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SHORT COMMUNICATION

Maximal stability region of a perturbed nonnegative matrix

Bertrand Haut∗,†, Georges Bastin and Paul Van Dooren

UCL-CESAME, 4 Avenue G. Lemaitre, 1348 Louvain-la-Neuve, Belgium

SUMMARY

For a class of positive matrices A+K with a stable positive nominal part A and a structured positive
perturbation part K , we address the problem of finding the largest set of admissible perturbations such
that the global matrix remains stable. Theoretical bounds are derived and an algorithm for constructing
this set is presented. As an example, this algorithm is applied to the regulation of water flow in open
channels. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A linear time-invariant discrete-time system

x(k+1)= Ax(k) (1)

is known to be stable if and only if �(A)<1.
Positive systems are dynamic systems in which the relevant variables assume nonnegative values.

These systems are quite common in applications where variables represent positive quantities such
as populations, goods, money, time, data packet flows, densities of chemical species, probabilities,
etc. The development of theoretical models that take into account this positivity requirement has
been a very active field of research for a long time (see, e.g. the proceedings of recent symposia
on positive systems [1, 2] and the references therein).
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MAXIMAL STABILITY REGION OF A PERTURBED NONNEGATIVE MATRIX 365

A dynamical system (1) is called positive if any trajectory of the system starting in the nonneg-
ative orthant Rn

0,+ remains in Rn
0,+. This is the case if and only if the matrix A has only real

nonnegative entries. In many cases, it may be useful to consider systems with a known stable
‘nominal’ part A (�(A)<1) and an unknown part K , which may represent uncertainty

x(k+1)=(A+K )x(k) (2)

The robustness of (2) will then depend on the size of the set S such that

�(A+K )<1 ∀K ∈ S

One particular approach consists of considering structured matrices K =E1�ET
2 , where � is a

square diagonal matrix involving unknown parameters ki on the diagonal (see later for a precise
definition) and E1 and E2 are fixed matrices. The problem is then to find the stability radius of A
with respect to nonnegative perturbations of structure (E1, ET

2 ), which is defined by

rR+(A;E1,E
T
2 ) := inf{‖�‖;��0,�(A+E1�ET

2 )�1}
All perturbations in the following set:

S :={E1�ET
2 |‖�‖<rR+(A;E1,E

T
2 )}

are then shown to yield a stable system A+K . This problem is solved for one parameter in [3]
and later for several parameters in [4], where a computable formula is provided.

In this paper we extend these results into a particular direction. We will only consider perturba-
tions matrices � in the set D of nonnegative diagonal matrices D={diag{k1, . . . ,km}|ki�0}. The
parameters ki are the so-called free parameters occurring in the matrix K , E1 and E2 are two
matrices placing the elements in appropriate positions in K . The two matrices E1 and ET

2 have
the following properties: there is a nonzero element in row i and column j of E1 if k j is present
in row i of K and of ET

2 if ki is present in column j of K . We clarify this by an example: if

K =
⎛
⎜⎝
2k1 0 0

0 0 k2

k1 0 0

⎞
⎟⎠

then

�=
(
k1 0

0 k2

)
, E1=

⎛
⎜⎝
2 0

0 1

1 0

⎞
⎟⎠ , ET

2 =
(
1 0 0

0 0 1

)

We will restrict ourselves to matrices K for which both E1 and E2 are nonnegative as well:
E1�0,E2�0. Notice that if one of the parameters appears in several rows and columns, it will be
repeated several times in the diagonal matrix �.

The problem is to find the biggest set SD⊆{E1�ET
2 |�∈D} containing the origin and all the

perturbations such that the system remains stable

SD :={K =E1�ET
2 |�∈D,�(A+K )<1}

where A,E1,E2,� are nonnegative matrices. Let us point out that this is in fact a starlike set.
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Theorem 1.1
The set SD is a starlike set.

Proof
From [5], we know that if A, B�0 then �(A+B)��(A). It implies that if K ∈ SD

�(A+K )<1 ⇒ �(A+�K )<1 ∀� 0���1

and �K ∈ SD. If K /∈ SD then

�(A+K )�1 ⇒ �(A+�K )�1 ∀� 1��

and �K /∈ SD. �

As the spectral radius is a continuous function of the parameter K , the boundary of the set SD
is described by

�SD={K |∃i,ki =0&�(A+K )�1 or �(A+K )=1&K�0}
Examples later show that this set is in general not convex.

On the one side, the problem solved in [4] is more general because it does not assume that the
perturbation � is diagonal. However, on the other side, when � is diagonal, their problem is more
restrictive than the one addressed in this paper. All the operator norms induced by an arbitrary
monotonic norm on Rn of a diagonal matrix are equal to the maximum of the elements of the matrix
(see [6]). It means that the set S considered in [4] is a box with ki�kmi and km1 =·· ·=kmn and hence
a convex subset of SD. We will show that there exists a maximum starlike set SD={E1�ET

2 |�∈D}
for which all matrices K in SD lead to stable A+K and we will describe the boundary of this set
in terms of polynomial equations.

2. MAXIMAL PERTURBATION OF NONNEGATIVE MATRICES

First we develop some new theoretical results and we then present an algorithm for computing
�SD.

2.1. Theoretical results

In this section we show that the problem may be decoupled in smaller subproblems involving only
a subset of the parameters ki . To each of these subproblems there corresponds a starlike set SDi

for which we obtain an analytical expression. The set SD is the intersection of the sets SDi .
As K =E1�ET

2 is nonnegative and as the eigenvalues are continuous functions of the matrix
elements, we have that the critical switch between �<1 and ��1 will occur when

�(A+E1�ET
2 )=1

Working only with positive matrices, we have that the spectral radius is also an eigenvalue and
hence the above condition is equivalent to

det(A+E1�ET
2 − I )=0
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and

det(E1�ET
2 −(I −A))=0

As det(I −A) 	=0 (�(A)<1) we can multiply the previous equation by det(I −A)−1 to obtain

det((I −A)−1E1�ET
2 − I )=0

Using the well-known property (see [4])
det(MN− I )=0⇔det(NM− I )=0

this is also equivalent to

det(ET
2 (I −A)−1E1�− I )=0

where M :=ET
2 (I −A)−1E1 is nonnegative as (I −A)−1=∑∞

i=1 A
i and E1,E2 are nonnegative.

We can use Lemma 2.1 (see [7]) to transform M to a normal form M̂ .

Lemma 2.1
Every nonnegative matrix M has a normal form that can obtained under congruent permutations

M̂= PMPT=

⎛
⎜⎜⎜⎝
M̂11 0

. . .

∗ M̂mm

⎞
⎟⎟⎟⎠ (3)

where each diagonal block M̂ii is square, irreducible or just a 1×1 zero bock.

Applying the same permutation to �, we define �̂= P�PT and have

det(M̂�̂− I )=0

This clearly decomposes into a number of decoupled problems

det(M̂ii �̂i i − I )=0

This polynomial equation describes a part of �SDi . The intersection of all these sets leads to the
admissible set SD. Let us solve the subproblems

• Let M̂ii =0 then det(M̂ii �̂i i − I ) 	=0 for all bounded �̂i i .
• Let M̂ii 	=0 and irreducible. If the size ni of M̂ii =[mr,c]nir,c=1 is small enough, the problem
can be exactly solved.

◦ If ni =1, the solution is trivial, i.e. det(m11k1−1)=0 for k1=m−1
11 .◦ If ni =2, we have

det

((
m11 m12

m21 m22

)(
k1 0

0 k2

)
− I

)
=0

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 19:364–376
DOI: 10.1002/rnc
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Figure 1. The largest set of the parameters k1 and k2 containing the origin such that A+E1�ET
2 is stable.

or equivalently

(m11m22−m12m21)k1k2−m11k1−m22k2+1=0 (4)

The stable region for the k1,k2 is thus a starlike set with boundary defined by (4) and
k1,2=0 (see Figure 1).

◦ If ni =3, we have

det(M̂ii �̂i i − I )=0

or equivalently

det(M̂ii )k1k2k3+(m21m12−m11m22)k1k2+(m13m31−m11m33)k1k3

+(m23m32−m22m33)k2k3+m11k1+m22k2+m33k3−1=0 (5)

The stable region for the ki is thus also a starlike set whose boundaries are defined by (5)
and k1,2,3=0 (see Figure 2).

◦ It may happen that a coefficient ki appears in different blocks �̂i i . For example, if

A=

⎛
⎜⎜⎜⎜⎝
a11 a12

a21 a22

a33 a34

a43 a44

⎞
⎟⎟⎟⎟⎠ , K =

⎛
⎜⎜⎜⎜⎝
k1

k2

k3

k1

⎞
⎟⎟⎟⎟⎠

then

�̂11=
(
k1

k2

)
, �̂22=

(
k3

k1

)

In this case, the admissible set for (k1,k2,k3) is simply the intersection of the two sets
obtained by analysing the two subproblems. This is illustrated in Figure 3.
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Figure 2. The boundary of the largest set (k1,k1,k3) containing the origin such that A+E1�ET
2 is stable.

min 1
m11

,

,

1
m44

1
m33

0

k3 min 1
m22

1
m33

k2

k1

Figure 3. The admissible set is the intersection of the two admissible sets.

2.2. Modified problem

In the above analysis, the sets SDi can become quite complex to describe if ni becomes large, as
one has to solve polynomial equation of degree ni in several variables. It may be easier to consider
only necessary conditions that ensure stability (i.e. a subset of SD). Such an approach has been
taken in [4, 8, 9] where convex subsets of SD are described.

We describe here two approximations of the original problem that are easier to compute.
For example, one can freeze one particular ki and express the conditions on the remaining

parameters. This subset will be a slice of SDi . This subset is still starlike in the leftover parameter.
Another possibility is to express a condition on the maximum of the ki in the same way as [4].

The following result is a refinement of the global bound obtained in [4].
Lemma 2.2
Let M̂i,i be as defined in Lemma 2.1 and let �i be its spectral radius, then

det(M̂ii �̂i i − I ) 	= 0 for �̂i i<�−1
i I

det(M̂ii �̂i i − I ) = 0 for �̂i i =�−1
i I
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Proof
Let xi be the Perron vector of the irreducible matrix M̂ii . It is well known (see [7]) that for an
irreducible matrix the so-called Perron vector xi corresponding to the (positive) Perron root �i is
strictly positive. Therefore,

M̂ii xi =�i xi , xi>0

then clearly

(M̂ii�
−1
i I − I )xi =0, �̂i i =�−1

i I

Also for �̂i i<�−1
i I

det(M̂ii �̂i i − I ) 	=0

as there exists a scaling

‖D−1M̂ii D‖∞ =�i

and clearly

‖D−1M̂ii �̂i i D‖∞ =‖D−1M̂ii D�̂i i‖∞<1 �

Therefore, we can claim that all matrices � in the following set

S=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩�|

⎛
⎜⎜⎜⎝

�̂11

. . .

�̂mm

⎞
⎟⎟⎟⎠= P�PT, �̂i i<

{
any bounded value if �i =0

�−1
i I if �i 	=0

}

are such that

�(A+E1�ET
2 )<1

The problem may thus be split into several subproblems. If the subproblems are small enough,
we may have some analytical necessary and sufficient conditions. If the subproblems are more
complex, to ensure that �(A+E1�ET

2 )<1, sufficient conditions may be used such as freezing a

ki or imposing that for each M̂ii 	=0, �̂i i<�−1
i I .

2.3. Algorithm

The results presented in the previous section can be used to construct the set SD, in the following
manner:

1. Compute the matrix M :=ET
2 (I −A)−1E1 and perform permutations to put it under the

normal form (3). This can be done by applying the following algorithm:

(a) Use Tarjan’s algorithm [10] to find the set of strongly connected subgraphs associated
with the graph G defined by the adjacency matrix Mad (Mad

i, j =1 if Mi, j 	=0, Mad
i, j =0

otherwise).
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(b) Consider a new graph G ′ whose nodes represent the strongly connected subgraphs: two
nodes i and j of G ′ are connected if there exists one edge between a node of G in the
subgraph i and a node of G in the subgraph j . The adjacency matrix of this new graph
G ′ can be computed simply from Mad by first summing up the rows corresponding to the
same subgraph and then summing up the columns corresponding to the same subgraph.

(c) Identify a leaf i of the graph G ′ (which always exists because there is no cycle in G ′) and
permute the columns and the rows of M corresponding to the subgraph i at the beginning
of the matrix. Suppress node i from G ′. Repeat 1(c) until M is in the canonical form (3).

2. For each of the M̂ii blocks, express the condition det(M̂ii �̂i i − I )=0 which describes a part
of the boundary of SD. If the size of M̂ii is too high, a more restrictive condition such as
first freezing a ki or a condition in terms of �(M̂ii ) can be used.

It can be now claimed that, if

(k1, . . . ,kn)∈ SD

then

�

⎛
⎜⎜⎜⎝A+E1

⎛
⎜⎜⎜⎝
k1

. . .

kn

⎞
⎟⎟⎟⎠ET

2

⎞
⎟⎟⎟⎠<1

3. APPLICATION TO THE CONTROL OF HYPERBOLIC SYSTEMS
OF CONSERVATION LAWS

As a matter of illustration, we present in this section an application to the control design for hyper-
bolic systems of conservation laws, with a typical example from waterways networks management
(see, e.g. [11]).

In the field of hydraulics, the flow in open channels is generally represented by the so-called
Saint Venant equations. We consider the special case of open channels delimited by two overflow
spillways as represented in Figure 4. We assume that

1. the channels are horizontal;
2. the channels are prismatic with a constant rectangular section and a unit width;
3. the friction effects are neglected.

The flow dynamics in a channel are described by a system of two laws of conservation, namely
the law of mass conservation

�t Hi +�x Qi =0 (6)

and the law of momentum conservation

�t Qi +�x

(
Q2

i

Hi
+g

H2
i

2

)
=0 (7)
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Figure 4. A canal with three reaches and four gates.

where Hi (t, x) represents the water level and Qi (t, x) the water flow rate in the ist reach while g
denotes the gravitation constant.

The control actions are the vertical positions of the spillways located at the extremities of
the pools. By manipulating these spillways, the flows between different pools can be controlled.
For constant spillway positions and a constant inflow rate Q0, there is a unique steady-state
solution.

Let us consider the deviations of Hi (t, x) and Qi (t, x) with respect to the steady-state values
H̄i and Q̄i

hi (t, x) = Hi (t, x)− H̄i

qi (t, x) = Qi (t, x)− Q̄i

By linearizing the model equations (6)–(7) around the steady state (H̄i , Q̄i ), we get the linear
model

�t hi (t, x)+�xqi (t, x) = 0

�t qi (t, x)+
(
gH̄i − Q̄2

i

H̄2
i

)
�xhi (t, x)+2

Q̄i

H̄i
�xqi (t, x) = 0 for i=1, . . . ,3

with the six boundary conditions

q1(t,0) = u0

q1(t, L) = u1

q2(t, L) = u2

q3(t, L) = u3

q1(t, L) = q2(t,0)

q2(t, L) = q3(t,0)

The first four conditions are imposed by the controls. The last two conditions express the flow
conservation.
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As shown, e.g. in [11], it is convenient to work with the Riemann coordinates defined by the
following change of coordinates:

ai (t, x) = qi (t, x)+�i hi (t, x)

bi (t, x) = qi (t, x)−�i hi (t, x)

where

�i =
√
gH̄i + Q̄i

H̄i

�i =
√
gH̄i − Q̄i

H̄i

With these coordinates, the linear system is rewritten under the following diagonal form:

�t

(
ai (t, x)

bi (t, x)

)
+
(+� 0

0 −�

)
�x

(
ai (t, x)

bi (t, x)

)
=0 ∀i ∈1, . . . ,3 (8)

and the boundary conditions are expressed as

�a1(t,0)+�b1(t,0)

�+�
= u0

�a1(t, L)+�b1(t, L)

�+�
= u1

�a2(t, L)+�b2(t, L)

�+�
= u2

�a3(t, L)+�b3(t, L)

�+�
= u3

�a1(t, L)+�b1(t, L)

�+�
= �a2(t,0)+�b2(t,0)

�+�

�a2(t, L)+�b2(t, L)

�+�
= �a3(t,0)+�b3(t,0)

�+�

We consider the situation where each control ui (t) is a linear function of only one state variable,
as follows:

u0 function of b1(t,0), u0 = k′
0b1(t,0)

u1 function of a1(t, L), u1 = k′
1a1(t, L)

u2 function of a2(t, L), u2 = k′
2a2(t, L)

u3 function of a3(t, L), u3 = k′
3a3(t, L)
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With the following reparametrization:

k0 = −�

�
+ (�+�)

�
k′
0

ki = −�

�
+ (�+�)

�
k′
i , i=1, . . . ,3

the boundary conditions are expressed as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1(t, L)

b2(t, L)

b3(t, L)

a1(t,0)

a2(t,0)

a3(t,0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 k1 0 0

0 0 0 0 k2 0

0 0 0 0 0 k3

k0 0 0 0 0 0

0 −�

�
0 1+ �

�
(k1) 0 0

0 0 −�

�
0 1+ �

�
(k2) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A+K

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1(t,0)

b2(t,0)

b3(t,0)

a1(t, L)

a2(t, L)

a3(t, L)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

where A is fixed and K has a fixed structure but the values of its nonzero entries are linear
combinations of the ‘free parameters’ ki . In this case, K is the part of the matrix, which reflects
the choice made by the operator for the control parameters and A reflects the conservation of
the flow.

The problem studied here is to find the largest range of values for the control parameters ki
such that the system remains stable. Here stability means that, from any smooth enough initial
condition, the Cauchy problem for system (8) with boundary conditions (9) has a unique classical
solution that exponentially converges to the origin. As the system under consideration has been
derived by linearizing the nonlinear Saint Venant model, this stability property will only be valid
for perturbations that are small enough.

From Theorem 6 in [12], we know that a sufficient stability condition is that

�(|A+K |)<1

where |A+K | denotes the matrix whose entries are the absolute values of the entries of A+K .
We are thus interested in finding a set S such that �(|A+K |)<1 ∀K ∈ S.

From [5], we know that if A, B�0 then �(A+B)��(A). It implies that

�(|A+K |)��(|A|+|K |)
and the set S may be found using the algorithm presented in Section 2.3.

If we apply the algorithm proposed in Section 2.3 with the following numerical values:

� = 3.6

� = 2.6
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we obtain that there exists three blocks M̂ii (one of dimension 2 and two of dimension 1).
The different coefficients must be bounded as follows:

|k0k1| < 1

|k2| < 1.38

|k3| < 1.38

to guarantee the stability of the system. This decomposition in three blocks is quite natural as only
the two first parameters influence the stability of the first reach. If the first reach is stable, only
the parameter k2 has an influence on the stability of the second reach. Eventually, k3 controls the
stability of the third reach.

The decoupling of the problem in smaller subproblem allows to increase the possible value of
some parameters, which may have a positive influence on the global behaviour of the system. In
the example of Section 3, if we take the sufficient condition presented in [4] all the parameters
must be bounded by 1. The decomposition in subproblems allows us to increase the value of k3
and k4 up to 1.38. It also allows to select k0>1 provided k1 is small enough and conversely.

4. CONCLUSIONS

In this paper, we have considered the problem of finding the largest set of perturbation such
that a positive matrix remains stable. We have extended the results of [4] in the particular case
where the perturbation matrix � is diagonal. In this case, the problem can be decoupled in smaller
subproblems. For each of the subproblems, necessary and sufficient analytical conditions were
derived to describe the starlike sets of admissible parameters. Outside of these sets, the perturbation
destabilizes the system. These sets, which are not necessarily convex, contain the largest admissible
ball described in [4].
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