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SHORT PAPER

Abstract—We propose a simple control design allowing a
mobile robot equipped with a camera to track a line on the
ground. The control algorithm as well as the image processing
algorithm are very simple. We discuss the existence and the Fig. 1. The experimental robot and a test path
practical stability of an equilibrium trajectory of the robot when
tracking a circular reference line. We then give a complementary

analysis for arbitrary reference lines with bounded curvature. ~ We first describe the experimental device (Section 1l) and

Experimental results confirm the theoretical analysis. then derive the robot kinematic model and the control design
Index Terms—mobile robot, control design analysis, visual- (Segt!on I1). Sec“_‘?” ,IV IS Qevoted to the ex!stence _and
servoing, path tracking stability of an equilibrium trajectory around a circular line,

and the behavior of the system for arbitrary reference line with

I. INTRODUCTION upper bounded curvature. Finally, we show, with an example,

The problem addressed in this paper is the feedback contnolwv this simple design can be easily extended by a dynamical
design allowing a mobile robot to track a line on the groundssignment of the parameters (Section V). Sections IV and V
using a visual feedback. There exist a lot of image processiage illustrated with experimental results.
algorithms extracting a map of the environment from the
data provided by a camera (see for instance [1]- [4]). But II. DESCRIPTION OF THE ROBOT

allows to reduce the problem to a path planr_1ing problem (SeeThe vision device is constituted by a monochromatic camera
[11]- [13]). But these approaches require a highly accurate qu

; . . X . ith a resolution 0f320 x 240. It is fixed on the robot, at a
line extraction of the line shape. Another interesting approa

: . o L ight of 17cm, at a distance of 14.2cm from the rear axle. It
is presented in [14]: instead of considering separately t ns forward, with an angle of 45The lateral angle of view
estimation from the vision measurements and the design

i§'60°, which limits significantly the field of view. Image data

control strategies, the authors formulate the tracking probletp, ansmitted to a computer via an analogical video interface
as one of controlling directly the shape of the curve iBAL to USB2.0.

the image plane. The practical implementation is however-l-he control is achieved by the computer which processes
rather sophisticated, implying an extended Kalman filter e data transmitted by the vision device, in order to provide
dynamically estimate the image parameters required for @F‘e speed control for the two fixed Wheéls, according to the

feedback contro_l. . . ) .feedback control law.
Our purpose in this paper is to propose a simple solution

of this tracking problem which avoids as much as possible
sophisticated image processing and control algorithms. The
practical implementation is straightforward and can easily We suppose - as it is usually done - that the contact between
be achieved on line. Our main contribution is to provide Pﬁe wheel and the ground satisfies both conditionspare
complete stability analysis of the control system, taking int®!ling andnon-slippingduring the motion; moreover the robot
account a restriction on the field of view. Restricting ourselvel$, assumed to be rigid.

in a first step, to a particular reference trajectory (a circle) With these assumptions we have the well known kinematic

we discuss the conditions of existence of a stable equilibriufPdel:

I1l. KINEMATIC MODEL AND CONTROL DESIGN

trajectory of the robot with respect to the line, and, analysing v i Z;O;g (1)
the phase plane, we explicit the domain of attraction of this Z o
= w

equilibrium. Then, in a second step, the discussion is extended
to reference lines with arbitrary shape. This analysis provideshere(x,y) denote the coordinates of the middle pointof
together with the convergence conditions, guidelines allowine rear axled is the angle that specifies the robot orientation
the user to calibrate and adapt the design parameters of ithe reference framé, 7'y, /o) linked to the groundy is the
control law in order to ensure better closed-loop performandimear velocity of P (also called forward velocity) and is the

_ , angular velocity. The velocities andw can be assigned by
*This paper presents research results of the Belgian Programme on

teruniversity Attraction Poles, initiated by the Belgian Federal Science PoIiEbe physical inputs 9f the experimental device, the rotation
Office. The scientific responsibility rests with its authors. speeds of the two fixed wheels.



Our control strategy is quite natural: essentially it consists The resulting closed loop system is then described by the
in controlling the orientation so that the path to track would biellowing equations:
centered in the field of view. This control design is particularly

suited for the considered vision device: a visual sensor directed 3.3 - Cf)s 0
. - . . Yy = wpsinf (2)
ahead with a limited field of view. i — By

We define thehorizon as the straight line on the ground
which is parallel to the rear axle, at a distanfdeahead from  State variables:, y and ¢ are not relevant to analyze the
it (see Fig.2). We then conside?,, the intersection point convergence properties of the system: variables describing
between the horizon and the line to track. If the curvatutbe position of the robot with respect to the line would be
of the line is not too strong, this point is unique. In case gireferable.
multiple intersection pointsl. will be the closest to the robot  We define the Frenet reference frame of the tracked line
longitudinal axis. We defin& as the distance betweédn and at the target pointP.: (P., T, N), and we introduce the
the longitudinal axis. following variables:

Z can be easily extracted from the pictures provided by, ¢, the angle(?,x_;),
the vision system. The horizon corresponds in these pictures S(t) the curvilinear coordinate of,,
to a row of pixels, whileP, corresponds to the intersection o ¢(¢) the curvature of the path at,,
of this row with the image of the line on the ground (see Fig. , ¢, the angle(7, ;-p’)_
3). The distanceZ is proportional to the number of pixels

. . . . We can see that, as soon as there is an intersection between
between the middle point of this row and the imageFbt.

the horizon and the path to follow:

The control law is defined as follows: P.(S®#)=Pt)+ HZ,.(0(t) + Z(t) Y (0(t))

« the forward velocity is imposed to be constant= v Differentiating this expression we obtain:
« the angular velocity is proportional t6: w = kZ, with R ) ) )
k constant. ST(S)=v2, +HOY,—Z)0T, +27,

Projecting this equation on the Frenet frame, and including
the feedback control law (2) we have:

Z =—kHZ + (kZ? — v) tan#,
Sv _ v—kZ>
cos 0,

Moreover:d, = 6 — 6, which leads to
0, = kZ — Sc(S)

wherec(S) is the curvature of the path. Then the system can
be described as follows:

i Z = —kHZ— (v—kZ?) tand,
5 6, = k7 — cu=hZ ®)
Fig. 2. Control Principle with ¢ satisfying the following equation:
de v —kZ?
._ dcv—kz” 4
¢ dS cosb, )
Defining non dimensional time = Hkt and variables
Z S
2= u=sin(6,), s = T o= He, w:#, (5)
equations (3) and (4) can be rewritten as:
o= - (w-R)gtn
du = V1 —u?—o(w—2?) (6)
do  _ do w—2°
dr - ds /1—u2
In other words, if the time unit isy; = 7% and the length
Fig. 3. Extracting the target point from the data unit is H, thenr represents the time; the deviation,c the

1 . N _ curvature s the curvilinear abscissa, and the velocity of the

Assuming that distortion effects can be neglectedHais constant, there bot. Th d ¢ f thi t i t ke cl that
is a single proportionality coefficient to evaluate in a calibration phase in ordgfQ0L. IN€ advantage of this new system IS to make clear tha
to obtainZ from the image measurement. the behaviors of andu essentially depend os and w.
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Fig. 4. Circle tracking

IV. STABILITY ANALYSIS a
A. Equilibrium trajectory for a circular line co

In this section we consider the particular case when the
line on the ground is a circle centered @{ the origin of
the Galilean reference frame, with radifts= 1, as shown in
Fig.4. Hereg, vg, H andk are constant parameters. ThereforE®

the system is described by the first two equations of (6) where?)

pseudo curvaturer and pseudo velocityw have constant
values.

1) Local stability of the equilibrium:

with respect to the circle and then discuss the conditions of
stability of this equilibrium. An equilibrium corresponds to
constant values of the variablesand u, denoted ¥ and «)

implying that P, the middle point of the rear axle, describes > i i e
The practical domain of attractioris the largest stable

itself a circle with the same center.

We must consider several constraints on variablesd u:

« u is naturally boundedu| < 1 .

« The proposed control design will fail if the center of thegn
circle belongs to the longitudinal axis of the robot: in thi
case, there are either two target points equidistant fr
the robot axle, or no target point. When> 0 (in this
case the robot runs counter-clockwise) this implies tha

@)

With these constraints on values @f u), there is only one
equilibrium point given by:

53=(V1 =02+ 402w — V1 —0?)

—0

att

(0]

oz+vV1—-uZz2>0

z

(8)

u

But this equilibrium point corresponds to an admissibl
situation only if the target point remains in the field of view
This condition introduces an upper bound for the admissikt
values ofz, z,4:, Which depends on the horizali and the
camera view angle. An equilibrium is therefore admissible
|Z| < zmaz- Equation (8) implies that < \/w.

1) Then, if z,4, > /oo, the equilibrium is admissible asFig-

soon as the pseudo curvature satisfies 0,4, = 1.

2) If zpaw < /@, it can be checked that the condition Ve denoteA the distance fron® t
sponding non dimensional variabde= %; then:

|Z| < zmae is satisfied only if

Zmax

0 < Omas =
+ (w —

2 2 2
max Zmax)

NE

2)
We first characterize the equilibrium trajectory of the robot 3)

The two cases are summarized by the following inequality:

R> > H with the adequat® oz (Zmaz) (9)
Uma:c
The Jacobian matrix of the systefn, v) around(z, @) is:
402152 V1—o2—y/1—02+402w?
BRY L+ 1—02 2(72(170;)r (10)
VIi—o?+do?m?  L(\ /144222 )

The eigenvalues of this matrix have always a negative real
part, which implies that the system is locally asymptotically
stable around the state given by (8).

2) Phase plane analysis:

We now represent in the phase plafew) the results of

more detailed analysis, for a pseudo curvatare= 0.7
rresponding to a radiuR = 1—70H
In Fig.5, we represent the physical boundaries correspond-

ing to the constraint$z| < z,q, and|u| < 1 (box rf'3).
Then depending on the value of the pseudo curvatyinge
present the following informations:

The boundary (curve 1) induced by equation (7) corre-
sponding to the inadmissible position of the robot with
respect to the circle.

The vector field (arrows) defined by equation (6).

The equilibrium point (M4); it belongs to the line
number 7 representing all equilibrium points.

The boundary (t2) of the domain of attraction without
considering constraints.

Number 6 is an example of trajectory.

)

ractive area included in the intersection of the black

rectangle (A3) with the area bounded by the dashed line

2). We can observe by numerical computations that the

grevious intersection itself is in fact a good approximation of
t&e practical domain of attractian

Phase plane forc =0.7, » =0.25and z =0.3
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The set for which the poinP is right on the line to follow is & ‘ R=40com, H=35cm
defined byA = % or equivalentlys = % and corresponds to

the equation: 0.08¢
1 o6l
2= (V1= (u+0)2—V1-u?) 1) "I
g EOO4
It is the curve A5 on the figure. We can see that this curve N
separates the plane phase in two regions: the first one contains 002
the states for whichP is inside the circle, and the other one /
0

the states for whichP is outside.

Disturbances

002 ! from errors of data transfer |

It can be interesting to give a kind dftability margin 02 4 By °ORW

mg for this system. A good estimator is the distance in

the phase plane, between the equilibrium and the bound&iy 6. Z(t)in mm while tracking a circle with a radius of 40 cmwgt=0.20
of the practical domain of attraction This is actually the ™S andk =18

distance between the equilibrium point and the black rectangle
boundary in the phase plane. A possible way to measure is by, represent in Fig.6 the evolution of the variabte

the following definition: involved in the feedback control. As expected from the

above analysis the variabléZ converges asymptotically

to a steady-state value.The oscillations around the steady

whereo, .. is the same as in inequality (9). state-value result from the curvature irregularities and from
This m, must be positive and the robustness of the desigierferences in the transmission of the data (the 2 peaks

increases with it. A pretty good choice is to requirg > 0.3 appearing in the record).

which will be done in the following sections. This leads to a

Ms = Omax — O (12)

practical upper bound for denotedo, B. Extension to arbitrary curves
3) Convergence rate: 1—\/5 n
Another interesting point is the time necessary to converge o0,,qx
the equilibrium trajectory. . Equilitﬁum o
From a physical point of view, the relevant variable fo 0.6 states for P
convergence ig, because the control design can be applie LA [-1;1] \
only if the line is in the field of view. Then we choose the _ o2l Stable area
distanced = |z — z| to define a convergence criterion, evel € | 1, seneral ~
if it does not take into account the other state variabl@he @ O curves 1
system is considered to be close enough to the equilibric % ..
whend < 0.05. Let us denoteD(zo, uo) the distance traveled Physical

-0.4F boundaries | /] /

by P from the initial state(zg,ug) till the trajectory reaches vlfor zmas—os

the region wherel < 0.05.
The problem has been investigated by systematical simu 0.8 N
tions of trajectories of the system (6). The set of paramete 1
for the pseudo curvature and the pseudo velocitys is:
D = {(0,w) €]0,0.7)x {1}}. The set of initial stateuo, zo)
is the boundary of the domain of attractior?2nin Fig.5). For
all the simulations we observe thd® < D,,,, = 3H In the previous section, we have analyzed the stability when
This means that, whatever the admissible initial stat1e robottracks a circular path. In this section, we will consider
the robot is very close to the equilibrium after a traveleHi® tracking of a path having an arbitrary (smooth) curvature.
distance less tha®,,., = 3H which is a quite good speed A natural question is the followingf the line to track is

‘ w

05 -04 -03 02 0.1 0 01 02 03 04 05
z=Z/H Zmaz

Fig. 7. Admissible radii form = 0.25

the robot follow this trajectory?
4) Experimental results: We study this problem in two steps:

The reference line is circle of radiug&=40cm. Unfortunately, « first, we give a mathematical point of view which proves
the drawing of the line is corrupted by local disturbances that under some assumption @i, the answer to the
resulting in fluctuations in the curvature along the line. In  previous question is affirmative.

our experimenty, = 20cm/s, k = 18 and H = 35cm. So « then we give a complementary numerical study of a par-

o = % ~ 0.875 and /@ = /7% ~ 0.30 . We also have ticular curve hard to track. This leads to some conclusions
Zmaz = T.5¢m, SO zmgey = Zmez ~ 0.21, which leads to about the orders of magnitude of the boundaries we have

omaz =~ 0.98 which satisfies (9). to impose on the parameters.



1) Theoretical analysis: We define in the z, u) plane a compact sét’ (the rectangle
This section establishes a formal result, which support tlve Fig.7):
conclusions of the next paragraph. System (6) is shown to be -
a slowly varying systerthat fulfills assumptions of a theorem W = [=2maz + 10, Zmaz — 0] X [=1 + 0,1 = 1]
given in [15], provided thaq ¢| has an appropriate upperwith > 0 a small constant, such that for eaehe I, h(o)

bound. is in the interior of /. We denote:
2
Proposition. If the line to be tracked has a continuously A —z |
differentiable pseudo curvatues(s) = Hc(s) s.t. wew \/1 —u?)
(i) o] <oy, It is then possible to define; > 0 such that each ball
(i) Fe>0, |F[<e _ ~ B(h(0),r1) is included inW.
then for suff|C|entIy smalk and tracking error at the initial \wWe are now able to define a constahtsuch that
conditions, the tracking error is uniformly bounded. Vo € I,V € B(0, 7"1)'

Proof. Let us define the functiorf s.t. system (6) is

rewritten as || || < As||o|?
= fwo) o) Sl < Bl
As stated in equations (8), for each valuecof I, there ”3V” < 24|
exists an equilibriumo = (z, @); this defines a functioth: 811) -
loa
= h(o) & f(h(7),0) =0 I < Al < A
For eachr we define the deviation from the equilibrium W€ conclude that fOb’ €l andw € B(0,m):
corresponding t@ (7): ov ov _ oV, -
ponding tar(7) Soalig) = SoI()n+ S (g(i,0) - T(0))
w(r) = w(r) = h(o(r)) oV
~112 ~ ~
_ _ = —lwl" + 5= (g(@,0) = J(o)w)
Our purpose is to show that is upper bounded. éUV
The evolution ofw is described by the following equation: < @) + 5 | B||@|*
w
dv _ . dhdo < (-1+24:B|al)|a|”

dar 9(w,0) = do dr .
So, for anyAs € (0,1) there exists: € (0,r;] such that
whereg(w, o) = f(h(o) +10,0). B Vo eI, Vi € B(O,r),
We know that for a constant value ef, w = 0 is an ov
exponentially stable equilibrium. Let us consider the following &Eg(u”;, o) < —As|w)? (13)

Lyapunov function corresponding to a fixed valuecof i .
The five hypotheses of Theorem 5.5 in Chapter 5 of [15]
V(w,0) =o' P(o)w are therefore satisfied for € I andw € B(0,r) (the

_ ) corresponding domain is represented by the stripe around the
In this expressionP(c) is the solution of the LyapunoV |ine of all equilibria):

equation: ”
J(O’)TP(U) + P(0)J(0) = —1Id 1) ”dg | <L

" ~ I
where J(o) is the Jacobian of (1, o) evaluated ati = 0: 2) Yo €I, Af|w]* < V(w,0) < As|w]

9g 3) ikl
J(o) = 0,
(0) = 52(0,0)
2
P(o) is continuously differentiable and definite positive. 4) Vo € L 551l < As|]
v =112
We define the following constants 5 I3 (il
A = mi? min A\ Under these conditions, Theorem 5.5 in [15] gives the follow-
o€l ACSp(P) ing conclusions:
A = max max A . . A
o€l XeSp(P) 1) There existsq, > 0, such that, if|w(0)[| < ry/4t
Ay = 24 and|[|%2 || < € < €42, then the solutions of the system
As = max max [Al for ¢t > 0 are uniformly bounded.
AE;}’Z( oc) 2) Moreover solutions are also uniformly ultimately
: AgAsAysLe
I = max(||—||) bounded with a bound = 5575, for every
oel 8 € (0,1).

where Sp(M) is the set of eigenvalues of the matiix. O



2) Tracking a zigzag: of equations (8) to adapt the parametersand w so that
We illustrate this stability discussion by considering a parti¢he circular equilibrium trajectory has a desired position. This
ular curve which is a sequence of two arcs of circles with aadaptation is possible sineeandw are functions of physical
intermediate inflexion point as shown in Fig.8. Intuitively thiparameters,, k£ and H, at the user choice. For example, it is
curve seems difficult to track because it has not a differentialjessible to make the tracked circle itself to be the equilibrium
curvature. Nevertheless, a numerical simulation shows thatrdjectory. This can be achieved by combining equations (8)
does not matter actually. The radii of the two circles are chosand (11). Theny, k£ and H have to be designed such that

equal tokR = —— = 7L corresponding ter, = 0.7. andw satisfy:
Moreover: '
1—+v1—02
(o0,w) €D (14) W=y (16)
Tracking a zigzag with: H=0.3 m, 6 = 0.7, » = 0.25 Thus, we can impose the position of the equilibrium trajectory
gal ‘ ‘ ‘ ‘ ‘ ‘ w.r.t. any circle with admissible radius. This naturally leads to
0'3 the the idea of a better control in the case of an arbitrary curve.
0.2,
g0 B. Adaptive parameters when tracking an arbitrary target line
£ of
et The strategy is be to adapt the parameteedw dynam-
0'2 ically. This gives a great flexibility to this design which can
V2| w1 The robot fi P to the hori ™ . . . .
sl — sThelr tategl then be modified in function of the needs by adapting on-line

3 Equilibrium trajectories

3 Theractual irdiact the behavior ofvy, £k and H which will then be functions of
04 ™ e actual trajectory

the time. Among a lot of possibilities, we just give here the
04 02 0 02 04 06 08 extension of the idea presented in the previous paragraph; the
xinm goal is to practically stabilize® on the tracked line, with an
adaptation of the forward velocity according to the curvature.
Fig. 8. A difficult line to track In fact relation (16) aims at stabilizing on the osculating
circle of the line at the target point, as shown in Fig.9
The robot is initially stabilized on the first arc equilibrium
trajectory and we want to know if it will join the equilibrium
trajectory of the second arc. We can look again at Fig.5 where
the trajectory A4 represents this transition. It is important
to note that the whole trajectory is in the field of vieve.
12| < Zmaaz-
Furthermore, if we evaluate again a stabilizing distafte
at d < 0.05 for this particular trajectory, we find a value less
than2H.

Osculating
circle

We can then draw the following conclusions: if

1) parameters satisfy equation (14)

2) stability marginms > 0.3 everywhere Fig. .
3) two successive inflexion pointd/ and N are always

Practical stabilization of on the line

such thatM N> Dypar = 3H Hence, in order to track a curve with an arbitrary shape, we
then the robot will be able to track this line. have to compute the line curvatdria real time and perform
We now can give a consistent numerical valuedgr,.. (the an on-line adaptation of the design parametgysk, H so
upper bound o%) from the simulation of the zigzag tracking:that condition (16) is satisfied for this curvature. Then%f
is small enough we can consider thatis stabilized on the
osculating circle at the target point, which is very close to the
line. In addition, we have still one degree of freedom on the
opH (15) parameters so we can choose to increasé straight lines
Dian and decrease it in bends. This last strategy ensures that the
transversal acceleration of the robot is not to high, thus, the
V. TAKING ADVANTAGE OF THE ANALYSIS wheels are prevented from slipping in that direction.
A. Select the equilibrium trajectory when tracking a circle
The discussion presented in section IV-A.1 has show hOWZThis can be done by extracting from the; image the co_ordinates of two
. . s . more points of the line around the target point and computing the curvature
the design parameters influence the equilibrium traject

i h . ObY the circle passing through those points; obviously, this requires a more
when tracking a circular line. We can therefore take advantageurate calibration of the image in the neighborhood of the horizon.

MN> D,,,. for two successive inflexion pointd&/ and N,
can be strengthen in

do
‘£| < €maz =



C. Experimental results Tracking of a particular curve

150 ; ; : : ; ; :
A simplified version of this adaptive control strategy ha . Rmin=40 cm, H=27 cm

. . . An image error
been experimentally tested on a target line having the she o ~ |
represented in Fig.10, including the adaptation of the spe
vg according to the curvature (faster in straight lines ar
slower in bends). We report here an experiment with

50+

AE” B2 |B3 C

Zin mm
O

| Consequence

-100f of the initial 1
condition offset

- ‘ A co[npletg turn ‘

Fig. 10. The test path 150 0005 001 0015 002 0025 003 0035 004
tins

P

Fig. 12. Evolution ofZ when tracking a curve with dynamical parameters
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