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Abstract. This article deals with the modeling of junctions in a road network
from a macroscopic point of view. After reviewing the Aw & Rascle second
order model, a compatible junction model is proposed. The properties of this
model and particularly the stability are analyzed. It turns out that this model

presents physically acceptable solutions, is able to represent the capacity drop
phenomenon and can be used to simulate the traffic evolution on a network.

1. Introduction. In the fluid paradigm for road traffic modeling, the traffic is
described in terms of two basic macroscopic variables: the density and the speed of
the vehicles at position x along the road at time t (denoted ρ(x, t) and v(x, t)). A
usual way to describe a network traffic model is as follows:

• First, the equations binding the values of ρ and v to the initial conditions on
an infinite single road are considered. These equations are usually a set of
partial differential equations (PDE). A traditional problem studied for such
systems is the Riemann problem which is an initial value problem where the
initial condition consists of two constant values:

(ρ(x, 0), v(x, 0)) =

{

(ρl, vl) if x < 0

(ρr, vr) if x ≥ 0.
(1)

The Riemann problem is important, not only since it allows an explicit
solution but also because the solution of any initial value problem with arbi-
trary initial conditions can be constructed from a set of appropriate Riemann
problems (see e.g. [3]).

• Then, the junctions at the nodes of the network are introduced. The junctions
represent the connections between different roads, for example the merging of
two roads in one or the fork of one road in two. An appropriate description of
the behaviour of the drivers at the junction must then be provided. One way
to do this is to describe the solution of the Riemann problem at the junction.

If we consider a junction with some incoming and some outgoing roads, the
initial state is

(ρi(x, 0), vi(x, 0)) = (ρi,0, vi,0) ∀x, ∀i (2)

2000 Mathematics Subject Classification. Primary: 35L; Secondary: 35L65.
Key words and phrases. Traffic flow, intersections, coupling conditions, network.
The first author is an Aspirant FNRS. This paper presents research results of the Belgian

Programme on Interuniversity Attraction Poles, initiated by the Belgian Federal Science Policy
Office. The scientific responsibility rests with its author(s).

227



228 BERTRAND HAUT AND GEORGES BASTIN

incoming
roads

outgoing
roads

x0

where subscript i refers to road i. As we shall see later in this paper, the
Riemann problem (2) is underdetermined. Additional constraints are needed
to get a unique solution. The establishment of these additional conditions
constitutes one of the main parts of this article.

The first time and space continuous fluid flow models that were developed
in the literature were based on the LWR model (see [15], [17], [12], [5], [9] and
[13]). The LWR model is a first order model which means that there is only
one PDE describing the evolution of the traffic state and that the solution
to the Riemann problem (1) consists of one wave connecting the two initial
states.

In this paper we intend to establish a second order traffic model for road

networks that is based on the Aw and Rascle second order model for single

roads (see [2]). In Section 2, we briefly review the Aw & Rascle model. In
Section 3 the model of the junction is presented. This model expresses which
solution of the Riemann problem at the junction is selected. In Section 4 the
different properties of the model are analyzed. The existence of a solution in
the BV (bounded variation) space is demonstrated in Section 5. The model is
compared with the existing models and some conclusions are drawn in Section
6.

2. The Aw & Rascle model for single roads. The Aw and Rascle model
(see [2]) for a single road is described by two equations:

∂tρ + ∂x(ρv) = 0 (3)

(∂t + v∂x)v + (∂t + v∂x)p(ρ) = 0. (4)

where p(ρ) is a smooth increasing function of the density such as d2

dρ2 (ρp(ρ)) >

0. All the drivers move in the direction of positive x (v > 0). The first equation
represents the conservation of the flow while the second equation describes
the evolution of the speed of the drivers in a function of the surrounding
traffic state. One additional term may be added to the right part of (4),

the relaxation term V (ρ)−v

τ
. This term expresses the fact that the drivers

tend to adopt a preferential speed V function of the surrounding density ρ.
The dynamics induced by this term are usually slow and are negligible when
dealing with very short time such as the crossing of a junction. This term will
thus be omitted in this article.

Multiplying (3) by (v + p(ρ)) and (4) by ρ and adding up these two equa-
tions, we obtain

∂t(ρ(v + p(ρ))) + ∂x(ρv(v + p(ρ))) = 0.

Therefore the system is composed of two conserved quantities: ρ and ρ(v +
p(ρ)).
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The system (3)–(4) may have discontinuous solutions. The meaning of the
differential equations in presence of discontinuities and the admissibility of
these discontinuities are explained in [3]. Because the system is expressed by
two equations of conservation, the solution of a Riemann problem

(ρ(x, 0), v(x, 0)) =

{

Ul = (ρl, vl) if x < 0

Ur = (ρr, vr) if x ≥ 0

consists of the connection of the left state Ul to an intermediate state Uc by a
first wave and the connection of this intermediate state to the right state Ur

by a second wave. There are two waves because there are two conservation
laws. The two waves are different:

– the first one may be a shock or a rarefaction wave. A shock wave is a
discontinuity in ρ and/or in v travelling at a constant speed. A rarefaction
wave is a self-similar solution, i.e. it depends only on x/t.

– the second one must be a contact discontinuity. The contact discontinuity
separates two constant states with the same speed but different densities.
This contact discontinuity travels at the same speed as the vehicles.

We will not present here the complete and rigorous description of the Rie-
mann problem (see [2]) but only the two most simple and common cases. In
the first two graphs of Figure 1, we have represented in the (ρ, ρv) plane:

– the two initial state Ul and Ur;
– the straight line (ρ, ρvr) passing through 0 and Ur;
– the curve Υ = (ρ, ρK − ρp(ρ)) passing through Ul. There is only one

value of K such that this curve passes through Ul, this value is equal to
vl + p(ρl);

– the intermediate state Uc which is at the intersection of the straight line
and Υ.

Two cases must be considered:
– If vl > vr, then the solution consists of a shock wave connecting Ul to Uc

followed by a contact discontinuity connecting Uc to Ur. See Figure 1 a).
The first graph represents the three states in the (ρ, ρv) plane, the second
graph the initial state in the (ρ, x) plane and the third graph the state
on the road after some time. The speed of the shock wave is equal to the
slope of the line connecting Ul to Uc.

– If vl < vr, then the solution consists of a rarefaction wave connecting Ul

to Uc followed by a contact discontinuity connecting Uc to Ur. See Figure
1 b). The space interval occupied by the rarefaction wave is

[

d(ρK − ρp(ρ))

dρ

∣

∣

∣

∣

ρ=ρl

t,
d(ρK − ρp(ρ))

dρ

∣

∣

∣

∣

ρ=ρc

t

]

which correspond to t times the slope of the curve Υ evaluated at Ul and
Uc.



230 BERTRAND HAUT AND GEORGES BASTIN

x

ρ

x

ρ

x

ρ

x

ρ

a1)

a2)

a3)

b1)

b2)

b3)

t = 0

t > 0

ρr

ρr

ρr

ρr

ρl

ρl

ρl

ρc ρc

ρl

ρρ

ρv

Ur

Uc

ρv

Ur

Uc

Ul

Ul

ρl ρc ρr

ρlvl

ρrvr

ρcvc

ρrvr

ρcvc

ρlvl

ρc ρl ρr

Υ Υ

Figure 1. Two cases are represented in this figure. The first case
(a) brings into play a shock wave and a contact discontinuity. In
the second case (b) a rarefaction wave and a contact discontinuity
are present. For each case, three graphs are represented. In the
first row, the two initial states Ul, Ur and the intermediate state
Uc are represented. The intermediate state is at the intersection
of the curve Υ and the straight line passing trough 0 and Ur. The
second row represents the corresponding initial states in the (x, ρ)
plane. The states of the densities after some time are represented
in the last row.
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3. The Riemann problem at the junction. Having described the solution of a
Riemann problem on a single road, it remains to depict the solution of a Riemann
problem at junctions in order to be able to model the complete evolution of the
traffic state on a network.

If we consider a Riemann problem at a junction, the initial state is

(ρi(x, 0), vi(x, 0)) = (ρi,0, vi,0) ∀x, ∀i (5)

where subscript i refers to road i. See Figure 2 a) for an example of a junction with
two incoming and one outgoing roads. Since a constant state is an equilibrium for

ρ

x

t = 0

x

ρ
t > 0

a) b)

ρ1,0 ρ1,0

ρ3,0

ρ2,0

ρ2,0

ρ3,0

ρ̄1

ρ̄2

ρ̄3

Figure 2. A Riemann problem for a junction with two incoming
and one outgoing roads: the initial density and the density after
some times.

the single road model, a modification of the state may only appear initially at the
junction. We may therefore consider distinct Riemann problems on each road:

(ρi(x, 0), vi(x, 0)) =

{

(ρ̄i, v̄i) if x = 0

(ρi,0, vi,0) if x 6= 0.
(6)

where (ρ̄i, v̄i) is the new state on the road i after the first interaction between
the drivers. The set of solutions of these Riemann problems on each road (6) will
provide the solution of the junction Riemann problem (see Fig. 2 b)). The junction
modeling problem then implies that we select appropriate values ρ̄i, v̄i such that
the collection of solutions of the Riemann problem (6) provides a global consistent
solutions to the overall Riemann problem (5) at the junction.

Of course, the waves produced on the incoming (resp. outgoing) roads must have
a negative (resp. positive) velocity to go away from the junction in order to get a
sensible model. To take this constraint into account in the model, we will restrict
the set of possible values of (ρ̄i, v̄i) to a subset of R

2 called the admissible region

such that all waves produced by the Riemann problems (6) have negative (resp.
positive) speed if i corresponds to an incoming (resp. outgoing) road.

This section is structured as follow: first the admissible regions for incoming and
outgoing road are described and then an additional condition is presented in order
to have a unique physically acceptable solution to the problem of selecting (ρ̄i, v̄i).

3.1. The admissible regions for the junction models. As mentioned in the
introduction, in order to formulate a junction model we first need to explicit for each
road the admissible regions for the values of (ρ̄i, v̄i). The shape of this admissible
region will be different if we consider an incoming or an outgoing road.
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3.1.1. Incoming road. On incoming roads, only the negative waves produced by the
Riemann problem

(ρi(x, 0), vi(x, 0)) =

{

(ρ̄i, v̄i) if x = 0

(ρi,0, vi,0) if x < 0

are obviously admissible. Since the speed of the second type wave (contact discon-
tinuity with a speed equal to the speed of the drivers) is necessarily positive, the
only admissible wave is a wave of the first type (shock or rarefaction wave). Hence
(ρ̄i, ρ̄iv̄i) must be on the curve Υ passing through (ρi,0, ρi,0vi,0) where Υ is defined
as

Υ = (ρ, γ(ρ)) = (ρ, ρK − ρp(ρ))

with

K = vi,0 + p(ρi,0).

In this case, the intermediate state (Uc in Figure 1) of the Riemann problem
(ρi,0, ρi,0vi,0)–(ρ̄i, ρ̄iv̄i) is (ρ̄i, ρ̄iv̄i) and there is no second wave with positive speed.
Defining σ as

σ = argmax
ρ

γ(ρ),

two cases can be considered:

1. If ρi,0 < σ then the only possibility to have a wave with negative speed, is
to have ρ̄i > τ(ρi,0) (see Fig. 3(a)) where, for each ρ 6= σ, τ(ρ) is the unique
number τ(ρ) 6= ρ such that

γ(ρ) = γ(τ(ρ)).

In that case, the wave on the incoming road is a shock wave with a negative
speed equal to the slope of the curve connecting Ui,0 to Ūi.

2. If ρi,0 ≥ σ then two sub-cases must be distinguished:
• if ρ̄i ≥ ρi,0 the solution consists of a shock wave with a negative speed;
• if ρ̄i ≤ ρi,0 the solution will be a rarefaction wave. In order that the right

limit of this rarefaction wave has a negative speed, we need that ρ̄i ≥ σ
(see Fig. 3(b)).

The admissible region for an incoming road is thus composed of the part of the
curve Υ represented in Fig. 3 and, of course, (ρi,0, vi,0) for which there is no wave.

To be complete, we can specify the admissible region case of an empty road
(ρi,0 = 0). In this case, the variable vi,0 has no physical meaning but only a
mathematical sense. We can consider two cases:

• If vi,0 6= 0, one can show that the state (0, vi,0) cannot be connected to another
state with a non-positive speed. The admissible region is thus (ρi,0, vi,0).

• If vi,0 = 0, the state (0, 0) can be connected to any state (ρ̄i, 0). The choice
of the density ρ̄i is arbitrary since all the solutions of the Riemann problem

(ρ(x, 0), v(x, 0)) =

{

(0, 0) if x < 0

(ρ̄i, 0) if x = 0

are identical in L1[−∞, 0]. Even if all values are possible for ρ̄i, the most
meaningful is zero like the density on the incoming road.

We can notice a great similarity with the LWR first order models for which
a value called the “sending capacity” or the “traffic demand” was introduced by
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Figure 3. The admissible regions for an incoming road.

Daganzo (see [6] for details). This value represents the greatest possible outflow of
a road segment and is equal to

sending capacity =

{

Q(ρ) if ρ ≤ arg maxρ Q(ρ)

maxQ(ρ) if ρ > arg maxρ Q(ρ)

where Q(ρ) represents the flow associated to the density ρ. In our second order
model, the greatest possible outflow of a road segment is the maximal flow for a
point on the admissible region and is equal to

sending capacity =

{

γ(ρ) if ρ ≤ argmaxρ γ(ρ)

max γ(ρ) if ρ > argmaxρ γ(ρ).

The similarity is obvious with the replacement of Q(ρ) by γ(ρ). In the second order
model, the sending capacity is a function of the density but also of the speed (via
the value of vi,0 + p(ρi,0) which is used in the definition of γ).
The admissible region satisfies some intuitive ideas:
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• if there is nobody on the incoming road (ρi,0 = 0), the maximal flow allowed
to leave the road is zero;

• if there are few vehicles on the incoming road (ρi,0 ≪ σ), the flow allowed to
leave the road is low (less than ρi,0vi,0);

• if there is a lot of vehicles on the incoming road (ρi,0 ≫ σ), the flow allowed
to leave the road may be high (up to γ(σ)).

3.1.2. Outgoing road. On outgoing roads, only the positive waves produced by the
Riemann problem

(ρi(x, 0), vi(x, 0)) =

{

(ρ̄i, v̄i) if x = 0

(ρi,0, vi,0) if x > 0

are obviously admissible. This case is more complex than the previous one since we
may have here the simultaneous presence of the two waves. The second wave has
always a positive speed, we can thus connect any intermediate state Uc on the curve
(ρ, ρvi,0) to Ui,0 = (ρi,0, ρi,0vi,0). The admissible region is thus the (ρ, ρvi,0) curve
and the region of the (ρ, ρv)–plane which can be connected to the curve (ρ, ρvi,0)
with any rarefaction or shock wave with positive speed.

In order to characterize the admissible region all the possible curves Υ are con-
sidered. Υ has been defined as a curve passing by the left state of the Riemann
problem ( (ρ̄i, ρ̄iv̄i) in this case). Since Υ only depends on K = v̄i +p(ρ̄i), consider-
ing all curves Υ means considering all the possible values of K = v̄i +p(ρ̄i) ∈ ]0,∞[.
To emphasize the fact that the curve Υ depends on the value K, it will be denoted
ΥK from now on.

Three cases must be considered (see Fig. 4):

a: If 0 ≤ K ≤ vi,0 then the curve ΥK is necessarily located under the curve
(ρ, ρvi,0). The left state (ρ̄i, v̄i) is connected to the intermediate state Uc

which is the vacuum (ρ = 0) by a rarefaction wave. In order that the left limit
of this rarefaction wave has a positive speed, we need that

d(ρK − ρp(ρ))

dρ

∣

∣

∣

∣

ρ=ρ̄i

≥ 0.

It implies that ρ̄i must be lesser than σK (see Fig. 4(a)).
b: If vi,0 < K and γK(σK) ≤ σKvi,0 then the curve ΥK is greater than the

curve (ρ, ρvi,0) at the beginning but crosses the line before its maximum. If
(ρ̄i, ρ̄iv̄i) is on the part of ΥK above the curve (ρ, ρvi,0), it is connected to the
intermediate state Uc by a shock wave with positive speed. If (ρ̄i, ρ̄iv̄i) is on
the part of ΥK under the curve (ρ, ρvi,0), it is connected to Uc by a rarefaction
wave. In order that the left limit of this rarefaction wave has a positive speed,
we must have ρ̄i lesser than σK (see Fig. 4(b)).

c: If vi,0 < K and γK(σK) > σKvi,0 then the maximum of ΥK is above the
curve (ρ, ρvi,0). If (ρ̄i, ρ̄iv̄i) is on the part of ΥK under the curve (ρ, ρvi,0), it
should be connected to Uc by a rarefaction wave with a negative speed, which
is impossible.

If (ρ̄i, ρ̄iv̄i) is above the straight line, it is connected to Uc by a shock wave
whose speed is the slope of the curve connecting (ρ̄i, ρ̄iv̄i) to Uc. In order to
have a positive slope, we must have that

ρ̄i ≤ τK(ρc)

where ρc is the density of the intermediate state Uc (see Fig. 4(c)).
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Figure 4. Some parts of the admissible region for an outgoing road.

If we combine the admissible regions for all the values of K, we obtain the global
admissible region (AR) for an outgoing road depicted in Figure 5.

In fact, the AR only depends on the speed of the vehicles on the road. If v1 ≤ v2,
the AR associated with v1 will be included in the AR associated with v2. We can
also consider the two limit cases:

• If vi,0 = 0, then the AR is reduced to the states (ρ̄i, 0) for any ρ̄i. The choice
of the density ρ̄i is arbitrary since all the solutions of the Riemann problem
on the outgoing road are identical in L1[0,∞]. Even if all values are possible
for ρ̄i, the most meaningful is ρi,0 like the density on the incoming road.

• If ρi,0 = 0, then the AR is simply a function of the speed vi,0 as described
above. Of course, the variable vi,0 no longer has any physical meaning. To
remove the inconsistence of drivers acting in a function of a non physical

variable, it may be useful to add a relaxation term V (ρ)−v

τ
at the right of (4).

This relaxation term tends to remove such situations where ρi,0 and vi,0 are
both equal to zero.

This AR satisfies some intuitive ideas:

• if there is nearly nobody on the outgoing road (ρi,0 ≈ 0, vi,0 ≫ 0), the AR is
quite large;

• if there are many vehicles on the outgoing road (ρi,0 ≫ 0, vi,0 ≈ 0), the AR
is smaller.

3.2. Additional conditions. The description of the admissible regions has shown
that many states are admissible. It is clear that additional conditions are needed
in order to have a unique solution to the Riemann problem. The choice of these
conditions is the main part of the establishment of a new road junction model.
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Figure 5. The admissible region for an outgoing road.

1. A first condition is indisputable: the conservation of flow. The sum of the
entering flows must be equal to the sum of the leaving flows at the junction.

2. The second equation of the Aw and Rascle model (4) describes the behaviour
of the drivers. It says that the Lagrangian derivative of the speed is equal
to the Lagrangian derivative of −p(ρ). It means that a driver will adapt his
speed if the quantity p(ρ) is modified.

The most natural extension of this behaviour at the junction is

va − vb = p(ρa) − p(ρb)

where the subscripts a and b means “after” and “before” the junction. In other
words, the quantity v + p(ρ), which describes the behaviour of the drivers,
is “conserved” through the junction by the drivers. Here, the meaning of
conservation is not the same as in “conservation of the flow”: the total flow of
the quantity v + p(ρ) is not necessarily the same before and after the junction
but each driver tends to conserve his quantity v + p(ρ) which describes his
behaviour. If there is only one incoming road, all the drivers have the same
behaviour, and thus:

va + p(ρa) = vb + p(ρb).

In the case where there are several incoming roads, it is natural to consider
that the behaviour of the drivers after the junction is an average of the driver
behaviours from the incoming roads. The additional condition used in our
model to represent this fact is:

va + p(ρa) =
∑

i

βi(vi + p(ρi)) (7)

where βi is the proportion of the drivers coming from the incoming road i.
It must be noticed that (7) is an additional assumption which is not mo-

tivated by microscopic considerations. The plausibility of this assumption is
confirmed by the properties of the resulting model (see Section 4).
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Another approach could be to return to the microscopic model underlying
the Aw & Rascle model (see [1]) and analyze what happens at the junction.
This approach is taken in [10, 11] and leads to a homogenization problem
which needs to introduce a new function p(ρ) after the junction.

3. The two previous additional conditions are not sufficient to have a unique
solution to the Riemann problem at the junction. In order to get a unique
solution, like for the first order model (see [12], [5], [14] and [13]), we may
assume that the drivers act such that the flow entering the outgoing roads is
maximized with respect to the previous restrictions.

4. In some case, there still exists two solutions and we may choose to privilege
the one with maximal speed. This is reasonable since the drivers tend to act
in order to maximize their speed. In fact, it does not matter since the solution
will be the same in the L2 norm whatever the choice.

3.2.1. The diverging junction.

1

2

3

It is reasonable to assume that, the drivers having a fixed destination intention,
the proportions of the total flow entering into road 2 and 3 are fixed (α2 and α3).

With the additional conditions presented in section 3.2, the optimization problem
at the junction can be expressed as

max
ρ̄i,v̄i

ρ̄1v̄1

subject to






ρ̄1v̄1 = ρ̄2v̄2

α2

= ρ̄3v̄3

α3

v̄1 + p(ρ̄1) = v̄2 + p(ρ̄2) = v̄3 + p(ρ̄3)
(ρ̄i, v̄i) ∈ ARi

where ARi is the admissible region associated to road i with initial state (ρi,0, vi,0).
The solution of this optimization problem produces the new values of (ρi, vi) at the
junctions which allow us to solve the Riemann problems on each road.

3.2.2. The merge junction.

2

1

3

For the merge junction, we need to introduce a coefficient describing how the avail-
able space on the outgoing road is spread out between the incoming roads in case
of congestion. A simple way to introduce this coefficient is to make it depend on
the flows wishing to enter the outgoing road (see [13]):

β1 =
f∗
1

f∗
1 + f∗

2

(8)

β2 = 1 − β1

where f∗
i is the maximal flow able to leave the road i (the “sending capacity”).

Other coefficients may also be envisaged. With the additional conditions introduced
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above, the optimization problem at the junction can be expressed as

max
ρ̄i,v̄i

ρ̄1v̄1 + ρ̄2v̄2

subject to






ρ̄1v̄1

β1

= ρ̄2v̄2

β2

= ρ̄3v̄3

v̄3 + p(ρ̄3) = β1(v̄1 + p(ρ̄1)) + β2(v̄2 + p(ρ̄2))
(ρ̄i, v̄i) ∈ ARi.

Solving this optimization problem produces the new values of (ρi, vi) at the junc-
tions. These new values are used as initial conditions for the Riemann problems on
each road.

4. Properties of the junction model. The solutions of the Riemann problem at
the junctions have some good properties that will be described in this section. We
shall successively show that the solution of the optimization exists and is unique
(taking into account Condition 4 of Section 3.2), that the solutions are physically
acceptable and finally that they are able to represent some interesting phenomena
such as the capacity drop phenomenon.

4.1. Existence and uniqueness. The existence and uniqueness is proved by the
following line of reasoning:

1. Given the initial states on the incoming roads, it is possible to compute the
values (vi,0 + p(ρi,0)), the curves ΥKi

and thus the flow which may leave the
incoming roads [0, f∗

i ].
2. Given the values (vi,0 + p(ρi,0)) on the incoming roads, we can compute the

curves ΥKj
on which the new states of the outgoing roads must lie.

3. On an outgoing road j, there always exists an intersection between the curve
ΥKj

and the ARj (at least the state (0, 0)). Once the left part of the curve
ΥKj

enters the AR, it stays inside the AR for all lower density/flow on ΥKj
.

So there exists a maximal flow f∗
j such that all flows in [0, f∗

j ] are feasible with
a state in the AR and on ΥKj

.
4. The problem on a merge junction in terms of flow

max f̄3

subject to

f̄1 + f̄2 = f̄3

f̄1 = β1f̄3

f̄2 = β2f̄3

f̄1 ∈ [0, f∗
1 ]

f̄2 ∈ [0, f∗
2 ]

f̄3 ∈ [0, f∗
3 ]

has a unique solution.
5. The problem on an diverging junction in terms of flow

max f̄1
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f̄1 = f̄2 + f̄3

α2f̄1 = f̄2

α3f̄1 = f̄3

f̄1 ∈ [0, f∗
1 ]

f̄2 ∈ [0, f∗
2 ]

f̄3 ∈ [0, f∗
3 ]

has a unique solution.
6. There is a unique correspondence between the solution in terms of flow and

a solution in terms of density/speed. In general, for an incoming road there
is only one point of the AR which corresponds to a specified flow and for
an outgoing road only one point of ΥKj

inside the AR corresponding to a
specified flow.

In some particular cases, there may be two possible points on the admissible
region. This may happen on an incoming road if f̄1 = f∗

1 and ρ1,0 < σK and
on an outgoing road if the point at the intersection between ΥKj

and the line
ρv = ρvj,0 correspond to the specified flow. For simplicity one can take as
a final solution the states corresponding to the maximal speed. This choice
between the two possible points has no real consequence since the two lead to
the same solution in the L2 space.

4.2. Physically acceptable. The solutions of this junction model are intuitively
acceptable.

A first important property of this junction model is its coherence with the Aw
& Rascle single road model. For the diverging junction if all the incoming drivers
take the same outgoing road (α2 = 0, α3 = 1) or for the merge junction if one of
the incoming roads is empty (ρ = 0), the solutions are the same as the classical Aw
& Rascle model for an infinite single road.

A second important point is that numerical simulations produce plausible results.
Consider the merge junction case. If there is not too much traffic on the roads, all
the flow on the incoming roads may pass (see Table 1). In this situation the total
outflow in the final situation (2880 veh/h) is equal to the sum of the initial inflows
(2×1440 veh/h). In the second simulation (see Table 2) the traffic on the incoming
roads is more important. In this case only a part (2165 veh/h) of the total inflow
flow (3300 veh/h) may pass.

The numerical results presented in the tables were performed with the p(ρ) func-
tion defined as

p(ρ) =
vref

γ

(

ρ

ρmax

)γ

with vref = 120 [km/h], ρmax = 90 [veh/km] and γ = 2. This is a plausible p(ρ)
function derived from microscopic consideration (see [1]).

A last point is the analysis of the situations where no flow can pass through the
junction. For a merge junction, this situation only happens when there is no traffic
on the incoming road or when the speed on the outgoing road is equal to zero (the
AR is reduced to curve (ρ, 0) which is associated to a zero flow). For the diverging
junction, the only situation where no flow can leave the incoming road is when the
speed on one of the outgoing roads is equal to zero (the AR is reduced to curve
(ρ, 0) which is associated to a zero flow).
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Incoming roads Outgoing road
ρ v f ρ v f

Initial states
20 72 1440

51.4 58.36 3000
20 72 1440

Final states
20 72 1440

53.9 53.43 2880
20 72 1440

Table 1. There is not too much traffic on the two incoming roads
for the capacity of the outgoing road. The whole flow may pass.

Incoming roads Outgoing road
ρ v f ρ v f

Initial states
30 55 1650

51.4 58.36 3000
30 55 1650

Final states
80.7 13.42 1082

52 41 2165
80.7 13.42 1082

Table 2. There is too much traffic on the two incoming roads for
the capacity of the outgoing road. Only a fraction of the flow may
pass.

It implies that, if only one of the outgoing roads is jammed up, the outflow of
the other road is equal to zero. This is a rather hard constraint on the outflows.
The reason is that the Aw & Rascle model, used to describe the evolution on one
road, does not make any distinction between the different lanes. In a single lane
road, if a driver stops because he is unable to turn left, he also blocks all the drivers
wanting to turn right. To remove this hard constraint, we would need to adapt the
Aw & Rascle model to take the different lanes into account.

4.3. Invariant region. It can be shown (see [2]) that the single road model (3)–(4)
admits an invariant region R

R := {(ρ, v) | 0 ≤ v + p(ρ) ≤ vm, ρ ≥ 0, 0 ≤ v ≤ vm}. (9)

It is easy to see that the new proposed model for the junction keeps this invariant
region. The first inequalities are satisfied since a new value of v + p(ρ) may only
appear on an outgoing road and this new value is either equal to the value on an
incoming road or a convex combination of the values on two incoming roads.

The solution of the maximization problem always exists with ρ ≥ 0 and v ≥ 0
and, since p(ρ) ≥ 0, the last inequalities are trivial.

4.4. Capacity drop phenomenon. The proposed junction model might be able
to naturally represent the capacity drop phenomenon. The capacity drop phenome-

non is a critical phenomenon which represents the fact that the outflow of a traffic
jam is significantly lower than the maximum achievable flow at the same location.
We can easily understand this phenomenon at a junction where two roads merge
in one: if there are too many vehicles trying to access the same road, there is a
sort of mutual embarrassment between the drivers which results in an outgoing flow
lower than the optimal possible flow. This phenomenon has been experimentally
observed (see [4] and [8]). The flow decrease, which may range up to 15 %, has
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a considerable influence when considering traffic control ([16]). To have a model
describing this phenomenon is thus a critical feature in the establishment of a traffic
state regulation strategy.

The reason why our junction model might be able to represent the capacity drop
phenomenon is illustrated in Figure 6. In this figure, we have represented the graphs
relative to one of the two incoming roads and the outgoing one. We consider an
initial equilibrium (states 1 of Fig. 6) where the state of the outgoing road is on
the border of the Admissible Region. Starting from the initial state 1, we consider
on the incoming road an increase of flow (ρv ր) with an increase of density and a
decrease of speed (ρ ր, v ց) such that the quantity v + p(ρ) decreases (state 2).
We must now solve a new Riemann problem at the junction. Since the quantity
v + p(ρ) has decreased on one of the incoming road, the new state on the outgoing
road must lie on a curve v+p(ρ) = Cout

2 lower than the curve v+p(ρ) = Cout
1 . Since

the total flow able to leave the incoming road is greater than the initial flow (f in
1 ),

the new state on the outgoing road will be state 3 (the state with the maximum flow
on the curve ΥCout

2
). Assuming that nothing has changed on the second incoming

road, a decrease of the flow on the outgoing road implies a decrease of the flow on
the incoming roads. The new flow of the incoming road must be less than f in

1 (for
example state 3).
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Figure 6. Illustration of the capacity drop phenomenon with an
increase of flow at one incoming road.

To illustrate this phenomenon, we can carry out a series of simulations whose
solutions are presented in Table 3. To simplify, we consider the case where the states
on road one and road two are the same. We start from an equilibrium (row 1) with
a total passing flow of 3000 veh/h. If we apply a perturbation (row 2) consisting
of an increase of the incoming flow (3300 veh/h) we obtain the new equilibrium
represented in row 3. To this new equilibrium corresponds a total passing flow of
2165 veh/h. This illustrates the capacity drop phenomenon: the incoming flows
are higher but the outgoing flow drops down. Moreover, if we try to return to the
initial state by an opposite perturbation on the incoming roads (row 4), we do not
recover the same total passing flow but a lower one.

To summarize, this increase of inflows leading to a decrease of outflow can only
appear if:
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state ρ1 v1 f1 ρ3 v3 f3

1 equilibrium 20 75 1500 51.4 58.36 3000
2 perturbation 30 55 1650 51.4 58.36 3000
3 equilibrium 80.7 13.42 1082.5 52 41.6 2165
4 perturbation 20 75 1500 52 41.6 2165
5 equilibrium 91.5 15.9 1458.5 47.8 61 2917

Table 3. The capacity drop phenomenon illustrated in a particu-
lar case.

• the state on the outgoing road remains on the boundary of the admissible
region;

• the inflows are such that the mean “behaviour” of the drivers (
∑

i βi(vi +
p(ρi))) decreases.

The total decrease of the outflow is linked to the value of the decrease of v + p(ρ)
for a fixed increase of the flow (ρv ր, ρ ր, v ց). So it can be claimed that the
importance of the capacity drop phenomenon is linked to the value of p′(ρ). If
the derivative is small then the phenomenon may be important. To the author’s
knowledge, this possibility of increasing inflows leading to a decreasing outflow is
not present in the junction models developed so far for the LWR model. These
models are thus unable to represent the capacity drop phenomenon. It would be
interesting to analyze experimental observations at a junction to see if the capacity
drop phenomenon corresponds to the situation described by our model.

4.5. Stability of equilibria. In this section, we intend to investigate the stability
of the equilibria according to the notion of stability as defined in [7]. An equilibrium
at a junction is defined as a solution of the Riemann problem (i.e. the (ρi, vi) values
at the junction satisfying the conditions of Section 3.2). If a wave arrives at the
junction, it will perturb the initial state and a new equilibrium will appear. Stability
means that small perturbations produce small variations of the equilibrium. More
precisely, an equilibrium (ρ∗i , v

∗
i ) is stable if there exists two constants C > 0 and

δ > 0 such that:

∀(dρ, dv) s.a. |dρ| + |dv| < δ ⇒
∑

i

|ρ∗i − ρ̄i| + |v∗i − v̄i| ≤ C(|dρ| + |dv|) (10)

where (dρ, dv) is the perturbation on one of the roads and (ρ̄i, v̄i) is the new equi-
librium on road i. The equilibrium will be unstable if it is impossible to find C > 0
and δ > 0 such that (10) is true.

To analyze the different possibilities, we introduce the curve Γ which is the curve
of the maxima of ΥK . This curve separates the (ρ–ρv) plane in two regions D1 and
D2. In Figure 7, are represented the different possibilities for the position of the
equilibrium states. For an incoming road, we can decompose the possible region

for the equilibria as
◦

D1

⋃

Γ
⋃ ◦

D2 and for an outgoing road as
◦

D1

⋃

Γ where the
superscript ◦ refers to the interior. In this study of the stability, we exclude the
particular cases where ρ or v equal zero.

The three following claims will be proven:

1. If one of the states on the incoming roads belongs to
◦

D1 and one of the states
on the outgoing roads belongs to Γ then the equilibrium is unstable.

2. If all the states on the outgoing roads belong to
◦

D1 then the equilibrium is
stable.
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Figure 7. The possibilities for the position of the states at equilibrium.

3. If all the states on the incoming roads belong to
◦

D2 and at most one state on
the outgoing roads belongs to Γ then the equilibrium is stable.

During the proofs, the following conventions are taken:

• the superscripts ∗ and ¯ refer to the initial states before and the final states
after the perturbation;

• the subscript i is dropped, ρ∗ and ρ̄ always refer to the density on a specific
road depending on the context;

• dρ, df and dv refer to the variations of density, flow and speed on the road
associated to the perturbation;

• a quantity is said to be bounded when it is always less than |dρ|+ |dv| multi-
plied by a constant.

The proofs will be showing that, on each road, there exists a constant C >
0 (which may be different for each road and function of the equilibrium under
consideration) such that |ρ∗i − ρ̄i| + |v∗i − v̄i| ≤ C(|dρ| + |dv|).

4.5.1. First claim.

If one of the states on the incoming roads belongs to
◦

D1 and one of

the states on the outgoing roads belongs to Γ then the equilibrium

is unstable.
An example of instability has already been presented in Figure 6 for the illus-

tration of the capacity drop phenomenon. In this situation, it is possible, with an
arbitrary small change in ρ and ρv on the incoming road, to make the state on this
road jump to the region D2. The variation of the density in the final solution will
thus be of the order of τK(ρi,0) − ρi,0 which is not linked to the amplitude of the
perturbation. This equilibrium is unstable.

4.5.2. Second claim.

If all the states on the outgoing roads belong to
◦

D1 then the equi-

librium is stable.
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The proof is divided in two parts. First the influence of a perturbation occurring
on an outgoing road is analyzed and then of a perturbation on an incoming road.

Perturbation on an outgoing road.

If the perturbation occurs on an outgoing road, there is a lower bound on the
amplitude of this perturbation. This bound comes from the fact that only shock
waves can reach the junction from an outgoing road and this shock wave should
have a large amplitude in order to make the state on the outgoing road jump from
◦

D1 to
◦

D2. If we impose that δ in (10) is smaller than this bound, it is impossible
to have a perturbation coming from an outgoing road.

Perturbation on an incoming road.

If the perturbation occurs on an incoming road and is small enough, the flow
associated with this new state may pass. This state becomes the new equilibrium
state on the incoming road in the final solution. The states on the outgoing roads
may change but the variation can be bounded by the following four steps:

1. The amplitude of the flow variation can be bounded in function of the density–
speed perturbation. Indeed we have on the incoming road that

f = ρv

f + df = (ρ + dρ)(v + dv)

df = vdρ + ρdv + dρdv.

Based on the invariant region R defined in (9), we introduce V = max(vm, ρm)
where ρm = p−1(vm). Denoting A the amplitude of the initial perturbation

A = |dρ| + |dv| ,

if A ≤ 1 the amplitude of the flow perturbation may be bounded

|df | ≤ (2V + 1)A = C1A.

Since the variation of the flow on the outgoing road is lesser than or equal to
|df |, the flow variation on the outgoing road is bounded. The flow variation
is lesser if this is a diverging junction. In this case, the variation of flow on
the incoming road has been shared between the two outgoing roads.

2. The variation of the curve ΥKout
to which belongs the state on the outgoing

road can be bounded. Indeed, on the incoming road we had previously

v + p(ρ) = Kin,

and after the change

v + dv + p(ρ + dρ) = K ′
in

with

|Kin − K ′
in| ≤ |dv| + max(p′(ρ)) |dρ|

≤ (1 + max(p′(ρ)))A = C2A.

On the outgoing road the state which was lying previously on the curve ΥKout

will now belong to the curve ΥK′

out
with K ′

out = Kout + dKout. Since K ′
out
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is a convex combination of the values of K ′
in on the incoming roads, we have

that
|dKout| ≤ |Kin − K ′

in| ≤ C2A.

The new state on the outgoing road belongs to the curve

ΥK′

out
= {(ρ, ρv) | ρv = Koutρ − ρp(ρ) + dKoutρ}.

On Figure 8, the new state will be between the two lines (ρv = f∗ + |df | and
ρv = f∗ − |df |) and on the curve ΥKout

shifted by dKoutρ.

ρρ2
ρ1 ρ∗

ρv

f ∗

Λ

f ∗ + |df |

f ∗ − |df |

v + p(ρ) = Kout

C2Aρm

C2Aρm

Figure 8. Bounds on the variation of ρ and f on the outgoing
road. The state (ρ∗, f∗) is the original state before the perturba-
tion.

3. It is possible to find a bound on the new value ρ̄ for the outgoing road. Con-
sider the line Λ passing through the original state (ρ∗, f∗) and the maximum

of the curve ΥKout
. Since (ρ∗, f∗) ∈

◦

D1 and (ρp(ρ))′′ > 0, this line has a de-
rivative a > 0. If we consider that the new curve ΥK′

out
will be ΥKout

shifted

by at most C2Aρm and that A is small enough such that the cross of the lines
occur such as represented in Figure 8 then:
• on the right of ρ∗ the curve ΥKout

is above Λ and is shifted less than C2ρm

below. The possible intersection between ΥK′

out
and the line f∗ + |df |

occurs on the left of ρ2 with

|ρ2 − ρ∗| =
df + C2Aρm

a
≤

C1 + C2ρm

a
A.

• on the left of ρ∗ the curve ΥKout
is below Λ and is shifted less than C2ρm

above. The possible intersection between ΥK′

out
and the line f∗ + df

occurs thus on the right of ρ1 with

|ρ1 − ρ∗| =
df + C2Aρm

a
≤

C1 + C2ρm

a
A.

The new state on the outgoing road being between the lines ρv = f∗ − |df |
and ρv = f∗ + |df | and on the curve ΥK′

out
, the new density ρ̄ is between ρ1

and ρ2. We have thus

|ρ∗ − ρ̄| ≤
C1 + C2ρm

a
A = C3A.



246 BERTRAND HAUT AND GEORGES BASTIN

4. The total variation on the outgoing road can thus be bounded

|ρ∗ − ρ̄| ≤ C3A

|v∗ − v̄| ≤
f∗ + df

ρ∗ − C3A
−

f∗

ρ∗
(11)

≤
f∗ + C1A

ρ∗ − C3A
−

f∗

ρ∗
=

C1A

ρ∗ − C3A
+

(

f∗

ρ∗ − C3A
−

f∗

ρ∗

)

.

Taking A small enough such that C3A ≤ ρ∗

2 ,

|v∗ − v̄| ≤
2C1

ρ∗
A +

C3f∗A

ρ∗(ρ∗ − C3A)

≤
2C1

ρ∗
A +

2C3f∗

ρ∗2 A.

It can be concluded that there exists a constant C such that

|ρ∗ − ρ̄| + |v∗ − v̄| ≤ C(|dρ| + |dv|)

and this equilibrium is stable.

4.5.3. Third claim.

If all the states on the incoming roads belong to
◦

D2 and at most

one state on the outgoing roads belongs to Γ then the equilibrium is

stable.
The proof is divided in two parts. First the influence of a perturbation occurring

on an outgoing road is analyzed and then of a perturbation on an incoming road.
Perturbation on an outgoing road.

As explained in the first point of Section 4.5.2, only perturbations coming from
an outgoing road whose state belongs to Γ need to be analyzed. If the perturbation
occurs on such a road, this perturbation may only be a shock wave since it is the
only wave with a negative speed.

In Figure 9 the initial state 1 and the new state are represented after the pertur-
bation (state 2). Nothing having changed on the incoming roads, the solution will
belong to the same curve ΥKout

and the total flow able to leave the incoming road
is at least f∗. The final state on the outgoing road will be the state 3 which is the
state on the curve ΥKout

and on the new admissible region (function of the speed
v∗ + dv) with the maximal flow (see Figure 4(c)).

For our analysis, we adopt the following notations

f(dρ) = K(ρ∗ + dρ) − (ρ∗ + dρ)p(ρ∗ + dρ) − f∗

dρ̄ = ρ̄ − ρ∗

where f ∈ C∞.
The proof is done in three steps:

1. A bound on the final variation of ρ and v on the outgoing road can be obtained.
This is done by obtaining first a bound on the flow, then on the density and
finally on the speed.

For the flow, the final variation is equal to the initial variation which can
be bounded in function of dρ:

df ≤ ‖f ′‖∞ dρ.
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ρ∗ρ̄

f ∗

f ∗ + df

ρ∗ + dρ

v + p(ρ) = Kout

Figure 9. Bounds on the variation of ρ and f on the outgoing
road. The state (ρ∗, f∗) is the original state before the perturba-
tion.

To find the bound on the density, a Taylor series expansion can be made
around the origin of the function f :

f(ρ) = −aρ2 +
f ′′′(ρ′)

3!
ρ3 with 0 ≤ ρ′ ≤ ρ, a > 0.

The goal is to show that

∃ǫ, C′ > 0 such as ∀ |dρ| ≤ ǫ, |dρ̄| ≤ C′ |dρ| .

In the worst case of the Taylor development, i.e. when the smallest perturba-
tion of dρ produces the biggest change dρ̄, we have

f(ρ) = −aρ2 −
‖f ′′′‖∞

3!
ρ3.

In this case, a perturbation dρ implies

df = −adρ2 −
‖f ′′′‖∞

3!
dρ3.

With any C′ > 1 and dρ small enough,

f(−C′dρ) = −a(−C′dρ)2 −
‖f ′′′‖∞

3!
(−C′dρ)3 < df (12)

thus
|dρ̄| ≤ C′dρ

since dρ̄ is defined such that f(dρ̄) = f(dρ). To prove (12), simply check that

−a(−C′dρ)2 −
‖f ′′′‖∞

3!
(−C′dρ)3 < −adρ2 −

‖f ′′′‖∞
3!

dρ3

is equivalent to

a(C′2 − 1)dρ2 >
‖f ′′′‖∞

3!
(1 + C′3)dρ3

which is true for dρ small enough since cx2 > x3 ∀x ∈ [0, c).
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On the basis of the |dρ| and |dv| bounds, the final variation of speed on the
outgoing road can be bounded using the same reasoning as in (11).

It can be concluded that, on the outgoing road, there exists a constant C
such that

|ρ∗ − ρ̄| + |v∗ − v̄| ≤ C(|dρ| + |dv|)

for |dρ| and |dv| small enough.
2. Due to the variation of the admissible region on the outgoing road, the states

on the incoming roads may also have changed. The final variation on one of
the incoming roads can be bounded as follow:
• On the incoming roads, there is a decrease of flow less than df .
• In term of density, we have (see Fig. 10)

|ρ̄ − ρ∗| ≤
1

a
df (13)

where a > 0 is the slope of the line passing through (ρ∗, f∗) and (σK ,
γK(σK)).

• Since
∣

∣f̄ − f∗
∣

∣ and |ρ̄ − ρ∗| are bounded in function of dρ and dv, by the
same reasoning as in (11), this is also true for |v̄ − v∗|.

It can be concluded that there exists a constant C such that

|ρ∗ − ρ̄| + |v∗ − v̄| ≤ C(|dρ| + |dv|)

on the incoming road.

ρ

ρv

ρ∗

f ∗ + df

f ∗

f ∗ − df

Figure 10. Maximum variation of the density for a fixed maximal
variation of the flow on an incoming road.

3. Eventually this decrease of the flow leaving the incoming road may influence
the state on a second outgoing road (which must belong by assumption to
◦

D1). This variation can be bounded as in Section 4.5.2.
Perturbation on an incoming road.

If the perturbation occurs on the incoming road and is small enough, this pertur-
bation may only be a contact discontinuity since this is the only wave with a positive
speed. This case is represented in Figure 11. This perturbation will influence the
states of the outgoing roads. Since the variation on the outgoing road belonging to
◦

D1 can be bounded like in Section 4.5.2, it is only necessary to consider the case
where the outgoing road belongs to Γ.
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Two cases must be considered: when the density on the incoming road decreases
and when it increases.
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Figure 11. The two top figures correspond to a decrease of density
on the incoming road while the two bottom figures correspond to
an increase of density.

When the density on the incoming road decreases, the new state on this incoming
road is on a curve ΥK′

in
with K ′

in ≤ Kin. This decrease of Kin can easily be
bounded in function of dρ:

|dKin| ≤ ‖p′‖∞ |dρ| . (14)

On the outgoing road, the state will belong to a new curve ΥK′

out
with

|dKout| ≤ |dKin| . (15)

Since too much flow is trying to pass from the incoming roads to the outgoing road
(this was already the case before the perturbation), the new state on the outgoing
road will be the maximum of the curve ΥK′

out
. To prove that the variation of the

traffic variable ρ and v on the outgoing road can be bounded in function on dρ,
from (14) and (15), it is sufficient to prove that the variation of (σK , γK(σK)) may
be bounded by the variation of dK.

Let g(ρ) be defined as ((ρp(ρ))′)−1, we have that g′ = 1
(ρp(ρ))′′ ∈ C0 and thus

g ∈ C1. It is easy to see that

σK = g(K)

and thus

|dσK | ≤ ‖g′‖∞ |dK| .

We have also that

γK(σK) = Kg(K)− g(K)p(g(K)) = h(K).

Since g and p are C1, h(K) is C1 and

dγK(σK) ≤ ‖h′‖∞ dK.
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Having a bound on the variation of the flow and the density in function of dρ, a
bound on the variation of the speed can be deduced. It can thus be concluded that
there exists C such that

|ρ∗ − ρ̄| + |v∗ − v̄| ≤ C(|dρ| + |dv|)

on the outgoing road.
On the incoming road, we know that the final state is on the curve ΥK′

in
. More-

over the variation of flow is linked to the variation of flow on the outgoing road and
thus can be bounded in function of dρ. Using the same reasoning as in (13), we can
bound the total variation of the density and speed on the incoming road in function
of dρ.
When the density on the incoming road increases, we are in the situation at the
bottom of Fig. 11. The proof is a combination of the previous explanations. On
the outgoing road :

• the new state belongs to the curve ΥK′

out
with dKout bounded in function of

dρ;
• the state with the maximum flow belonging to ΥK′

out
inside the admissible

region is the state 2 of Figure 11;
• since dKout is bounded, the difference of the flow df ′ associated to the maxi-

mums of ΥKout
and ΥK′

out
is bounded;

• the variation of flow between state 2 and state 1 is bounded by df ′;
• for the density, dρ1 is bounded by df ′/v∗;
• dρ2 may be bounded in function of dρ1;
• the final variation of density on the outgoing road is less than dρ2;
• since the variation of flow and density may be bounded, the variation of speed

may also be bounded.

On the incoming road, since the variation of flow is bounded, this is also true for
the density and the speed.

Since for all small variations and on all roads there exists C such that

|ρ∗ − ρ̄| + |v∗ − v̄| ≤ C(|dρ| + |dv|)

then the equilibrium is stable.

5. Existence of a solution in the BV space. In the previous sections, only
solutions to Riemann problems at the junction were considered. Using the previous
stability results, it is possible to prove the existence of a solution for a larger class
of initial conditions (see [7]).

If we consider a network with only one junction and an initial state
((ρ1,0(x), v1,0(x)), (ρ2,0(x), v2,0(x)), (ρ3,0(x), v3,0(x))) which is a stable equilibrium
s.a

‖(ρi,0(x), vi,0(x))‖
BV

≤ ǫ

and

sup
x

|ρi,0(x) − ρi,0| + sup
x

|vi,0(x) − vi,0| ≤ ǫ,

then for ǫ small enough, there exists an entropic solution satisfying the initial con-
ditions and the equilibrium conditions at the junction.

In this equation ‖ ‖BV denotes the total variation defined by

‖u‖BV = sup{v(u, P ) : P is a partition of [a, b]}
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where

v(u, P ) =

n
∑

k=1

d(u(tk), u(tk−1))

with P = {x0 < t1 < · · · < xn} a partition of the domain of u.

Proof. For the complete proof see [7] and [3].

6. Conclusions. To the author’s knowledge, the only other junction models de-
veloped on the basis of the Aw & Rascle single road model are presented in [10, 11]
and [7].

The idea developed in [10] is similar to the idea presented in the present paper:
each driver tries to conserve his behaviour and the resulting behaviour on the out-
going road is a mean of the different incoming behaviours. The main difference is
that [10] analyzes the mixing problem on the basis of an underlying microscopic
model whereas our approach stays at a macroscopic scale with the formulation (7).
The approach of [10] leads to a homogenization problem which may need to intro-
duce a new function p(ρ) after the junction. The model presented in this paper can
therefore be seen as an approximation of this homogenization problem. The main
advantage of (7) is its simpler formulation leading to easier computations.

It is worth mentioning that the two approach are close and even identical for a
diverging junction. Indeed, in this case, the two models predict that the quantities
v+p(ρ) on the outgoing roads are the same as the quantity v+p(ρ) on the incoming
road. Since the two models select the new values of (ρi, vi) near the junction by
performing a maximization of the total passing flow, they lead to the same values.

For a merge junction, the situation is more complex since [10] may introduce a
new function p(ρ) after the junction. It would be interesting to perform simulations
using the two models and compare the results.

There are some important differences between the model presented in this paper
and the model of [7]:

1. In our model the existence of the invariant region R is a natural consequence
of the choice made for the additional criterion (“conservation” of v + p(ρ)).
In the model [7], the same invariant region exists but is a consequence of the
introduction of a maximal speed in the description of the admissible region of
an outgoing road.

2. Our model is able to represent the capacity drop phenomenon while this is
not the case for the model [7]. The main reason is the choice made for the
order in which some variables are fixed or maximized on the outgoing road:
• In our model, the order is

(a) fix the admissible region
(b) fix the v + p(ρ) value
(c) maximize the flow

• In the model [7], the order is
(a) fix the admissible region
(b) maximize the flow and then take it as a constraint
(c) maximize the speed/density or minimize the total variation of ρ along

the solution on the outgoing roads.
In our model, the maximization of the flow is the final criterion used to chose
the solution while in the model [7] this maximization occurs before any other
additional criterion.
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3. One limitation of our model is that it is developed only for 2-incoming-1-
outgoing and 1-incoming-2-outgoing roads junction. The model [7] is devel-
oped for n-incoming-m-outgoing roads junction but also has an important
limitation, i.e. m ≥ n.

4. The two models have more or less the same properties when dealing with
stability of equilibrium and existence of solution around a stable equilibrium.

Adding only one new assumption (“conservation” of the quantity v + p(ρ) rep-
resenting the behaviour of the drivers) to some commonly admitted assumptions
(conservation of the flow, sharing of the available space on the outgoing road based
on coefficients function of the sending capacities, drivers acting in order to maxi-
mize the passing flow), we obtain a coherent and realistic model for the junction able
to represent the capacity drop phenomenon. This junction model, which doesn’t
add any new parameters compared to those introduced by the Aw & Rascle single
road model (the function p(ρ)), combined with this single road model, provides a
complete description of the traffic evolution on a road network.

The extension of the junction model to n-incoming-1-outgoing and 1-incoming-n-
outgoing roads is straightforward. It does not need to introduce additional assump-
tions. If we consider multiple incoming and multiple outgoing roads, the extension
is more difficult. Additional criteria must be added in order to describe how the
different flows interact.
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