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Abstract--Continuous time algorithms for the on-line esti- 
mation of microbial specific growth rates of fermentation 
processes are proposed. An important feature of the proposed 
algorithm is that they do not require any kind of analytical 
description of the specific growth rate which is simply considered 
as an unknown bounded time varying parameter. Four different 
input-output configurations are considered. In each case, the 
stability and convergence properties of the algorithms are 
described and their feasibility is illustrated by real life exper- 
iments. 

1. In troduct ion 
CONTINUOUS microbial growth in a completely stirred bioreac- 
tor is commonly described by the following state-space represen- 
tation: 

dX(t) 
dt = lit(t) - O(t)]X(t)  (1) 

dS(t) 
dt  = - k~ i t ( t )X ( t )  + D(t)[Si .( t  ) - -  S(t)] (2) 

with X(t)  the biomass concentration 
S(t) the limiting substrate concentration 
Sin(t) the inlet substrate concentration 
D(t) the dilution rate 
It(t) the specific growth rate 
kl the yield coetficient. 

The growth of microorganisms in bioreactors is often 
accompanied by the formation of synthesis products, either 
soluble in the culture or given off in gaseous form. 

When the formation of products is "growth-associated" 
(Bailey and Ollis, 1977), the production rate per unit of volume 
is written as 

Q(t) = kz#(t)X(t) ,  (3) 

where k 2 is a yield coefficient. A typical example is the anaerobic 
fermentation process where Q(t) is a methane gas flow rate (e.g. 
Andrews, 1969). 

In the case of a liquid reaction product, the mass balance in 
the bioreactor leads to the dynamical equation: 
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dP(tt) = Q(t) - D(t)P(t) (4) 

or 

de(t) 
dt  = kzit( t)X(t)  - D(t)P(t) (5) 

with P(t) the reaction product concentration. A typical example 
is alcohol fermentation (e.g. Luedeking, 1967). 

It is clear from (1)-(5) that the specific growth rate It(t) is a 
key parameter for the description of both biomass growth and 
products formation. This parameter It(t) is known to be a 
complex function of many physico-chemical and biological 
factors like the biomass concentration X, the substrate concen- 
tration S, the product concentration P, the pH, the temperature, 
and various other inhibitors. 

Many different analytical laws have been suggested for 
modelling It(t). The most popular is certainly the "Monod law": 

It*S(t) 
It(t) gm + S(t)' (6) 

where #* is the maximum growth rate and K,, the "Michaelis- 
Menten parameter". But it is far from being the only one: during 
a recent investigation in the scientific literature, the authors 
registered more than 50 different expressions of #(t) to account 
for all the factors influencing the microbial growth. Therefore 
the choice of an appropriate analytical description of #(t) is 
critical in using state-space representations like (1)-(5) in specific 
applications; it is an object of continuing controversy in the 
literature. 

To avoid this choice, #(t) can be considered as a time varying 
parameter estimated in real time. This paper is devoted to the 
design of adaptive algorithms for the tracking of the specific 
growth rate It(t) from input-output data. 

Obviously, extended Kalman filtering could be used to solve 
this estimation problem (Stephanopoulos and Ka-Yiu-San, 
1984) but this approach leads to complex non-linear algorithms 
whose stability and convergence properties are difficult to 
evaluate. 

The contribution of this paper is to show that simple 
algorithms for the tracking of It(t) can be proved to be stable, 
to analyse their asymptotic convergence properties and to 
illustrate their feasibility by real life experiments. 

The problem of on-line estimation of specific growth rate 
parameters has been previously considered by Aborhey and 
Williamson (1978): they assume that #(t) obeys the Monod law 
(6) and they propose a stable algorithm for the on-line estimation 
of the constant parameters It* and K,, from noise f r ee  measure- 
ments of both biomass concentration X(t )  and substrate concen- 
tration S(t). Here algorithms for the estimation of a completely 
unknown time varying parameter It(t), are described. 

Furthermore, it is assumed that only noisy measurements of 
one state variable are available. Different estimation algorithms 
are presented depending on which variable is measured (Section 
3: measurements of X, Section 4: measurements of S, Section 5: 
measurements of P, Section 6: measurements of Q). The real 
life experiments are described in Section 7, while the basic 
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assumptions for the derivation and the stability analysis of the 
algorithms are stated in Section 2. 

2. Basic assumptions 
The analysis of the algorithms presented in the next sections 

will be based on the following mild and realistic assumptions: 

(A1) The specific growth ra te /40 is positive and bounded (the 
maximum growth r a t e / P  is unknown): 

0 ~< ,u(t) ~< ,u*. (7) 

(A2) The inputs D(t) (dilution rate) and S~.(t) (influent substrate 
concentration) are positive and bounded: 

D(t) <~ O . . . .  Sin(f ) ~ Sma x. {8) 

(A3) There is no growth without substrate: 

#(t) = 0 when S(t) = 0. (9) 

(A4) The time derivative of,u(t) is bounded: 

d/~(t) 
dt ~< Ml '  (10) 

Under these assumptions, and provided klX(O) + S(O) <~ S . . . .  
it can be shown (Dochain and Bastin, 1984) that X(t), S(t) and 
Q(t) are bounded as follows for all t: 

0 ~ S(t) <~ Smax (11) 

0 <~ X(t) -< Sma~ ~ Xma~ (12) 

0 <<. Q(t) <~ ~t*S. ,~x & Q~.~. (13) 

In addition to these basic assumptions, throughout the paper, 
the inputs D(t) and Si.(t) are assumed known (either by measure- 
ment or by a choice of the user) and the yield coefficients k~ 
and k 2 are unknown (and therefore cannot be used in the 
algorithms), 

3. On-line estimation of It(t) from noisy measurements X(t) 
Statement of the algorithm. Assume that a noisy measurement 

X,,(t) of the biomass concentration X(t) is available on line: 

Xm(t ) = X(t) + g(t) (14) 

with e(t) the measurement noise. Then the following algorithm 
can be used to estimate/40: 

dR(t) 
= [~(t) - O(t) + cl{X~,(t) - 8(t)}] X~(t) (15a) 

dt 

d/~(t~) = c2Xm(t ) [Xm(t) -- aO(t)] (15b) 
dt 

with C l > 0, c2 > 0 design parameters. 

Stability analysis. Define the estimation errors as 

)~(t) = X ( t ) -  8(0 (16a) 

fi(t) = ~(t) - li(t). (16b) 

Assuming that: 

(B1) the measurement noise is bounded: 

I~t)l ~< M2; (17) 

(B2) the biomass concentration measurement Xmlt) is strictly 
positive: 

Xm{t)>~ ~ > 0 :  (18) 

the following stability and convergence properties can be 
established (Dochain, 1986). 

Theorem 1. Under assumptions (AI)-(A4), (B1) and (B2), the 
algorithm (16a, b) is globally stable (i.e. the errors )Tit) and/~(t) 
are bounded for all t). 

This theorem shows that the estimation error fi(t) is bounded, 
provided the design parameters Cl and c 2 are taken positive. 
But it does not provide any useful information on the accuracy 
of the estimation of the specific growth rate/40. Actually, for a 
slightly restricted choice of c~ and c 2, an upper bound of the 
asymptotic accuracy of/~(t) can be calculated explicitly. 

Assuming that: 
(B3) the design parameters c~ and c: are chosen such that A 

has real distinct eigenvalues 
gives the following convergence result. 

Theorem 2. Under assumptions (A1) (A4t and (BI) (B3), the 
error fi(t) is asymptotically bounded as follows. 

. . . .  ~{ ~1_' , B  2 M 2 )' lim supl/~(t)t = B,M2 + c2(M, + '2 f {19) 

with B2 & Xm,, + M2 and B~ -~ max[D . . . .  0t* + c~B2)]. 

Simulation results. In the previous paragraph, the global 
stability and the asymptotic accuracy of the estimation error 
fi(t) was analysed. To complete this analysis, the following 
simulation illustrates the transient behaviour of the algorithm. 
Consider a "true" fermentation process given by equations (1), 
(2) with a Monod specific growth rate (6), and with the following 
parameter and initial values: 

,u* =0.4  K m =0.4  k t = 2 5  

S(0) = 0.893 X(0) = 2.054 

~(0t = 0.06 2(0) = x(0). 

Figure 1 shows an experiment with a constant dilution rate 
D = 0.05, a square wave input Si,(t), an additional output white 
noise (a = 0.2) and design parameters c~ = 1, c2 = 0.24. 

4. On-line estimation of It(t) from noisy measurements of S(t) 
Statement of the algorithm. Assume that a noisy measurement 

Sin(t) of the substrate concentration S(t) is available on line: 

Sm(t) = S(t) + Eft). (20) 

The basic idea for the derivation of the estimation algorithm is 
that, in microbial growth, the rate of biomass production is 
proportional to the rate of substrate consumption. Therefore, 
in a first stage, the on-line measurements of S(t) can be exploited 
to provide "pseudo" measurements of k~X(t), without any 
knowledge of ,u/t) being necessary (Williamson, 1977). Then, in 
a second stage, this pseudo measurement is used to estimate #(t) 
by an algorithm analogous to that of Section 3. 

Let the auxiliary state variable Z(t) be defined by: 

dZ.(t) = D(t)[S~n(t)- Z(t)] (21) 
dt 

with 0 ~< Z(t) < ac, arbitrary. Clearly, for given Z(0), Z(t) can 
be computed in real time, in parallel to the process operation, 
since D(t) and S~,(t) are known by assumption (Section 2). Then, 
an on-line pseudo measurement of Y(t) ~- k~X(t) is given by 

Y~(t) = Z(t) - S~.(t). (22) 
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strictly positive (D(t) I> ,5 > O, for all t), it is evident from (26) 
that ~ t )  converges exponentially to 0 (with rate ,5 at least). In 
such a case, the effect of the arbitrary choice of Z(O) vanishes 
exponentially and the pseudo measurement Ym(t) becomes cor- 
rupted only by the measurement nosie e(t). 

5. On-line estimation of  It(t) from noisy measurement of  P(t) 
Assume that a noisy measurement Pro(t) of the liquid product 

concentration P(t) is available on line: 

Pm(t) = P(t) + e(t). (29) 

The derivation of the algorithm is based on the fact that the 
product formation rate is, by definition, proportional to the 
biomass growth rate (5). Hence, the derivation closely follows 
that of the previous section and only essential explanations are 
included. 

An auxiliary state variable Z(t) is defined by: 

dZ(t) 
dt 

- -  = --D(t)Z(t) 0 < Z(O) < oo, arbitrary. (30) 

Here, it is obvious that Z(t) can be considered as an estimate 
of P(t)-Y(t), with Y(t) z~ k2X(t)" Then, the pseudo measurement 
of Y(t) is defined as: 

Ym(t) = "P~(t) -- Z(t) (31) 

and the algorithm (23a, b) is used for the estimation of #(t). If 
D(t) is strictly positive (O(t) t> ,5 > 0), then lira Z(t) = 0 when t --* 
oo and the pseudo measurement Ym(t) tends to the actual 

measurement Pro(t). 

FIG. 1. On-line estimation of #(t) from X(t): simulation result. 

Finally, the adaptive estimation of #(t) is performed by an 
algorithm similar to (15a, b): 

d P(t) 
= {/~(t) - D(t) + cl[Ym(t) -- £(t)]}Ym(t) (23a) 

dt 

d/~(t) 
dt = c2 Ym(t) [ Ym(t) - l~(t)]. (23b) 

The motivation for the introduction of Z(t) and Ym(t) is given 
by the following analysis. 

Stability and convergence properties. From (1), (2): 

d 
dt [ Y(t) + S(t)] = D(t)[S~.(t) - (Y(t) + S(t))]. (24) 

Then, comparing with (21), Z(t) can obviously be considered as 
an on-line estimate of Y(t) + S(t), with an estimation error 

to(t) = Z(t) - [ r ( t )  + S(t)] (25) 

governed by the stable dynamical equation 

dto(t) 
d~i- = -D(t)m(t),  to(0) = Z(0) - Y(0) - S(0). (26) 

The expression (22) for Ym(t) follows readily and can also be 
written 

Ym(t) = Y(t) + to(t) -- e(t) = Y(t) + ~(t). (27) 

If the measurement noise e(t) is bounded, the pseudo measure- 
ment noise g(t) is also bounded: 

le-(t)l ~< M2 + Ico(O)l. (28) 

The stability and convergence results of Section 3 can then be 
applied without restriction. Furthermore, if the dilution rate is 

6. On-line estimation of  It(t) from noisy measurements of  Q(t) 
Assume that a noisy measurement Qm(t) of the production 

rate Q(t) is available on line: 

Qm(t) = Q(t) 4- e(t). (32) 

The derivative of (3) can be written 

dQ(t) 
dt = ot(t)Q(t) - D(t)Q(t) (33) 

with 

I d# 
~t(t) =/~(t) +/~(t~ d-t'" (34) 

Equation (33) is clearly analogous to the biomass growth 
equation (1). Therefore an algorithm similar to (15a, b) can be 
used to estimate ~(t): 

dQ(t) 
dt = { ~ ( t )  - -  O(t) -F C, [ Q m ( t )  - -  O ( t ) ] } Q m ( t )  (35a) 

d~(t) 
d t  = c z Q m ( t ) [ Q m ( t )  - O(t)], (35b) 

while an on-line estimate o f /40  readily derives from (34): 

dg 
d~ - =  --~(t)[p¢t)--a(t)]. (36) 

The stability and convergence properties of algorithm (35a, b) 
follow from Theorems 1 and 2 (provided #(t) > 0 for all t). On 
the other hand, it is evident that (36) is globally stable provided 
~(o) > o. 

7. Real-life applications 
In this section, three applications on data from real life 

bioreactors are presented. In these applications, the estimation 
algorithms have been implemented numerically by simply using 
Euler discretization. 
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Estimation of  p(t)from biomass measurements X(t). The process 
is a continuous fermentation of lactoserum by Rhodopseuno- 
monas capsulata microorganisms, producing hydrogen (H2). the 
biomass concentration was measured on line via optical sensors 
with a sampling period of 1 h. the data were kindly provided 
by C. Vialas (1984) from the LAG. 

The experiment under interest (Fig. 2) is a start-up of the 
reactor, with constant inputs 

D = 0 . 0 5 5 h - '  S i ,=  5mM 

and the design parameters are set to 

c I = 1.0 c 2 =0.24. 

The initial value of X is 0.5 while two different initial conditions 
of fi are tried (0.055 and 0.11). Figure 2b shows that the initial 
conditions effect vanish after 15 h. 

As a matter of validation, Fig. 2c shows an on-line estimation 
of the substrate concentration, based on the on-line estimate 
~(t) and given by the following expression (which derives readily 
from (2)): 

d~(t) 

dt 
- -  = - k , # ( t ) X ( t )  - D ( t ) [ S ~ . ( t )  - ~(t)] (37) 

with a value k~ = 2.403 obtained from an off-line identification 
study (Vialas, 1984). 

One can observe the very good agreement between this on- 
line estimate $(t) and a few measurements obtained by off-line 
chemical analysis which are also indicated in the figure. 

On the choice of  the design parameters c~ and %. In these real- 
life applications, this choice is made empirically after a set of 
simulations of a process model which is presumed to behave 
approximately as the "true" system. 

This strategy is well illustrated by the foregoing application. 
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FIG. 3. On-line estimation of Idt) from P(t): real life result. 
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FIG. 2. On-line estimation of #(0 and S(t) from X(t): real life 
result. 

Indeed, the same dilution rate, the same inlet substrate concen- 
tration, the same sampling period and the same design par- 
ameters c~ and c a are used in the simulation (Fig. 1) and in the 
real-life experiment (Fig. 2), clearly leading to satisfactory results 
in both cases. The choice of c~ and c 2 can also be validated 
from off-line additional measurements (as in Fig. 2cj: this will 
be illustrated further in the next application. 

If the bounds Ma and M 2 are known to the user from prior 
knowledge on the process, the asymptotic bound on fi (I 9) could 
be a useful tool for an optimal choice of the design parameters: 
a detailed discussion can be found in Dochain (1986J. 

Estimation of  p-(tl fi'om liquid product concentration measure- 
ments. The process is a batch anaerobic non-sterile fermentation 
of orange juice by yeasts, producing ethanol. The ethanol 
concentration (i.e. P(t)) is measured with a sampling period of 
10min. The data were provided by A. Pauss (1986) from the 
Unit of Bioengineering (University of Louvain). 

The experiment is conducted under the conditions: 

Z(O) - 0 NO) - 0 £(0) - 0 

c~ - 3.80 c2 - 3.80. 

In this application, the design parameters c~ and c2 have been 
calibrated from the nine off-line measurements of the yeast 
concentration (plate counting). They are chosen such thal the 
estimate of X, 

dX 
dt 

fits the off-line data as well as possible (Fig. 3c). 
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FIG. 4. On-line estimation of k~(t) from Q(t): real life result. 

The result, given in Fig. 3, clearly shows a realistic behaviour 
of the growth rate estimate/i. 

Estimation of ~(t)from production rate measurements Q(t). The 
process is an anaerobic digestion pilot plant, with methane gas 
production (Bastin et al., 1983). The methane gas flow rate 
(which is here the production rate Q(t)) is measured on line 
through a gas meter, with a sampling period of I h. 

The estimation experiment was carried out over a period of 
14 days. The operating conditions were a constant dilution rate 
D = 0.1 day - J and a step of inlet substance concentration (from 
10 to 2 0 g C O D l - l d a y - 1 ) .  The following design parameters 
and initial conditions were used. 

c 1 = 15, c2=20 ,  a(0)=/I (0)=0.1day -1, (~(0)=0.8day -1. 

Figure 4 shows the evolution of the estimates ~(t), p(t) and Q(t) 
during the experiment. 

8. Conclusions 
This paper has dealt with the problem of designing estimation 

schemes for the specific growth rate of fermentation process, 
when it is considered as a time varying unknown parameter. 

Continuous time adaptive algorithms for the estimation of 
#(t) have been proposed, depending on which variables are 
available from measurements. The stability and convergence 
properties of the algorithms have been analysed. An analytical 
expression of the relationship between the design parameters 
and the asymptotic bound on the estimation error has been 
calculated. 

It is also worth noting that the proposed algorithms can be 
coupled, if desired, with adaptive observers of the other state 
variables (Dochain and Bastin, 1985) or with adaptive regulators 
(Dochain and Bastin, 1984, 1985; Bastin and Dochain, 1985). 

Acknowledgements--The authors thank C. Vialas and A. Cheruy 
from the Laboratoire d' Automatique de Grenoble; H. Naveau, 
E. J. Nyns, A. Pauss and D. Poncelet from the Unit6 de 
G6nie Biologique (University of Louvain); M. lnstalle from the 
Laboratoire d'Automatique (University of Louvain) and 
M. Gevers from the Department of System Engineering (Austral- 
ian National University, Canberra) for fruitful discussions about 
this work and for providing the experimental data. 

References 
Aborhey, S. and D. Williamson (1978). State and parameter 

estimation of microbial growth processes. Automatica, 14, 
493-498. 

Andrews, J. F. (1969). Dynamic model of the anaerobic digestion 
process. J. Sanit. Engng Div. ASCE, 95, 95-116. 

Bailey, J. E. and D. F. Ollis (1977). Biochemical Engineering 
Fundamentals. McGraw-Hill, New York. 

Bastin, G., D. Dochain, M. Haest, M. Installe and P. Opdenacker 
(1983). Identification and adaptive control of a biomethaniz- 
ation process. In Vansteenkiste, G. C. and P. C. Young (Eds), 
Modelling and Data Analysis in Biotechnology and Medical 
Engineering, pp. 271-282. North-Holland, New York. 

Bastin, G. and D. Dochain (1985). Stable adaptive controllers 
for waste treatment by anaerobic digestion. Envir. Technol. 
Lett., 6, 584-583. 

Dochain, D. (1986). On-line parameter estimation, adaptive 
state estimation, adaptive control of fermentation processes. 
Ph.D. Thesis, University of Louvain. 

Dochain, D. and G. Bastin (1984). Adaptive identification and 
control algorithms for non-linear bacterial growth systems. 
Automatica, 20, 621-634. 

Dochain, D. and G. Bastin (1985). Stable adaptive algorithms 
for estimation and control of fermentation processes. Pre- 
prints, 1st IFAC Syrup, Mod. Control Biotechnol. Process., 
Noordwijkerhout, The Netherlands, December 1985, 
pp. 1-6. 

Luedeking, R. (1967). Fermentation process kinetics. In 
Blakeborough, N. (Ed.), Biochemical and Biological Engineer- 
ing. Academic Press, New York. 

Pauss, A., K. Monzambe, H.-P. Naveau and E. J. Nyns (1986). 
Des communaut6s microbiennes mixtes peuvent-elles 
engendrer des fermentations industrielles stables en conditions 
non st6riles? ler Congr+s de la Soci6t6 Frangaise de Microbiol- 
ogie, Toulouse, France, 3-5 Avril 1986. 

Stephanopoulos, G. and Ka-Yiu-San (1984). Studies on on-line 
bioreactor identification. Biotechnol. Bioengng, 26,1176 1180. 

Vialas, C. (1984). Mod61isation et contribution & la conception 
d'un proc6d6 biotechnologique. Ph.D. Thesis, INPG, Greno- 
ble, 

Williamson, D. (1977). Observation of bilinear systems with 
application to biological control. Automatica, 13, 243-255. 


