of 70 days over a wide range of experimental conditions (see Fig. 7). The
available daily measurements consist in organic carbon measured by the so-called soluble chem-
ical oxygen demand (COD), the total volatile fatty acids (VFA) the volatile suspended solids
(VSS), the total alkalinity and the dissolved inorganic carbon. The data set also contains a series
of measurements of CH4 and CO2 flow rates.

The proposed method was applied to the available data set, including periods of biomass inhi-
bition by an excess of VFA [20]. The obtained variance distribution is represented in Fig. 5. It is
worth noting that despite the apparent complexity of the process, a reaction network involving
only 1 reaction (and thus one biomass) represents 83.2% of the variability. With 2 reactions,
97.8% of the variability are represented, which justified the choice of the very simple model pre-
sented in [20].



Fig. 5. Cumulated variance with respect to the number of reactions for 70 days of experiments (see [20]) on an
anaerobic digester.
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3. Validation of a macroscopic reaction network

3.1. Statement of the problem

In the previous section we have shown how to determine the number of reactions which must be
considered in order to explain the available data. Let us now assume that a plausible reaction net-
work, with this number of reactions, is postulated with the aim of describing the process. In this
section, we shall now show how such a candidate reaction network can be validated from the data.

One additional difficulty in comparing a reaction network, via its stoichiometric matrix K, with
a set of data is that some pseudo-stoichiometric coefficients may be a priori unknown. We shall
propose a method which will allow at the same time to test the validity of the macroscopic reac-
tion network and to identify the missing pseudo-stoichiometric coefficients.

3.2. Finding the left kernel of the pseudo-stoichiometric matrix

Let us consider a vector k 2 Ker KT:
kTK ¼ 0:
Assume moreover that k is normalised such that one of its components ki is 1: ki0 ¼ 1
Now let us consider the scalar quantity kTu(t). From Eq. (5), it satisfies at any time t:
kTuðtÞ ¼ 0:
In other words, we have:
ui0ðtÞ ¼ �
X
j6¼i0

kjujðtÞ: ð7Þ
This means that the uj are linked by a linear relation. The immediate idea that one can have is to
check whether relationship (7) is in adequation with the data. This can be done by performing a
linear regression between ui0 and the uj.
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Nevertheless, we have to keep in mind that the uj are a priori not independent, since they may be
related by other relationships associated with other left kernel vectors of K. In particular, we have
seen that rank (U) = nr, and thus a regression (7) cannot involve more than nr + 1 independent
terms uj.

We will therefore select the vectors k of the left kernel such that they involve only independent
uj in (7). It is worth noting that the vector k involves three kinds of components:

(1) entries which are structurally zero;
(2) entries that have an a priori known non-zero value (either 1 for the normalising component,

see above, or a known value related to the stoichiometry of the reaction network);
(3) entries which are unknown because they depend on unknown coefficients of the pseudo-stoi-

chiometric matrix. These entries have to be estimated from the data.

Remark that Eq. (7) states a conservation between the variables ui. This conservation is directly
connected to the notion of reaction invariants [21,22].

Definition 1. We say that a set fui1 ; . . . ; uikg is associated with a left kernel vector k if kj = 0 for all
the indices j 62 {i1, . . ., ik}. We say that k is associated with the k · nr submatrix eK which is the
submatrix made of the rows i1, . . ., ik of K. Finally we call ~k the vector obtained by removing all
the zeros entries in k. The dimension of ~k (namely k) is called the regression dimension associated
with k and denoted d(k), the number of unknown components of k is denoted du(k).

We have therefore ~k
T eK ¼ 0, and ~k has no zero component. Then,

P
ik
kik uikðtÞ ¼ 0.

Note that, due to the normalisation of k, we have du(k) 6 d(k) � 1.

Definition 2. We say that a left kernel vector k is sound if its associated d(k) · nr matrix eK does
not contain itself any k · nr submatrix (k<d(k)) whose rank is not full or––equivalently––if

dimðKereKTÞ ¼ 1.

Remark 2. For a sound vector k we have d(k) 6 nr + 1

Indeed, if it has k P nr + 2 non-zero entries, then its associated submatrix eK is a k · nr subm-
atrix whose left kernel is at least of dimension 2.
3.3. Example 3: a process of lipase production from olive oil by Candida rugosa

Let us consider the example of the competitive growth on two substrates [23] which could rep-
resent the production of lipase from olive oil by Candida rugosa. Here the microorganism is sup-
posed to grow on two substrates that are produced by the hydrolysis of the primary organic
substrate made of several molecules (mainly triglycerides). We assume the following 3-step reac-
tion network:

• Hydrolysis:
k1S1 þ E ! S2 þ k2S3 þ E;
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• Growth on S2:
k3S2 þ k4O ! X þ k5P ;
• Growth on S3:
k6S3 þ k8O ! X þ k7E þ k9P ;
where S1 is the primary substrate (olive oil, made of various compounds), S2 (glycerol) and S3

(fatty acids) are the secondary substrates, E is the enzyme (lipase), X the biomass (Candida rug-
osa), O the dissolved oxygen and P the dissolved CO2. We assume that all the biochemical species
are measured, except S1.

The associated pseudo-stoichiometric matrix j and the state vector ca are therefore:
j ¼

�k1 0 0

1 �k3 0

k2 0 �k6

0 0 k7

0 1 1

0 �k4 �k8

0 k5 k9

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; ca ¼

S1

S2

S3

E

X

O

P

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
:

Since S1 is not measured, we will focus on the state cm associated with the submatrix K:
K ¼

1 �k3 0

k2 0 �k6
0 0 k7
0 1 1

0 �k4 �k8
0 k5 k9

0BBBBBBBB@

1CCCCCCCCA
; cm ¼

S2

S3

E

X

O

P

0BBBBBBBB@

1CCCCCCCCA
; cu ¼ S1ð Þ:
Now the following vector belongs to the kernel of matrix KT:
k1 ¼

0

0
k5�k9
k7

�k5
0

1

0BBBBBBBB@

1CCCCCCCCA
:

We have d(k1) = 3 and du(k
1) = 2. It is associated with the rank-2 submatrix eK 1 and to the vector

~k
1
:
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eK 1 ¼
0 0 k7

0 1 1

0 k5 k9

0B@
1CA; ~k1 ¼

k5�k9
k7

�k5

1

0B@
1CA;
which is sound since the 3 possible 2 · 3 submatrices are of full rank.
Thus u4, u5 and u7 are associated with k1, and related by the following relation:
u7ðtÞ ¼ k5u5ðtÞ þ
k9 � k5

k7
u4ðtÞ: ð8Þ
Now the kernel of matrix KT is spanned by the 2 other sound vectors:
k2 ¼

0

0
k8�k4
k7

k4

1

0

0BBBBBBBBBB@

1CCCCCCCCCCA
; k3 ¼

�k2

1
k3k2þk6

k7

�k3k2

0

0

0BBBBBBBBBB@

1CCCCCCCCCCA
:

Obviously, we have d(k2) = 3, du(k
2) = 2, d(k3) = 4, du(k

3) = 3.

3.4. Regressions associated with a set of ui
Property 2. A vector k associated with a set fui1 ; . . . ; uikg is sound if and only if the ui are not related
by any other linear relation.

Proof. Indeed, it is clear that it is not possible to have another relation between nr + 1 different ui,
otherwise this relation would be associated with a second kernel vector k 0, meaning then that the
kernel of eKT

is at least of dimension 2, and thus k would not be sound. h

Property 3. Let us consider a sound kernel vector k of KT, associated with ~k and to a set
fuij ; ij 2 fi1::idðkÞgg. Moreover, let us denote by S the set of indices j such that ~kj is known. Then
the following cost criterion:
JðaÞ ¼
XtN
t¼t1

X
j2S

~kjuijðtÞ �
X
j62S

ajuijðtÞ
 !2

; ð9Þ
admits a unique minimum, of zero value, obtained for aj ¼ ~kj (for any j 62 S).

It is worth noting that minimising J(a) is exactly a linear regression problem.
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3.5. Validation of the kernel of KT with the available data

Now the validation will consist in verifying that J(a) (Eq. (9)) can be correctly minimised, or in
other words, that the regression between v ¼

P
j2S

~kjuij and the uijðj 62 SÞ is significant.
This analysis must be performed on all the sound kernel vectors ki of KT.
In order to maximise the quality of the regression, the uij associated with ki (j 62 S) and v should

in practice span a space of dimension du(k
i). So we perform a principal component analysis for the

matrix
Ui ¼

vðt1Þ . . . vðtNÞ
uj1ðt1Þ . . . uj1ðtNÞ

..

.

ujduðkiÞ
ðt1Þ . . . ujduðkiÞ

ðtNÞ

0BBBBBB@

1CCCCCCA;
where the index ji correspond to the unknown elements of ~k
i
. The eigenvalues of UiUT

i represent
the total variance rij associated with the jth principal axis. We then sort the singular values so that
r1 P    P rduðkiÞ P rduðkiÞþ1. Let us recall that, in principle, rduðkiÞ > 0 and rduðkiÞþ1 ¼ 0.

We consider the following criterion (reminiscent to the conditioning number) which assesses the
balance of the variance along the axis:
BðkiÞ ¼ r1ðkiÞ
rduðkiÞ

:

With this criterion, we can now order the kernel vectors as follows:

• We first sort the kernel vectors ki by sets of constant regression dimension du(k
i).

• Within the sets of constant regression dimension du(k
i), we sort the ki by increasing index of

associated variance balance B(ki).
Definition 3. The basis made of the first nm � nr independent vectors ki is called the sound kernel
basis.
3.6. Identifiability of the pseudo-stoichiometric coefficients

The question that we want to discuss in this section is to determine whether it is possible to
determine the set of pseudo-stoichiometric coefficients ki from the values of ki identified from
the set of regressions given by Eq. (7). This identifiability property when the reaction rates
r(ca,d) are unknown is referred to as C-identifiability in [11].

The answer to the C-identifiability question can be found in [11]. A version of this Theorem is
recalled here in the considered framework of full rank matrices K:

Theorem 1. [Chen & Bastin 1995] Let K be an nm · nr full rank matrix with nm > nr. The unknown
elements of the jth column of K are C-identifiable if and only if there exists a non-singular partition
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(Ka,Kb), where Ka is a full rank submatrix nr · nr which does not contain any unknown element in its
jth column.

We propose here a broader sufficient condition for the C-identifiability:

Theorem 2. Let K be an nm · nr full rank matrix with nm > nr. The unknown element kij of K is
identifiable if there exists a k · nr full rank submatrix Ka, with k 6 nr, which does not contain any
unknown element on its jth column such that the (k + 1) · nr submatrix of K:
R ¼
Ka

Kbi

� �

is not full rank, i.e. rank(R) < k + 1, where Kbi is the ith line of K.

Proof. see Appendix A. h

Remark 3. This criterion, although it is more complicated than the one proposed in [11], allows
to check the C-identifiability for each element of K separately and not only for the columns.

Let us consider the following matrix K:
K ¼
k11 1

1 0

k31 0

0B@
1CA: ð10Þ
Theorem 1 states that the first column of K is not C-identifiable, since it is not possible to find a
2 · 2 submatrix Ka which do not contain any unknown element in its first column. Now if we ap-
ply Theorem 2, we can use the following submatrices:
Ka ¼ ð 1 0 Þ; Kb ¼ ð k31 0 Þ:
Then R is of rank 1, and verifies the condition k + 1 = 2 > rank(R), it follows that k31 is C-iden-
tifiable. It is now clear that k11 is not C-identifiable, otherwise the first column of K would be C-
identifiable.

Remark that the analysis of the kernel of matrix KT also provides a criterion to test the iden-
tifiability of the kij. Even if this criterion is less convenient, it will give some hints on the practical
identifiability, as we will see in Property 4.

Property 4. The pseudo-stoichiometric coefficient kij is C-identifiable if and only if it can be
computed from a combination of sound kernel vectors.

In the previous example of Eq. (10), the sound kernel basis of KT was
~k ¼ ð0;�k31; 1ÞT:
It follows that k31 is C-identifiable and that k11 is not C-identifiable.
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3.7. Identification of the pseudo-stoichiometric coefficients and final validation

Now, once we know that the pseudo-stoichiometric coefficients are identifiable, we can estimate
their value from experimental data using Property 4. For this, we will use the regression associated
with the sound kernel basis of KT given by Eq. (7). The statistical significance of the correlation
will allow to test from the data whether the vectors ~k

i
are in the kernel of KT or not.

The final validation will consist in checking that the pseudo-stoichiometric coefficients are all
positive. This test must be performed with regards to the uncertainty obtained from the linear
regression (7). Indeed, because of the uncertainty obtained on the estimates for the ki, the ki

may have a negative value, but with a confidence interval intersecting the positive domain.
The overall approach leading to the validation of an assumed macroscopic reaction network is

summarised in Fig. 6.

3.8. Improving the method

A fermentation is often composed of several phases. In each phase, some reactions are not trig-
gered. Therefore it is generally possible to find time intervals ]Tk,Tk+1[ for which rj = 0 for some j.
In the same way, the concentration of some components may remain constant during certain peri-
ods of time.
mc

λi

λi
ju

λi

cm
u    compute       for all the

mcavailable measurements

λi

λi

mn – nr

λicheck that the     are sound and

λiλi λi

λi

    of matrix K

compute the left kernel vectors 

apply a filtering procedure to u

test the significativity and the positivity constraints of the 

regressions  associating     with the set of  

determine the positivity constraints vand compute    and   associated to 

compute matrix U  associated toi

Bits singular values and    (   )

u
i

keep only the first            independant 

 B sort the     by d  (   )   and then by    (   ).u

Fig. 6. Scheme of the procedure to validate a macroscopic reaction network described by matrix K.
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This is for example the case in a reaction where the primary (associated with growth) and the
secondary metabolisms are successively activated. During the first stage only growth takes place:
no biotransformation appears since no precursor is added. During the secondary metabolism
phase, the growth is inhibited and the microorganism concentrates on the bioproduction of a
metabolite.

During these periods of time ]Tk,Tk+1[, the system is then characterised by an index j0 such that
rj0 ¼ 0. System (1) is then equivalent to the following system:
dcm
dt

¼ K�rðcm; dÞ þ Dðcmin � cmÞ � Qðcm; dÞ; ð11Þ
where the matrix K is extracted from K by removing the columns of K corresponding to the index
j0.

Finally on these time intervals, the study of system (1) can be simplified by studying (11).

3.9. Application to the process of lipase production

Let us consider the example of the competitive growth on 2 substrates. Let us assume that sub-
strates S2 and S3 can directly be obtained from another bioreactor where the enzyme has been
purified and directly added to S1 without the biomass. We will then consider such an experiment
where the secondary substrates S2 and S3 are directly added. Therefore, for all these experiments
we will have r1 = 0. The problem reduces thus to find the kernel of the submatrix K obtained after
removing the first column of K:
K ¼

�k3 0

0 �k6
0 k7
1 1

�k4 �k8
k5 k9

0BBBBBBBB@

1CCCCCCCCA
:

The kernel of K
T
is spanned by the following sound vectors:
�k
1 ¼

0
k7
k6

1

0

0

0

0BBBBBBBBBB@

1CCCCCCCCCCA
; �k

2 ¼

k8�k4
k3

0

0

k8

1

0

0BBBBBBBBBB@

1CCCCCCCCCCA
; �k

3 ¼

� k7
k3

0

1

�k7

0

0

0BBBBBBBBBB@

1CCCCCCCCCCA
; �k

4 ¼

k5�k9
k3

0

0

�k9

0

1

0BBBBBBBBBB@

1CCCCCCCCCCA
:

The regression dimension are dð�k1Þ ¼ 2, duð�k
1Þ ¼ 1 and dð�kiÞ ¼ 3, duð�k

iÞ ¼ 2 for i > 1. Note that
K is associated with regressions of lower dimension than K implying less unknown coefficients kj

i .
It will therefore provide more reliable results (with the same amount of data), which will be easier
to validate.
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3.10. Application to the anaerobic digestion process

Based on the results presented in paragraph 2.5, a reaction network relying on 2 main steps was
assumed to summarise the main mass transfer within the digester. In the first reaction (acidificat-
ion) the organic matter S1 is degraded into VFA (S2) and CO2 by a consortium of acidogenic bac-
teria (X1). Then the VFA are degraded into CH4 and CO2 by methanogenic bacteria (X2). The
reaction network is thus the following:

• Acidogenesis (with reaction rate r1):
k1S1 ! X 1 þ k2S2 þ k4CO2: ð12Þ

• Methanogenesis (with reaction rate r2):
k3S2 ! X 2 þ k5CO2 þ k6CH4: ð13Þ
Let us denote by C the total dissolved inorganic compounds (mainly CO2 and bicarbonate).
The associated pseudo-stoichiometric matrix j and the state vector ca are therefore:
j ¼

1 0

0 1

�k1 0

k2 �k3

k4 k5

0 k6

0BBBBBBBBBB@

1CCCCCCCCCCA
; ca ¼

X 1

X 2

S1

S2

C

CH4

0BBBBBBBBBB@

1CCCCCCCCCCA
:

Since X1 and X2 (which represent a broad variety of species) are not measured, we will focus on
the state cm associated with the submatrix K:
K ¼

�k1 0

k2 �k3

k4 k5

0 k6

0BBBB@
1CCCCA; cm ¼

S1

S2

C

CH4

0BBBB@
1CCCCA; cu ¼

X 1

X 2

 !
:

Theorem 1 shows that matrix K is clearly not C-identifiable from the available data. Thus we nor-
malised it, so that the rate of S1 consumption and the rate of CH4 production are now unitary,
leading to matrix K:
K ¼

�1 0
k2
k1

� k3
k6

k4
k1

k5
k6

0 1

0BBBB@
1CCCCA:
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Theorem 1 proves then that K is C-identifiable, choosing Ka ¼
�1 0
0 1

� �
. Thus the fractions

k2
k1
; k3k6 ;

k4
k1
and k5

k6
can be identified. To estimate the pseudo-stoichiometric coefficients k1 to k6 bio-

mass measurements are required.
Fig. 7. Comparison between simulation results and measurements in a fixed bed anaerobic digester for the methane and
CO2 gaseous flow rates, pH, COD, VFA and total inorganic carbon (from [20]).
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This mass balance modelling was used in [20]. The methane whose solubility is low was assumed
to stay at low constant concentration, and the methane gaseous flow rate was assumed to be di-
rectly related to the methane bacterial production rate.

Finally, in [20] the kinetic rate modelling for r1 and r2 was performed by using a Monod type
kinetics for the growth of acidogenic bacteria and Haldane kinetics for the methanogenesis. Then
the kinetic parameter were estimated, leading to the results presented in Fig. 7 for more than
70 days of experiments with various influent concentrations and various dilution rates. For more
details see [20].
4. Comparison between several macroscopic reaction networks

4.1. Statement of the problem

Once the number of reactions nr to be taken into account has been identified, the next step con-
sists in selecting the set of reactions which are supposed to represent the main mass transfer in the
fermenter. In general, several hypotheses can be stated with respect to the available knowledge.

We assume therefore that a set of q plausible macroscopic reaction networks with q associated
pseudo-stoichiometric matrices Ki are postulated by the user. It may e.g. be the result of automatic
determination procedures, like those presented in [24,25]. The aim of this section is to determine
how to select among these q hypotheses those who provide a pseudo-stoichiometric matrix in
agreement with the available data. Remark however that, in most cases, q is a small number since
there are only a few possible macroscopic reaction networks.

The method consists therefore in testing each matrix Ki by using the methodology exposed in
Section 3.7 and then to select the models which pass the validation tests.

The proposed methodology will be presented through a real life case study: the modelling of the
growth of the filamentous fungus Pycnoporus cinnabarinus.

4.2. A real case study

We focus here on experimental phases were only aerobic growth of the fungus Pycnoporus cin-
nabarinus takes place. From a preliminary analysis of the available measurements, it turns out
that two reactions are necessary to explain the observed data (representing 97% of the variance).

The aerobic growth of the fungal biomass (X) from a carbon source (glucose G and maltose M)
and a nitrogen source (N) can a priori be reasonably represented by the 3 following reactions
networks:

• Network 1:
The fungus is growing on maltose, glucose and nitrogen, and it can transform maltose into glu-

cose in a first step:
M !r1ðÞ 2G;

k1N þ k2Gþ k3M !r2ðÞX :

ð14Þ
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• Network 2:
The fungus is growing only on glucose and nitrogen, and it transforms maltose into glucose in a

first step:
M !r1ðÞ 2G;

k1N þ k2G !r2ðÞX :

ð15Þ
• Network 3:
The fungus can grow either on glucose and nitrogen or on maltose and nitrogen. In this second

case glucose is produced.
k4N þ k5G !r1ðÞX ;

k1N þ k2M !r2ðÞX þ k3G:
ð16Þ
The pseudo-stoichiometric matrices associated with (14)–(16) are then respectively:
K1 ¼

0 �k1
�1 �k3
2 �k2
0 1

0BBB@
1CCCA; ð17Þ

K2 ¼

0 �k1
�1 0

2 �k2
0 1

0BBB@
1CCCA; ð18Þ

K3 ¼

�k1 �k4
�k2 0

k3 �k5
1 1

0BBB@
1CCCA: ð19Þ
Using the method presented in Section 3.7 we give in Table 1 the sound kernel vectors and the
corresponding regressions which are associated with these three pseudo-stoichiometric matrices.

The regression coefficients computed from 70 data points coming from nine different experi-
ments are presented in Table 2. The confidence intervals for the parameters have been estimated
using a Student distribution with a 5% threshold and the significance of the regression has been
tested.

From Table 2 we conclude immediately that network 3 is invalidated by the data. The coeffi-
cients associated with networks 1 and 2 have the correct signs, and therefore only these two net-
works are in agreement with the data and will be kept. Note that it is not possible to distinguish
between networks 1 and 2. However the parameters k2 and k3 in network 1 are not identifiable,
and thus network 2 would be preferred. Nevertheless, if network 1 should be kept for some



Table 1
Kernel vectors and regressions associated with the pseudo-stoichiometric matrices for each of the considered reaction
network for the growth of Pycnoporus cinnabarinus on ammonium, maltose and glucose (the real ejþi are positive, the eji
can be of any sign)

PS matrix Sound kernel basis of KT Regressions B(ki)

K1

k11 ¼

1
0
0
k1

0BB@
1CCA; k12 ¼

0
2
1

2k3 þ k2

0BB@
1CCA

u1 ¼ �e1þ1 u4
2u2 þ u3 ¼ �e1þ3 u4

Bðk11Þ ¼ 1

Bðk12Þ ¼ 1

K2 k21 ¼

1
0
0
k1

0BB@
1CCA; k22 ¼

0
2
1
k2

0BB@
1CCA u1 ¼ �e2þ1 u4

2u2 þ u3 ¼ �e2þ3 u4
Bðk21Þ ¼ 1

Bðk22Þ ¼ 1

K3 k31 ¼

0
k5þk3
k2
1
k5

0BB@
1CCA; k32 ¼

1
k4�k1
k2
0
k4

0BB@
1CCA u3 ¼ �e3þ1 u2 � e3þ2 u4

u1 ¼ e33u2 � e3þ4 u4
Bðk31Þ ¼ 4:48

Bðk32Þ ¼ 6:29

Table 2
Estimation of intervals for parameter values and significance of the regressions (threshold 5%) associated with each of
the reaction networks (RN)

RN Parameter min max Positivity Significance Conclusion

1 e1þ1 0.41 0.79 Yes Yes k1 2 [0.41,0.79]

e1þ3 1.4 1.77 Yes Yes k2 + 2k3 2 [1.4,1.77]

2 e2þ1 0.41 0.79 Yes Yes k1 2 [0.41,0.79]

e2þ3 1.4 1.78 Yes Yes k2 2 [1.4,1.78]

e3þ1 0.72 1.1 Yes Yes k5þk3
k2

2 ½0:72; 1:1�

3 e3þ2 1.40 1.78 Yes Yes k5 2 [1.40,1.78]

e33 0.93 1.28 Yes No k4�k1
k2

2 ½0:93; 1:28�
e3þ4 �0.45 �0.11 No No k4 2 [�0.45,�0.11]
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reasons, the value (of at least one) of the (unidentifiable) parameters k2 and k3 should be selected,
in such a way that k2 + 2k3 belongs to the confidence interval from Table 2.
5. Conclusion

Modelling of bioprocesses is known to be a difficult issue since there does not exist universal
validated laws on which the model can rely as in other fields like mechanics (fundamental equa-
tions of mechanics), electronics (ohm law), etc.
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We have presented here only the first stage of the macroscopic modelling, i.e. the mass balance
modelling involving the reaction network through matrix j. The second stage would now consist
in estimating the reaction rates r(cm) with respect to the biochemical species in the system. This
step is far from being trivial since the kinetics can be very sensitive to many factors, leading to
high parametric uncertainties in the mathematical expressions. The reader can refer to [18,20]
for details on this second step of kinetic determination, with example of model simulation and
validation both for the vanillin production process (Example 1) and for the anaerobic treatment
plant (Example 2).

The key point in the mass balance approach is to use linear algebra to uncouple the linear part
of the model driven by matrix j from the non-linear and unknown part of the model related to the
microbial kinetics (r(cm)). It is worth noting that some algorithms aiming at e.g. process monitor-
ing or controlling can be based only on the mass balance part [2]. After algebraic operation the
effect of the unknown r(cm) is eliminated, limiting the uncertainty associated with variability of
the biological processes. However the resulting algorithms turn out to be very sensitive to the
pseudo-stoichiometric matrix. Validation of this matrix and improvement of its identification is
therefore a key issue for biotechnological processes.
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Appendix A. Proof of Theorem 2

We first demonstrate the following Property.

Property 5. Let us consider a set fui1 ; . . . ; uikg associated with a left kernel vector k, and with a

matrix eK :
Pk

j¼1kijuijðtÞ ¼ 0. If k is not sound, then any submatrix eK 0
obtained from eK by removing

the lth raw is associated with a subset of fui1 ; . . . ; uik ; ij 6¼ lg, i.e.:
Pk

j 6¼l
j¼1

k0ijuijðtÞ ¼ 0 (for
l 2 {i1, . . . , ik}).

Proof. If k is not sound, it means that dim(KereKTÞ > 1. Therefore there exists at least 2 different
vectors k1 and k2 such that

Pk
j¼1k

q
ij
uijðtÞ ¼ 0 for q 2 {1,2}. If the lth component of k1 or k2 contains

a zero, then we have the result. Otherwise, for k1
lk

2
l 6¼ 0, we have
Xk

j¼1

k1
ij
uijðtÞ �

kil

ki2

Xk

j¼1

k2
ij
uijðtÞ ¼ 0;



76 O. Bernard, G. Bastin / Mathematical Biosciences 193 (2005) 51–77
showing that the vector ~k
0
whose components are k1

ij
� kil

ki2
k2
ij
for ij 2 {i1, . . ., ik ij 5 l} is associated

with the matrix eK 0
obtained from eK by removing the lth raw.

Now we can prove Theorem 2. h
Appendix B. Proof of Theorem 2

If k + 1 > rank(R), then dim(Ker RT) > 0, there exists a kernel vector k ¼ ka

kbi

� �
such that

kTR = 0.
We have therefore kT

aKa þ kbiKbi ¼ 0.
Since Ka is a k · nr full rank matrix with k 6 nr, then dim KerKT

a ¼ 0, and thus kbi cannot be
zero.

If k is not sound i.e. dim Ker RT > 1. We must then consider the sound vector ~k associated with

the submatrix
eK a

Kbi

� �
, where eK a is extracted from Ka according to Property 5.

The sound vector ~k, verifies: ~k
T

a
eK a þ kbiKbi ¼ 0

Let us remark that it is a matrix equality, and let us consider the jth column of this matrix
equation:
~k
T

a
eK ai þ kbikij ¼ 0;
where eK ai is the ith column of eK a.
As we saw in Section 3.5, the coefficients of the sound kernel vector ~k can be identified from a

linear regression. Therefore, kij can be computed as follows:
kij ¼ �
~k
T

a
eK ai

kbi
:
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