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Abstract The stability problem of a system of conservation laws perturbed by
non-homogeneous terms is investigated. These non-homogeneous terms are assumed
to have a small C1-norm. By a Riemann coordinates approach a sufficient stability
criterion is established in terms of the boundary conditions. This criterion can be
interpreted as a robust stabilization condition by means of a boundary control, for
systems of conservation laws subject to external disturbances. This stability result is
then applied to the problem of the regulation of the water level and the flow rate in
an open channel. The flow in the channel is described by the Saint-Venant equations
perturbed by small non-homogeneous terms that account for the friction effects as
well as external water supplies or withdrawals.

Keywords Conservation laws · Nonlinear PDE · Robust stability · Hydraulic
applications

1 Introduction

Many distributed parameter physical systems are described by hyperbolic partial
differential equations (PDE). The main property of this class of PDE is the existence of

C. Prieur (B)
LAAS-CNRS, Université de Toulouse, 7, avenue du Colonel Roche, 31077 Toulouse, France
e-mail: Christophe.Prieur@laas.fr

J. Winkin
Department of Mathematics, University of Namur (FUNDP),
8, Rempart de la Vierge, 5000 Namur, Belgium
e-mail: Joseph.Winkin@fundp.ac.be

G. Bastin
CESAME, Catholic University of Louvain, 1348 Louvain-la-Neuve, Belgium
e-mail: bastin@inma.ucl.ac.be

123



174 C. Prieur et al.

the so-called Riemann coordinates which are useful for the proof of classical solutions
existence, as well as the analysis and the design of control methods among other
properties, see e.g. [2,11]. In this paper, we investigate the problem of the stability of
such hyperbolic equations in presence of small non-homogeneous terms.

The stability of homogeneous hyperbolic systems has been analyzed for a long time
in the literature. A sufficient condition is that the Jacobian matrix of the boundary
conditions has a spectral radius less than 1, see [8]. For non-homogeneous systems,
an additional condition on the size of the non-homogeneous term is needed. In [11,
Chap. 5, Theorem 1.3], it is assumed that the non-homogeneous terms are two times
continuously differentiable and at least quadratic at the equilibrium. In this paper, a
stronger result is proved since it is only assumed that the non-homogeneous terms
can be linear, with a sufficiently small non-zero slope at the origin. This extension is
definitely non-trivial. The proof is based on a repetitive use of the existence of the
solutions over a finite time interval (see [2,11,12]) combined with an extension of the
state evolution in the Riemann coordinates.

The main result of this paper is applied to systems of conservation laws for the design
of a stabilizing boundary control of a channel, subject to small external perturbations.
More precisely we address the problem of the regulation of the water level and the
water flow rate in open channels by using the gate opening as control action.

The model used is not strictly hyperbolic since we consider also the case of the
presence of friction and some external small supplies or removal of water along the
canal. The model is written in terms of Saint-Venant equations introduced in [19]
and commonly used in hydraulics to describe the flow of water in open-channels (see
e.g. the textbooks [3] or [7]). Here the Saint-Venant equations are perturbed by small
non-homogeneous terms that account for the friction effects as well as external water
supplies or withdrawals.

This stability problem for the regulation of the flow in a channel has been conside-
red for a long time in the literature as reported in the survey paper [18] which involves
a comprehensive bibliography. For advanced control methods, see [6,17] where dis-
crete linear approximations of the perturbed Saint-Venant equations are used. See also
[14–16] where an H∞ control design is developed. In [13] the perturbed Saint-Venant
equations are linearized and an infinite dimensional controller is designed to suppress
the oscillating modes over the canal.

This paper can be seen as a non-trivial generalization of [9], since the Saint-Venant
equations that are considered in that reference do not involve neither friction nor water
supply/removal along the canal. However assuming that there is neither friction nor
external supply is a strong and unrealistic assumption. Here any system of conservation
laws (of any given size) is considered, as well as the case of the presence of small dis-
turbances. As it is explained in Sect. 3, the analysis developed here can be applied e.g.
to fluid networks (taking into account a friction coefficient and fluid supply/removal
along the canal), piper-line networks, or traffic road (and not only to the homoge-
neous Saint-Venant equations as in [9]). Observe that taking into account friction and
supply/removal needs to redefine the equilibrium and to modify the boundary control
actions. Finally note that the approach developed in this paper has been successfully
tested by numerical simulations using the data of a real river, viz. the Sambre river in
Belgium, and by physical experiments on a micro-channel in [5].
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Robust boundary control of systems of conservation laws 175

The paper is organized as follows. First in Sect. 2, the main result, namely a sufficient
condition for the stability of conservation laws, is stated. It is written in terms of the
boundary conditions and non-homogeneous terms with small C1-norm are considered.
In Sect. 3, the main result is applied to the boundary regulation of the water level and
the water flow rate in open channels in presence of small friction and small external
supply or removal of water distributed along its length. Section 4 contains a detailed
proof of the main result. Section 5 contains some concluding remarks.

2 Stability of hyperbolic systems with non-homogeneous terms

We consider the class of hyperbolic PDE defined in Riemann coordinates as follows

∂tξ + Λ(ξ)∂xξ = h(ξ) (1)

with ξ : [0, L]×[0,+∞) → R
n : (x, t) �→ξ(x, t), and Λ(ξ)=diag(λ1(ξ), . . . , λn(ξ)),

under the following assumptions:

– The λi ’s and h are continuously differentiable functions on a neighborhood of the
origin;

– There exists an integer m, with 0 < m < n, such that

λi (0) < 0 < λ j (0) , ∀i, 1 ≤ i ≤ m, ∀ j, m + 1 ≤ j ≤ n; (2)

– and
h(0) = 0. (3)

Remark 1 The results of this paper will be presented in the case where 0 < m < n.
We should however stress that the results also hold in the particular cases where m = 0
or m = n (i.e. all the eigenvalues λi have the same sign). We will come back on this
in the conclusion.

As usual, for each component ξi of the PDE (1), one can define the characteristic
curve solution of the differential equation

ẋ(t) = λi (ξ(x(t), t)).

Then, for each function (x, t) �→ ξi (x, t), the left-hand side of (1) can be interpreted
as the total time-derivative of ξi along the corresponding curve, which implies that the
system (1) can be written in “differential” form as:

dtξi (x(t), t)) = hi (ξ(x(t), t)), (4)

This fact is illustrated in Fig. 1.
For all ξ =(ξ1, . . . , ξn)∈R

n , let ξ− =(ξ1, . . . , ξm)∈R
m and ξ+ =(ξm+1, . . . , ξn)∈

R
n−m . The functions h−(ξ), h+(ξ), Λ−(ξ), and Λ+(ξ) are defined in a similar way.
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Fig. 2 Illustration of the boundary conditions

In order to complete the problem statement, boundary conditions (BC) are obviously
needed. Here we consider the system (1) under the BC of the form

(
ξ−(L , t)
ξ+(0, t)

)
= g

(
ξ−(0, t)
ξ+(L , t)

)
, (5)

where g is a continuously differentiable function defined on a neighborhood of the
origin, and satisfying g(0) = 0. Its Jacobian matrix at ξ ∈ R

n is denoted by ∇g(ξ).
This form of the BC is illustrated in Fig. 2 and can be interpreted as follows. The

characteristic solution ξ+ j (or ξ−i ) that “leaves” the boundary at x = 0 (or at x = L)
is a function of the characteristic solutions that “arrive” at the boundaries at the same
instant. This form of the BC will be further motivated in the next section.

In order to state our main result, we need the following compatibility condition
between the system (1) and the BC (5).
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Robust boundary control of systems of conservation laws 177

Definition 1 A function ξ# ∈ C1(0, L; R
n) satisfies the compatibility condition C if

(
ξ#−(L)

ξ#+(0)

)
= g

(
ξ#−(0)

ξ#+(L)

)
,

and
(

Λ−(ξ#(L))∂xξ
#−(L) − h−(ξ#(L))

Λ+(ξ#(0))∂xξ
#+(0) − h+(ξ#(0))

)

= ∇g

(
ξ#−(0)

ξ#+(L)

) (
Λ−(ξ#(0))∂xξ

#−(0) − h−(ξ#(0))

Λ+(ξ#(L))∂xξ
#+(L) − h+(ξ#(L))

)
.

Some additional notations and definitions are also needed:

– The norm | · | in R
n is defined, for all ξ ∈ R

n , by

|ξ | = max(|ξi |, i ∈ {1, . . . , n}).

B(ε) denotes the ball centered in 0 ∈ R
n with radius ε > 0.

– Given Φ continuous on [0, L] and Ψ continuously differentiable on [0, L], we
denote

|Φ|C0(0,L) = maxx∈[0,L]|Φ(x)|,
|Ψ |C1(0,L) = |Ψ |C0(0,L) + |Ψ ′|C0(0,L);

– BC(ε) denotes the set of continuously differentiable functions ξ#: [0, L] → R
n

satisfying the compatibility assumption C and |ξ#|C1(0,L) ≤ ε;
– For a given matrix A = (ai j ), ρ(A) denotes its spectral radius and abs(A) is the

matrix defined by abs(A) = (|ai j |).
The main result of this paper is the following

Theorem 1 Let ε0 > 0. If
ρ(abs(∇g(0))) < 1, (6)

then there exist ε1 ∈ (0, ε0), H1 > 0, µ > 0 and C1 > 0 such that, for all continuously
differentiable functions h : B(ε1) → R

n such that (3) holds together with

|∇h(0)| ≤ H1, (7)

for all ξ# ∈ BC(ε1), there exists an unique function ξ ∈ C1([0, L] × [0,+∞) ; R
n)

satisfying the PDE (1), the boundary conditions (5) and the initial condition

ξ(x, 0) = ξ#(x) , ∀x ∈ [0, L]. (8)

Moreover, this function satisfies

|ξ(., t)|C1(0,L) ≤ C1e−µ t |ξ#|C1(0,L) , ∀t ≥ 0. (9)
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This theorem generalizes previous results [11, Chap. 5, Theo. 1.3] and [9, Theo. 6]
in various ways:

– On one hand [11, Chap. 5, Theo. 1.3] where
– h is assumed to be at least quadratic at the origin (h(ξ) = O(|ξ |2)) whereas it

is assumed here that it can be linear, with a small enough non-zero slope at the
origin;

– the boundary conditions are less general and have the following form

(
ξ−(L , t)
ξ+(0, t)

)
=

(
g−(ξ+(L , t))
g+(ξ−(0, t))

)
;

– on the other hand [9, Theorem 6] uses the same boundary conditions but for the
homogeneous form (i.e. h(ξ) = 0).

The proof of this result will be based on an estimation of the influence of the non-
homogeneous terms on the evolution of the Riemann coordinates. In particular, we
have to prove that the damping condition (6) is strong enough to manage the non-
homogeneous terms, whose derivative is assumed to be small at the origin due to
(7). This result will be proved in Sect. 4 for a particular structure of the boundary
conditions (see (22)); next the result will be extended to the boundary conditions (5)
in Sect. 4.5.

Observe that this result can be extended to the case of a non-homogeneous term h
depending not only on ξ but also on x , i.e. the PDE (1) where the term h(ξ) is replaced
by h(ξ, x). In this case, Theorem 1 still holds provided that conditions (3) and (7) be
replaced respectively by the following two conditions on the non-homogeneous term
h:

h(0, x) = 0, ∀x ∈ [0, L]

and

|∇ξ h(0, x)| ≤ H1, ∀x ∈ [0, L]

for some constant H1 > 0, where ∇ξ h denotes the Jacobian matrix of h as a func-
tion of ξ . This generalization can also be derived by following the evolution of the
Riemann coordinates as in Sect. 4. However, for simplicity, here we consider a non-
homogeneous term as in the PDE (1).

3 Application to fluid networks

The class of hyperbolic PDE systems considered in this paper has a wide range of
applications to physical and engineering systems described by conservation laws. In
this section, the analysis will be applied to a general class of fluid networks including
for instance networks of open-channels [3,7] (like waterways or irrigation canals),
pipeline networks [1] and fluid models for road traffic networks [10].
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Robust boundary control of systems of conservation laws 179

Fig. 3 A reach of an open channel delimited by two adjustable overflow spillways

The analysis will be illustrated with an hydraulic application: the regulation of the
water level and the flow rate in networks of open channels. Our presentation will be
organized in two stages: in a first step, we consider a single reach described by a
system of two scalar conservation laws (i.e. n = 2). In a second step, we shall explain
how the analysis can be extended to general fluid networks.

A system of two conservation laws

In the field of hydraulics, the flow in open-channels is generally described by the
so-called Saint-Venant equations. We consider the case of a reach of an open channel
delimited by two overflow spillways as depicted in Fig. 3.

It is assumed that :

1. The channel is horizontal,
2. the channel is prismatic with a constant rectangular section and a unit width,
3. the channel is subject to time-invariant spatially distributed water supplies or

removals that do not modify the momentum conservation.

The flow dynamics are described by a non-homogeneous system of two laws of
conservation (Saint-Venant or shallow water equations), namely a law of mass conser-
vation:

∂t H(x, t) + ∂x (Q(x, t)) = q, (10)

and a law of momentum conservation:

∂t Q(x, t) + ∂x

(
Q2(x, t)

H(x, t)
+ gH2(x, t)

2

)
= −C f

Q2(x, t)

H2(x, t)
. (11)

where H(x, t) represents the water level and Q(x, t) the water flow rate in the reach, g
denotes the gravitation constant, q is a constant water supply/removal along the canal,
C f the friction coefficient. The system is written in matrix form as follows:

∂t

(
H
Q

)
+ A(H, Q)∂x

(
H
Q

)
=

(
q

−C f Q2/H2

)
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with the matrix A(H, Q) defined as:

A(H, Q) =
(

0 1
gH − (Q2/H2) 2Q/H

)
.

The eigenvalues of the Jacobian matrix A(H, Q):

c1(H, Q) = (Q/H) − √
gH

c2(H, Q) = (Q/H) + √
gH

are generally called characteristic velocities. The flow is said to be fluvial (or subcri-
tical) when the characteristic velocities have opposite signs:

c1(H, Q) < 0 < c2(H, Q).

3.1 Steady-state solution

Under constant boundary conditions

H(L , t) = H̄L , Q(0, t) = Q̄0 , ∀t, (12)

such that
c1(H̄L , Q̄0) < 0 < c2(H̄L , Q̄0), (13)

if |(C f , q)| is sufficiently small, there exists a steady-state solution:

H(x, t) = H̄(x) and Q(x, t) = Q̄(x) ∀x ∈ [0, L], ∀t

satisfying
dx Q̄(x) = q,

dx H̄(x) =
C f

Q̄2(x)

H̄2(x)
+ 2Q̄(x)q

H̄

−gH̄(x) + Q̄2(x)

H̄2(x)

.
(14)

Indeed, if C f = 0, and q = 0, then, for all (H̄L , Q̄0) satisfying (13), there exists a
unique equilibrium (H̄ , Q̄) : [0, L] → [0,+∞)×R satisfying (14) and the boundary
conditions (12). (It reads (H̄(x), Q̄(x)) = (H̄L , Q̄0).) Thus, thanks to the continuity
of the solution of the differential equation (14) with respect to parameters (C f , q),
for all (H̄L , Q̄0) ∈ [0,+∞) × R satisfying (13), for all (C f , q) such that |(C f , q)| is
sufficiently small, there exists a unique (H̄ , Q̄) : [0, L] → [0,+∞) × R satisfying
(14) and the boundary conditions (12).
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Robust boundary control of systems of conservation laws 181

3.2 Control design

The control objective is to stabilize the level H(x, t) and the flow rate Q(x, t) at
the steady state profiles H̄(x) and Q̄(x) corresponding to set points H̄L and Q̄0. We
assume that the boundary flow rates Q(0, t) and Q(L , t) are the control actions at
the user’s disposal because they can be assigned by the positions u0 and uL of the
spillways. It is also assumed that the water levels at the boundaries H0(t) = H(0, t)
and HL(t) = H(L , t) are the only available on-line measurements. In order to satisfy
this control objective, the following control laws were introduced in [9]:

Q0 = Q̄0

H̄0
H0 − α0 H0

(
2
√

gH0 − 2
√

gH̄0

)
(15)

QL = Q̄L

H̄L
HL + αL HL

(
2
√

gHL − 2
√

gH̄L

)
(16)

with:

0 < α0 < 1 and 0 < αL < 1.

The parameters α0 and αL are tuning parameters at the user’s disposal. It can be seen
that both controls have the form of a state feedback at the two boundaries. In addition, it
can be emphasized that the implementation of the controls is particularly simple since
only measurements of the levels H0(t) et HL(t) at the two spillways are required. This
means that the feedback implementation does not require neither level measurements
inside the pool nor any flow rate measurements.

3.3 Stability analysis

We shall now show that the stability of this control system can be analyzed with the
theorem presented in Sect. 2. The analysis is made easier with the state vector

Y =
(

H
Q

)

and the model (10) and (11) rewritten in compact form:

∂t Y + A(Y)∂x Y = f(Y) (17)

with obvious definitions of A(Y) and f(Y). This system can be diagonalized in the
Riemann coordinates. This means that there exists a change of coordinates

Z(Y) =
(

z1(Y)

z2(Y)

)
=

(
(Q/H) − 2

√
gH

(Q/H) + 2
√

gH

)
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whose Jacobian matrix ∇Y = ∂Z/∂Y diagonalizes A(Y) and therefore satisfies:

∇Y A(Y) = C(Y) ∇Y

with C(Y) = diag (c1(Y), c2(Y)). This change of coordinates can be inverted as:

Y(Z) =
(

H(Z)

Q(Z)

)
=

(
(z2 − z1)

2/16g
(z1 + z2)(z2 − z1)

2/32g

)
. (18)

By left-multiplying equation (17) with the matrix ∇Y and using the inverse coordinate
change (18), we get the model in the Riemann coordinates as

∂t Z + B(Z)∂x Z = g(Z)

where B(Z) = diag (c1(Y(Z)), c2(Y(Z)) and g(Z) = ∇Y(Z) f(Y(Z)).
Let us define the steady state solution in the Riemann coordinates as Z̄(x) =

Z(Ȳ(x)) which obviously satisfies

B(Z̄)∂x Z̄ = g(Z̄).

Then in order to transform the closed-loop system into the characteristic form (1),
the ξ characteristic coordinates are defined as

ξ(Z) = Z − Z̄ or componentwise

(
ξ1
ξ2

)
=

(
z1
z2

)
−

(
z̄1
z̄2

)
.

In these coordinates, the model (17) is finally written in the form:

∂tξ + Λ(ξ)∂xξ = h(ξ) (19)

with Λ(ξ) = B(ξ +Z̄) and h(ξ) = g(ξ +Z̄)−B(ξ +Z̄)∂x Z̄. We observe that h(0) = 0
as requested in the assumptions of Theorem 1.

To check that, by prescribing q and C f , |∇h(0)| could be made as small as we want,
let us first note that ∇h(ξ) = ∇g(ξ +Z̄)−∇B(ξ +Z̄)∂x Z̄. Due to (14), |∂x Z̄| vanishes
when q and C f vanish. Moreover note that g(ξ + Z̄) = ∇Y(ξ + Z̄) f(Y(ξ + Z̄)), and
that f(Z̄) and ∇f(Z̄) vanish when q and C f vanish.

Thus, by continuity of ∇h at the origin, for each H > 0, there exist q̄ and C̄ f

such that for all |q| < q̄ and |C f | < C̄ f , we have |∇h(0)| < H as requested in the
assumptions of Theorem 1.

Moreover, in the characteristic coordinates, the control laws (15) and (16) can be
shown to be equivalent to the following boundary conditions:

ξ1(L , t) = −kLξ2(L , t) with kL = 1 − αL

1 + αL
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and

ξ2(0, t) = −kLξ1(0, t) with k0 = 1 − α0

1 + α0
.

Observe that these boundary conditions are in the form (5) and that, in this special
case:

ρ(abs(∇g(0))) = k0kL .

Hence the closed-loop system is then exactly set in a form which allows to apply
Theorem 1. This means that, provided the conditions of Theorem 1 are satisfied (in
particular provided the tuning parameters α0 and αL are chosen such that |k0kL | < 1,
and the friction coefficient and the water supply/removal are sufficiently small), under
the control laws (15) and (16), the level H(x, t) and the flow rate Q(x, t) are guaranteed
to smoothly exponentially converge to the desired steady-state profile H̄(x) and Q̄(x).

General fluid networks

The analysis can be directly generalized to fluid networks that are made up of a set of
interconnected fluid transportation devices in one space dimension (canals, pipes, etc
…). The dynamics of such networks are naturally represented by a set of subsystems
of two conservations laws of the following general form:

∂t

(
Hi

Qi

)
+ Ai (Hi , Qi )∂x

(
Hi

Qi

)
= fi (Hi , Qi ) i = 1, . . . , m. (20)

The matrices Ai (Hi , Qi ) have two non-zero real distinct eigenvalues ci (Hi , Qi ) and
cm+i (Hi , Qi ) with opposite signs: ci (Hi , Qi ) < 0 < cm+i (Hi , Qi ). Each subsystem
(20) can obviously be transformed into characteristic form exactly as we did above.
This means that characteristic coordinates ξi and ξm+i can be defined such that the
system (20) is equivalent to a system of the form:

∂tξi + λi (ξi , ξm+i )∂xξi = hi (ξi , ξm+i )

∂tξm+i + λm+i (ξi , ξm+i )∂xξm+i = hm+i (ξi , ξm+i )

i = 1, . . . , m. (21)

with λi (ξi , ξm+i ) < 0 < λm+i (ξi , ξm+i ) being the eigenvalues ci and cm+i expressed
in the characteristic coordinates. Hence, this system network is exactly in the form
required for the application of Theorem 1 (with n = 2m, i.e. with m positive and m
negative eigenvalues λi ).

4 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. First we assume that the boundary
conditions (BC) have a particular form (see (22)). It allows us to set down a more natural
machinery to prove intermediate technical lemmas. In Sect. 4.1, we state an existence
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result of a solution in finite time. In Sects. 4.2 and 4.3, estimates of |ξ(·, t)|C0(0,L) and
|∂xξ(·, t)|C0(0,L) are derived, and we conclude the proof of Theorem 1 in Sect. 4.5 (in
particular the assumption on the form of the boundary conditions is removed).

In this section, except for Sect. 4.5, it is assumed that the boundary conditions (5)
are of the particular form

(
ξ−(L , t)
ξ+(0, t)

)
=

(
g−(ξ+(L , t))
g+(ξ−(0, t))

)
, (22)

where the functions g− and g+ are continuously differentiable on a neighborhood of 0.

4.1 Existence result

The following existence result on a finite time interval is a basic tool for the proof of
Theorem 1.

Lemma 1 Let T2 > T1 > 0 and T = T2 − T1. Assume that the BC satisfy (6). Then
there exist ε(T ) > 0, c(T ) > 0 and H(T ) such that, for all ξ# ∈ BC(ε(T )) and for
all continuously differentiable functions h: B(ε(T )) → R

n such that (3) holds and

|∇h(0)| ≤ H(T ), (23)

there exists a unique function ξ ∈ C1([0, L] × [T1, T2], R
n) satisfying the PDE (1)

with boundary conditions (22) and initial condition (8). Moreover, this function ξ

satisfies, ∀t ∈ [T1, T2],
|ξ(., t)|C0(0,L) ≤ c(T )|ξ#|C0(0,L), (24)

|ξ(., t)|C1(0,L) ≤ c(T )|ξ#|C1(0,L). (25)

Proof By [12, Theorem 3.3, p 180], the existence of a unique solution ξ to the PDE
(1) with B.C. (22) and initial condition (IC) (8) is guaranteed on a time interval (0, δ)

for some δ sufficiently small.
Now the thesis of Lemma 1 holds for the particular case where ∇h(0) = 0 (see [11,

Chap. 5, Theorem 1.1]). Hence, by using the continuous dependence of the solution
with respect to parameters, namely here ∇h(0), and with respect to the initial condition
(i.e. by the proof of [2, Chap. 3, Theorem 3.5] extended to quasilinear hyperbolic
systems), Lemma 1 holds on (0, δ). This leads to the a priori estimates (24) and (25)
of the solution on that interval, and more generally on its existence domain as well.

Finally one can conclude that the lemma is established on (T1, T2), by a repeated
application of the existence of solutions on intervals of the form (0, nδ), n = 1, 2, . . .

up to N such that Nδ > T , by choosing ε sufficiently small, i.e. by reducing the
C1-norm of the initial condition ξ� accordingly, and by using the a priori estimates
(24) and (25). ��

In the following, Lemma 1 is applied several times on intervals which will be
defined with the help of two decreasing sequences of positive numbers ε2, ε3, …and
H2, H3, …We consider initial conditions ξ# successively in BC(ε2), BC(ε3), …
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Robust boundary control of systems of conservation laws 185

Let, for i ∈ {1, . . . , n},

si = L

|λi (0)| , (26)

τ1 > max{si , i ∈ {1, . . . , n}}. (27)

Let A = (ai j ) ∈ R
n×n and a > 1 such that

|(∇g)i j (0)| < ai j < a, ∀(i, j) ∈ {1, . . . , n}2, (28)

ρ(A) < 1. (29)

From (29), there exists a sufficiently larger integer K ≥ 2 such that c(2τ1)
∑

k≥K

|Ak | < 1, where c(2τ1) is given by Lemma 1 applied on [0, 2τ1]. Let

τ2 := (K + 2)τ1. (30)

Let ν and ω > 1 be such that

ν = c(2τ1)
∑
k≥K

|Ak | < 1, (31)

ω ≥ |(∇Λ)i j (0)|,∀(i, j) ∈ {1, . . . , n}2, (32)

ω ≥ |(Λ̄)i j |,∀(i, j) ∈ {1, . . . , n}2. (33)

where Λ̄ = Λ(0).

4.2 Estimation of |ξ(., t)|C0(0,L)

Let ε2 = ε(τ2) and H2 = H(τ2) given by Lemma 1 applied on [0, τ2]. For all
0 < H < H2, for all continuously differentiable functions h: B(ε2) → R

n satisfying
(3) and

|∇h(0)| ≤ H, (34)

for all ξ# ∈ BC(ε2), the PDE (1), with the boundary condition (22) and the initial
condition (8), admits a unique solution ξ ∈ C1([0, L] × [0, τ2]; R

n).
In view of (2), and by using a continuity argument, we may assume without loss of

generality (i.e. with ε2 sufficiently small) that

λi (ξ(x, t)) < 0 < λ j (ξ(x, t)), ∀i ∈ {1, . . . , m}, ∀ j ∈ {m + 1, . . . , n}. (35)

The aim of this section is to establish the following

Lemma 2 There exist H̄ > 0, ε̄ ∈ (0, ε2) and µ̄ > 0 such that, for all 0 < H < H̄ ,
for all continuously differentiable functions h: B(ε2) → R

n satisfying (3) and (34),
for all ξ# ∈ BC(ε̄), the following inequality holds:

|ξ(., τ2)|C0(0,L) ≤ (ν + µ̄)(H + ε2)|ξ#|C0(0,L). (36)
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Fig. 4 Characteristic curves defining pi and p j . Left, for i ∈ {1, . . . , m}, right, for j ∈ {m + 1, . . . , n}

Before proving this lemma, let us state a series of intermediate results from Claim 3
to Claim 7.

Let x ∈ [0, L]. Hereafter the characteristics are defined backwards in time from
(x, τ2).

In what follows, N denotes the set of nonnegative integers. For k ∈ N and for
(i1, . . . , ik) ∈ {1, . . . , n}k , we define ti1...ik ∈ [0, T ] and pi1...ik ∈ [0, L] × {ti1...ik } by
induction on k as follows (see Fig. 4).

Initial step k = 1

– For i ∈ {1, . . . , m}, let us consider the solution yi of the Cauchy problem

dt yi (t) = λi (ξ(yi (t), t)), yi (τ2) = x .

In view of (35), it is allowed to define the time instant ti ≤ τ2 by

yi (ti ) = L

and we set

pi = (L , ti ).

– For j ∈ {m + 1, . . . , n}, let us consider the solution y j of the Cauchy problem

dt y j (t) = λ j (ξ(y j (t), t)), y j (τ2) = x .

Similarly, we define the time instant t j ≤ τ2 by

y j (t j ) = 0

and we set

p j = (0, t j ).

123



Robust boundary control of systems of conservation laws 187

The following claim states the initial estimation of the Riemann coordinates along
the characteristics:

Claim 3 There exist ε3 ∈ (0, ε2) and H3 ∈ (0, H2) such that, for all 0 < H < H3,
for all continuously differentiable functions h: B(ε2) → R

n satisfying (3) and (34),
for all ξ# ∈ BC(ε3), and for all i1 ∈ {1, . . . , n},

|ξi1(x, τ2)| ≤ |ξi1(pi1)| + c(τ2)τ2(H + ε2)|ξ#|C0(0,L). (37)

Proof of Claim 3 Note that using (1), (24) of Lemma 1 and by construction of pi1 ,
there exist ε3 ∈ (0, ε2) and H3 ∈ (0, H2) such that, for all 0 < H < H3, for all
continuously differentiable functions h: B(ε2) → R

n satisfying (3) and (34), for all
ξ# ∈ BC(ε3), and for all i1 ∈ {1, . . . , n},

|ξi1(x, τ2)| = |ξi1(pi1) +
τ2∫

ti1

hi1(ξ(yi1(s), s))ds|,

≤ |ξi1(pi1)| +
τ2∫

ti1

|hi1(ξ(yi1(s), s))ds|. (38)

Moreover, by the Mean-Value Inequality, also called Finite-Increment Theorem
(see [21, Propoaition 2. p. 78]), and conditions (3) and (34), there exists an increasing
function w : (0, ε2) → (0,+∞), satisfying w(ε) → 0 as ε → 0, such that, for all
ξ# ∈ BC(ε3), for all s ∈ [ti1, τ2],

|hi1(ξ(yi1(s), s))| ≤ (H + w(c(τ2)ε3))|ξ(yi1(s), s)|.

It follows by using inequalities (24) and (38) that

|ξi1(x, τ2)| ≤ |ξi1(pi1)| + τ2(H + w(c(τ2)ε3))c(τ2)|ξ#|C0(0,L).

Therefore, up to reducing ε3 ∈ (0, ε2), we may conclude that (37) holds. ��
General induction step
Now let k ∈ N be arbitrarily fixed and assume that ti1...ik ∈ [0, τ2] and pi1...ik ∈

[0, L] × {ti1...ik } are defined. Then, for ik+1 ∈ {1, . . . , n}, we define ti1...ik+1 ∈ [0, τ2]
and pi1...ik+1 ∈ [0, L]×{ti1...ik+1}, by considering two cases (as done above for k = 1):

– For all i ∈ {1, . . . , m}, consider the Cauchy problem

dt yi (t) = λi (ξ(yi (t), t)), yi (ti1...ik ) = 0

and define ti1...ik i ∈ [0, ti1...ik ) by

y1(ti1...ik i ) = L .
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If such ti1...ik i exists, it is unique and we define pi1...ik i by

pi1...ik i = (L , ti1...ik i ).

In contrast, if such ti1...ik i does not exist, we do not define ti1...ik i , neither pi1...ik i ,
nor ti1...ik i ...il and pi1...ik i ...il for l > k + 1.

– For all j ∈ {m + 1, . . . , n}, consider the Cauchy problem

dt y j (t) = λ j (ξ(y j (t), t)), y j (ti1...ik ) = L ,

and define ti1...ik j ∈ [0, ti1...ik ) by

y j (ti1...ik j ) = 0.

Again, if such ti1...ik j exists, it is unique and then we define pi1...ik j by

pi1...ik j = (0, ti1...ik j ).

However if such ti1...ik j does not exist, we do not define ti1...ik j , neither pi1...ik j ,
nor ti1...ik j ...il and pi1...ik j ...il for l > k + 1.

Similarly to Claim 3, using (1), (3), (24) of Lemma 1 and by construction of ti1...ik+1

and pi1...ik+1 , we get the following result.

Claim 4 There exist ε4 ∈ (0, ε3) and H4 ∈ (0, H3) such that, for all 0 < H < H4,
for all continuously differentiable functions h: B(ε2) → R

n satisfying (3) and (34),
and for all ξ# ∈ BC(ε4),

|ξi (0, ti1...ik )|≤|ξi (pi1...ik i )| + c(τ2)τ2(H+ε2)|ξ#|C0(0,L), ∀i ∈ {1, . . . , m} (39)

and

|ξ j (L , ti1...ik )| ≤ |ξ j (pi1...ik j )| + c(τ2)τ2(H + ε2)|ξ#|C0(0,L) ∀ j ∈ {m + 1, . . . , n}.
(40)

Note that, in view of (26), (27) and (30) there exists a finite number of k ≥ 1 such
that

si1 + · · · + sik ≤ τ2 − τ1 , ∀i1, . . . , ik ∈ {1, . . . , n}.

With the previous two Claims, the influence of the boundary conditions on the
Riemann coordinates are estimated as follows:

Claim 5 There exist ε5 ∈ (0, ε4) and H5 ∈ (0, H4), such that, for all 0 < H < H5,
for all continuously differentiable functions h: B(ε2) → R

n satisfying (3) and (34),
for all ξ# ∈ BC(ε5), for all integer k ≥ 1, and for all (i1, . . . , ik, ik+1) ∈ {1, . . . , n}k+1

such that si1 + · · · + sik ≤ τ2 − τ1, the time instant ti1...ik ik+1 and the point pi1...ik ik+1

exist.
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Moreover

|ξik (pi1...ik )| ≤
∑
j =ik

aik j |ξ j (pi1...ik j )| + c(τ2)τ2(H + ε2)|ξ#|C0(0,L). (41)

Proof of Claim 5 Let (i1, . . . , ik, ik+1) ∈ {1, . . . , n}k+1 such that si1 + · · · + sik ≤
τ2 − τ1. Due to (26), (27), the time instant ti1...ik ik+1 and the point pi1...ik ik+1 exist.
Inequality (41) is a consequence of Claims 3 and 4 and the boundary conditions (22),
and (28). ��

The following result will also be useful.

Claim 6 There exist ε̄ ∈ (0, ε5) and H̄ ∈ (0, H5), such that, for all 0 < H < H̄ , for
all continuously differentiable functions h: B(ε2) → R

n satisfying (3) and (34), for
all ξ# ∈ BC(ε̄), for all integer k ≥ 1, and for all (i1, . . . , ik, ik+1) ∈ {1, . . . , n}k+1

such that

τ2 − 2τ1 ≤ si1 + · · · + sik ≤ τ2 − τ1,

the existence of ti1...ik ik+1 is guaranteed and the time instant ti1...ik is in the interval
[0, 2τ1]. Moreover

|ξ(pi1...ik )| ≤ c(2τ1)|ξ#|C0(0,L). (42)

Proof of Claim 6 The existence of ti1...ik ik+1 follows from Claim 5. The estimation
ti1...ik ≤ 2τ1 follows from τ2 − 2τ1 ≤ si1 + · · · + sik and the definition of the time
instant ti1...ik .

Estimation (42) is a consequence of Lemma 1 applied on [0, 2τ1]. ��

Finally, let us state the following

Claim 7 For all l in N, there exists δl > 0 such that the following assertion (Pl ) holds:
For all 0 < H < H̄ , for all continuously differentiable functions h: B(ε2) → R

n

satisfying (3) and (34), for all ξ# ∈ BC(ε̄), ∀(i1, . . . , il) ∈ {1, . . . , n}l such that
si1 + · · · + sil ≤ τ2 − 2τ1, we have

|ξil (pi1...il )|≤
∑
k≥l

∑
Ik

n∑
j=1

ail il+1ail+1il+2 · · · aik j |ξ j (pi1···ik j )|+δl(H +ε2)|ξ#|C0(0,L).

where Ik denotes the set of indices i j , j ∈ {1, . . . , k} such that

τ2 − 2τ1 ≤ si1 + · · · + sil + sil+1 + · · · + sik ≤ τ2 − τ1.

The proof of Claim 7 is based on a decreasing induction on l. See Appendix.
We are now in a position to prove Lemma 2.
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Proof of Lemma 2 Due to Claim 7, (P1) is true and thus with Claim 3, for all 0 <

H < H̄ , for all continuously differentiable functions h: B(ε2) → R
n satisfying (3)

and (34), for all i1 ∈ {1, . . . , n}, for all x ∈ [0, L] and ξ# ∈ BC(ε̄),

|ξi1(x, τ2)| ≤
∑
k≥1

∑
τ2−2τ1≤si1+···+sik ≤τ2−τ1

n∑
j=1

ai1i2 ai2i3 . . . aik j |ξ j (pi1...ik j )|

+(δ1 + c(τ2)τ2)(H + ε2)|ξ#|C0(0,L),

which, with (42), gives

|ξi1(x, τ2)| ≤ c(2τ1)|ξ#|C0(0,L)

∑
k≥1

∑
τ2−2τ1≤si1+...+sik ≤τ2−τ1

n∑
j=1

ai1i2 ai2i3 . . . aik j

+(δ1 + c(τ2)τ2)(H + ε2)|ξ#|C0(0,L). (43)

Note that the sums in (43) are finite. Moreover, due to (27) and (30)

(
si1 + · · · + sik ≥ τ2 − 2τ1 = K τ1

) ⇒ k ≥ K . (44)

Observe also that, by the definition of matrix product, we have, for all N ∈ N,

∑
(i2,...,ik , j)∈{1,...,N }k

ai1i2 ai2i3 . . . aik j =
N∑

j=1

(Ak)i1 j ≤ |AN |. (45)

From (43)–(45), we get, for all continuously differentiable functions h: B(ε2) →
R

n satisfying (3) and (34), for all ξ# ∈ BC(ε̄), we have

|ξi1(x, τ2)|≤c(2τ1)|ξ#|C0(0,L)

∑
k≥K

|Ak | + (δ1+c(τ2)τ2)(H + ε2)|ξ#|C0(0,L). (46)

Let µ̄ = δ1 + c(τ2)τ2. Recall that δl is recursively defined by (58) and (65) (see the
Appendix) and thus it does not depend on H . We get with (31), (46) and Claim 7,

|ξi1(x, τ2)| ≤ (ν + µ̄)(H + ε2)|ξ#|C0(0,L),

for all i1 in {1, . . . , n} and for all x in [0, L]. This is (36). This concludes the proof of
Lemma 2. ��

4.3 Estimation of |∂xξ(., t)|C0(0,L)

Let η: [0, L] × [0, τ2] → R
n be defined by η = Λ̄∂xξ where ξ ∈ C1([0, L] ×

[0, τ2]; R
n) is defined by ξ# ∈ BC(ε̄), the PDE (1), the boundary condition (8), and

the initial condition (22).
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Similarly let us define η1: [0, L] × [0, τ2] → R
n and η2: [0, L] × [0, τ2] → R

n

defined respectively by η = (η1, η2)
T .

Differentiating (1) with respect to x , it follows that

∂tη + Λ̄Λ(ξ)Λ̄−1∂xη = −Λ̄(∇Λ(ξ)∂xξ)∂xξ + Λ̄∇h(ξ)∂xξ, (47)

along the characteristics.
Moreover, differentiating (22) and using (1), it gives

(
(−Λ(ξ)Λ̄−1η + h(ξ))−(L , t)
(−Λ(ξ)Λ̄−1η + h(ξ))+(0, t)

)

= ∇g

(
ξ−(0, t)
ξ+(L , t)

) (
(−Λ(ξ)Λ̄−1η + h(ξ))−(0, t)
(−Λ(ξ)Λ̄−1η + h(ξ))+(L , t)

)
.

A development similar to ξ can be used as for ξi along the trajectories of (47). It
can be shown from Lemma 1, and (25), (32) and (33), that there exist ε6 ∈ (0, ε̄)

and H6 ∈ (0, H̄) such that, for all 0 < H < H6, for all continuously differentiable
functions h: B(ε2) → R

n satisfying (3) and (34), for all ξ# ∈ BC(ε6) then, we have,
for all i ∈ {1, . . . , n} and for all t1 < t2 along a characteristic of (47).

|ηi (y(t2), t2) − ηi (y(t1), t1)| ≤ ω2 c(2τ1)
2 |ξ#|2

C1(0,L)
|t2 − t1|

+ω (H + ε2) c(2τ1) |ξ#|C1(0,L) |t2 − t1|,
≤ ω (H + 2 max(1, ωc(2τ1))ε2) c(2τ1)

×|ξ#|C1(0,L)|t2 − t1|.

The last inequality allows us to prove the analogous of Claim 3 for the variable η.
Using the computations of Sect. 4.2, we deduce the following

Lemma 8 There exist ε̃, H̃ , and µ̃ > 0 such that, for all 0 < H < H̃ , for all
continuously differentiable functions h: B(ε2) → R

n satisfying (3) and (34), for all
ξ# ∈ BC(ε̃), we have

|η(., τ2)|C0(0,L) ≤ (ν + µ̃) (H + 2ε2 max(1, ωc(2τ1))) |ξ#|C1(0,L). (48)

4.4 Proof of Theorem 1 for the particular boundary conditions (22)

In this section, we conclude the proof of Theorem 1 for the special boundary conditions
(22) (instead of (5)). To deduce Theorem 1 for the boundary conditions given by (5),
we need to double the size of the state as done in [9, Proof of Theorem 6]. This is done
in Sect. 4.5.

Let ν′ ∈ (0, 1). Up to reducing ε2, there exists H7 ∈ (0, H̃) such that

(ν + max(µ, µ̃))(H7 + 2ε2 max(1, ωc(2τ1))) < ν′.

123



192 C. Prieur et al.

We combine (36) and (48) to get the existence of ε7 ∈ (0, ε6), such that, for all
0 < H < H7, for all continuously differentiable functions h: B(ε2) → R

n satisfying
(3) and (34), for all ξ# ∈ BC(ε7), we have

|ξ(., τ2)|C1(0,L) ≤ ν′|ξ#|C1(0,L).

This estimate allows a repeated application of Lemma 1 on intervals of length τ2 to
give, for all 0 < H < H7, for all continuously differentiable functions h: B(ε2) → R

n

satisfying (3) and (34), for all ξ# ∈ BC(ε7), the existence of a unique solution of (1),
(8) and (22) over any interval [0, Nτ2] with N ∈ N \ {0} and

|ξ(., Nτ2)|C1(0,L) ≤ ν′N |ξ#|C1(0,L).

Thus, by letting C1 = max(c(τ2), 1)e− ln ν′
and µ = − ln(ν′)

τ2
, we get (9).

4.5 Proof of Theorem 1 for the general boundary conditions (5)

In the previous section, we have proved Theorem 1 when the boundary conditions have
the special form (22). It turns out that Theorem 1 remains valid, when the boundary
conditions have the more general form (5).

To prove this, we adapt to our more general situation by doubling the size of the
state as done in [9, Proof of Theorem 6]. More precisely, consider the hyperbolic
system

∂t ξ̃ + Λ̃(̃ξ )∂x ξ̃ = 0, (49)

with

ξ̃ = (ξ T
1−, ξ T

2−, ξ T
1+, ξ T

2+)T ,

where ξ1− ∈ R
m , ξ2− ∈ R

n−m , ξ1+ ∈ R
n−m , ξ2+ ∈ R

m and Λ̃: R
2n → R

2n×2n is
defined by

Λ̃(̃ξ ) = diag

⎛
⎜⎜⎝

Λ−((ξ T
1−, ξ T

1+)T )

−Λ+((ξ T
2+, ξ T

2−)T )

Λ+((ξ T
1−, ξ T

1+)T )

−Λ−((ξ T
2+, ξ T

2−)T )

⎞
⎟⎟⎠ .

The boundary conditions for (49) are defined by

(
ξ1−(L , t)
ξ2−(L , t)

)
= g

((
0 1
1 0

) (
ξ1+(L , t)
ξ2+(L , t)

))
,

(
ξ1+(0, t)
ξ2+(0, t)

)
=

(
0 1
1 0

)
g

(
ξ1−(0, t)
ξ2−(0, t)

)
.
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This boundary conditions can be written in the following form

(
ξ̃−(L , t)
ξ̃+(0, t)

)
= g̃

(
ξ̃+(L , t)
ξ̃−(0, t)

)
=

(
g̃1(̃ξ+(L , t))
g̃2(̃ξ−(0, t))

)
, (50)

with

ξ̃− = (ξ T
1−, ξ T

2−)T , ξ̃+ = (ξ T
1+, ξ T

2+)T , (51)

g̃1 = g ◦
(

0 1
1 0

)
, g̃2 =

(
0 1
1 0

)
◦ g. (52)

In particular the boundary conditions for ξ̃ have the special form (22) and

ρ(abs(∇ g̃(0))) = ρ(abs(∇g(0)))2. (53)

Let ξ# ∈ C1([0, L]; R
n) satisfying the compatibility condition C and such that

|ξ#|C1(0,L) is small enough. We choose as initial condition for ξ̃ at t = 0,

ξ#
1−(x) = ξ#−(x), ξ#

2−(x) = ξ#+(L − x),

ξ#
1+(x) = ξ#+(x), ξ#

2+(x) = ξ#−(L − x).
(54)

One easily sees that ξ̃# := (ξ#T
1− , ξ#T

2− , ξ#T
1+ , ξ#T

2+ )T satisfies the compatibility condition
associated to (49) and (50). Hence there exists a unique C1-solution ξ̃ of (49) and (50)
such that

ξ̃ (x, 0) = ξ̃#(x). (55)

Let

ξ̃∗(x, t) =

⎛
⎜⎜⎝

ξ2+(L − x, t)T

ξ1+(L − x, t)T

ξ2−(L − x, t)T

ξ1−(L − x, t)T

⎞
⎟⎟⎠ .

Then, as one easily checks, ξ̃∗ satisfies as ξ̃ the hyperbolic system (49), the boun-
dary conditions (50) and the initial condition (55). Hence by the uniqueness of the
C1-solution of the Cauchy problem associated to (49) and (50), one has ξ̃∗ = ξ̃ .
In particular ξ1−(x, t) = ξ2+(L − x, t), and ξ1+(x, t) = ξ2−(L − x, t). Hence, if
ξ−(x, t) := ξ1−(x, t), and ξ+(x, t) := ξ1+(x, t), then ξ = (ξ T− , ξ T+ )T satisfies (1),
(5) and (8).

Conversely, if ξ = (ξ T− , ξ T+ )T satisfies (1), (5) and (8), then ξ̃ defined by

ξ1−(x, t) := ξ−(x, t), ξ1+(x, t) := ξ+(x, t),
ξ2+(x, t) := ξ−(L − x, t), ξ2−(x, t) := ξ+(L − x, t),
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satisfies the hyperbolic system (49), the boundary conditions (50) and the initial condi-
tion (55). Hence, see also (53), Theorem 1 for the hyperbolic system (1) and the boun-
dary conditions (5) are a consequence of Sect. 4.4 for the hyperbolic system (49) and
the special boundary conditions (50).

This concludes the proof of Theorem 1.

5 Conclusion

The aim of this paper was to address the following two problems.
Firstly, a sufficient condition was stated for the stability of systems of conserva-

tion laws, perturbed by non-homogeneous terms which are assumed to be small in
C1-norm. This criterion is written in terms of the boundary conditions and it was
proved thanks to an analysis of the Riemann coordinates.

This result has been presented in the case where all the eigenvalues of the function
Λ defining the PDE (1) do not have the same sign. However this result remains true
in the case where all the eigenvalues have the same sign. In this case, only one kind
of characteristic curves should be considered and some parts of the proof in Sect. 4
can be removed or simplified (e.g. the boundary conditions (5) become simpler, or for
the definition of the sequence pi in Sect. 4.2, we do not have to make the distinction
between i ∈ {1, . . . , m} and j ∈ {m + 1, . . . , n}).

This main result can be seen as a robustness property of the results of [9] and [11,
Chap. 5] for the stability of hyperbolic equations. To the best to our knowledge, this
kind of stability results is not usual in the study of PDE.

Secondly, this general condition was applied to the case of the regulation of the water
level and the water flow rate in open channels. The evolution of the flow is described by
the Saint-Venant equations perturbed by small non-homogeneous terms that account
for the friction effects as well as external supplies or withdrawals. The general sufficient
condition established in Sect. 3 leads to design of stabilizing boundary controls of the
canal.

An interesting approach for the proof of an analoguous result and its hydraulic
application could be the use of a Lyapunov function for boundary control of hyperbo-
lic systems as computed in [4]. Using this Lyapunov function for a hyperbolic system
perturbed by sufficiently small terms may be possible. Note however that in [4], the
stability result and the Lyapunov function have been computed with the H2-norm
instead of the C1-norm as in this paper. Thus, the robustness issue would be different,
if it is true. Another potentially interesting approach could be to linearize the PDE
describing the model, together with the boundary conditions, around a given equili-
brium profile. The well-posedness and the stability of the resulting linear boundary
control system might then be analyzed by means of known techniques: see e.g. [20]
and the references therein. However the next step would then be to analyze the nomi-
nal nonlinear model by interpreting it as a linear boundary control system perturbed
by nonlinear terms: this problem is clearly nontrivial and is an interesting topic for
further research.

The main result of this paper has been successfully tested in [5] on numerical
simulations using the data of a real river (more precisely the Sambre river in Belgium),
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and experimented on an experimental micro-channel in Valence. Other applications
in the control of fluid networks are in progress.

Acknowledgements This paper presents research results of the Belgian Programme on Interuniversity
Attraction Poles, initiated by the Belgian Federal Science Policy Office. The scientific responsibility rests
with its authors.

Appendix: Proof of Claim 7

We prove (Pl ) by a decreasing induction on l.
By defining l̃ as the smaller integer such that

l̃ >
τ2 − τ1

min{si , i = 1, . . . , n} , (56)

it follows that
{
(i1, . . . , il) ∈ {1, . . . , n}l; si1 + · · · + sil ≤ τ2 − τ1

}
= ∅, ∀l ≥ l̃. (57)

Since l̃ is minimally defined,

l̃ ≤ τ2 − τ1

min{si , i = 1, . . . , n} + 1. (58)

Due to (24) of Lemma 1, by letting

δl = c(τ2)

ε2
, ∀l ≥ l̃, (59)

we have

|ξil (pi1...il )| ≤ δlε2|ξ#|C0(0,L)

and thus, due to (57), (Pl ) holds, for l ≥ l̃.
Let l ≥ 2 be such that (Pl ) is true. Let us prove that (Pl−1) is true. Let (i1, . . . , il−1)∈

{1, . . . , n}l−1 be such that

si1 + · · · + sil−1 ≤ τ2 − 2τ1. (60)

From (41) in Claim 5,

|ξil−1(pi1...il−1)| ≤
∑

j =il−1

ail−1 j |ξ j (pi1...il−1 j )| + c(τ2)τ2(H + ε2)|ξ#|C0(0,L). (61)

Due to (27) and (60), for all j ∈ {1, . . . , n},

si1 + · · · + sil−1 + s j ≤ τ2 − τ1.
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Therefore, it follows from (61) that

|ξil−1(pi1...il−1)| ≤
∑

j, si1+···+sil−1+s j ≤τ2−τ1

ail−1 j |ξ j (pi1...il−1 j )|

+c(τ2)τ2(H + ε2)|ξ#|C0(0,L). (62)

Now let us split this sum into two parts as follows:

|ξil−1(pi1...il−1)| ≤
∑

j, si1+···+sil−1+s j ≤τ2−2τ1

ail−1 j |ξ j (pi1...il−1 j )| (63)

+
∑

j, τ2−2τ1≤si1+···+sil−1+s j ≤τ2−τ1

ail−1 j |ξ j (pi1...il−1 j )| (64)

+c(τ2)τ2(H + ε2)|ξ#|C0(0,L).

For all j ∈ {1, . . . , n} such that si1 + · · · + sil−1 + s j ≤ τ2 − 2τ1, (Pl) applies and
thus, for such a j ,

|ξ j (pi1...il−1 j )| ≤
∑
k≥l

∑
Ik

n∑
j=1

ail il+1ail+1il+2 · · · aik j |ξ j (pi1···ik j )|

+δl(H + ε2)|ξ#|C0(0,L).

Therefore, in view of (28) and (63),

|ξil−1(pi1...il−1)| ≤
∑

j, si1+···+sil−1+s j ≤τ2−2τ1

ail−1 j

∑
k≥l

∑
Ik

×
n∑

j=1

ail il+1ail+1il+2 · · · aik j |ξ j (pi1···ik j )|

+2anδl(H + ε2)|ξ#|C0(0,L)

+
∑

j, τ2−2τ1≤si1+···+sil−1+s j ≤τ2−τ1

ail−1 j |ξ j (pi1...il−1 j )|

+c(τ2)τ2(H + ε2)|ξ#|C0(0,L).

By rewriting the first sum and by estimating the second sum, it follows that

|ξil−1(pi1...il−1)| ≤
∑
k≥l

∑
Ik

n∑
j=1

ail−1 j ail il+1ail+1il+2 · · · aik j |ξ j (pi1···ik j )|

+
n∑

j=1

ail−1 j |ξ j (pi1...il−1r )|+(c(τ2)τ2+2anδl)(H+ε2)|ξ#|C0(0,L).
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Thus assertion (Pl−1) holds with

δl−1 = c(τ2)τ2 + 2nδl . (65)

This concludes the proof of Claim 7.
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