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Abstract: In this work, a dynamic metabolic flux analysis based on convex analysis (DMFCA)
is applied to CHO-DXB11 cell fed-batch cultures. This approach exploits all the available
knowledge of the metabolic network and the time evolution of extracellular component
concentrations, to determine bounded intervals for the fluxes continuously over time. Smoothing
splines and mass balance differential equations are used to estimate the time evolution of the
uptake and excretion rates from experimental data. Furthermore, the method is suitable for
underdetermined systems, and does not require the definition of ad-hoc objective functions to
be optimized. Moreover the metabolic network considered in this work allows an estimation of
the carbon dioxide flux.
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1. INTRODUCTION

Over the past years, classical Metabolic Flux Analysis
(MFA) has been extensively used to determine intracel-
lular fluxes from extracellular measurements, such as cell
density, substrate and product concentrations in, among
others, mammalian cell cultures. This tool has been widely
applied to investigate static metabolic states of cells, cor-
responding to intracellular fluxes which do not change over
time. This assumption is supported by the observation
that intracellular dynamics are much faster than extra-
cellular dynamics. Therefore, it makes sense to neglect the
fast dynamics and consider that intracellular fluxes are
in pseudo-steady state (Stephanopoulos et al., 1998). The
main disadvantage of classical MFA is that it does not
provide information on metabolic transient. To overcome
this weakness, dynamic metabolic flux analysis (DMFA)
techniques have been proposed (Leighty and Antoniewicz,
2011; Lequeux et al., 2010; Llaneras et al., 2012; Niklas
et al., 2011; Vercammen et al., 2014).

DMFA is also based on stoichiometric metabolite bal-
ancing within an assumed metabolic model. Most of the
proposed DMFA approaches are dedicated to exactly de-
termined or overdetermined systems. However, due to the
complexity of the metabolic networks, measurable and
available extracellular data is usually insufficient, lead-

ing to an underdetermined system of algebraic equations,
whereby a unique solution cannot be computed. When
an underdetermined system is considered, the literature
suggests the use of dynamic flux balance analysis (DFBA)
(Mahadevan et al., 2002) and isotopic tracer approaches
for non-steady state flux analysis (Antoniewicz et al.,
2007). The former approach implies the determination of
an appropriate objective function, which remains valid
over the whole culture, and involves large computational
expenses. Detailed dynamic models including information
on the kinetics have been introduced (Dorka et al., 2009;
Ghorbaniaghdam et al., 2014; Robitaille et al., 2015), but
those dynamic models require more experimental data for
their validation. The identification of a priori unknown
reaction kinetics is a critical task due to the model nonlin-
earity, relatively large number of parameters, and scarcity
of informative experimental data.

In the present study, an alternative DMFA method is
presented, which is suitable for underdetermined systems,
and does not require the definition of ad-hoc objective
functions. The method is based on convex analysis, and
builds upon the methodology introduced in Provost and
Bastin (2004) and further exploited in (Zamorano et al.,
2010; Fernandes et al., 2015). In these former works the
specific uptake and production rates are assumed con-
stants and are determined using linear regression. In this
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∗∗ Université catholique de Louvain, ICTEAM, Department of

Mathematical Engineering, av. G. Lemaitre 4, B1348
Louvain-La-Neuve, Belgium (e-mail: Georges.Bastin@uclouvain.be)

∗∗∗ Laboratory in Applied Metabolic Engineering, Department of
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1. INTRODUCTION

Over the past years, classical Metabolic Flux Analysis
(MFA) has been extensively used to determine intracel-
lular fluxes from extracellular measurements, such as cell
density, substrate and product concentrations in, among
others, mammalian cell cultures. This tool has been widely
applied to investigate static metabolic states of cells, cor-
responding to intracellular fluxes which do not change over
time. This assumption is supported by the observation
that intracellular dynamics are much faster than extra-
cellular dynamics. Therefore, it makes sense to neglect the
fast dynamics and consider that intracellular fluxes are
in pseudo-steady state (Stephanopoulos et al., 1998). The
main disadvantage of classical MFA is that it does not
provide information on metabolic transient. To overcome
this weakness, dynamic metabolic flux analysis (DMFA)
techniques have been proposed (Leighty and Antoniewicz,
2011; Lequeux et al., 2010; Llaneras et al., 2012; Niklas
et al., 2011; Vercammen et al., 2014).

DMFA is also based on stoichiometric metabolite bal-
ancing within an assumed metabolic model. Most of the
proposed DMFA approaches are dedicated to exactly de-
termined or overdetermined systems. However, due to the
complexity of the metabolic networks, measurable and
available extracellular data is usually insufficient, lead-

ing to an underdetermined system of algebraic equations,
whereby a unique solution cannot be computed. When
an underdetermined system is considered, the literature
suggests the use of dynamic flux balance analysis (DFBA)
(Mahadevan et al., 2002) and isotopic tracer approaches
for non-steady state flux analysis (Antoniewicz et al.,
2007). The former approach implies the determination of
an appropriate objective function, which remains valid
over the whole culture, and involves large computational
expenses. Detailed dynamic models including information
on the kinetics have been introduced (Dorka et al., 2009;
Ghorbaniaghdam et al., 2014; Robitaille et al., 2015), but
those dynamic models require more experimental data for
their validation. The identification of a priori unknown
reaction kinetics is a critical task due to the model nonlin-
earity, relatively large number of parameters, and scarcity
of informative experimental data.

In the present study, an alternative DMFA method is
presented, which is suitable for underdetermined systems,
and does not require the definition of ad-hoc objective
functions. The method is based on convex analysis, and
builds upon the methodology introduced in Provost and
Bastin (2004) and further exploited in (Zamorano et al.,
2010; Fernandes et al., 2015). In these former works the
specific uptake and production rates are assumed con-
stants and are determined using linear regression. In this
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study, mass balance differential equations for the extracel-
lular concentrations, together with cubic spline smoothing,
are used to assess the time evolution of the uptake and
excretion rates. This information is then processed by
convex analysis assuming that the intracellular species
are in pseudo-steady state with respect to the time evo-
lution of the extracellular concentrations (slow-fast ap-
proximation). Dynamic Metabolic Flux Convex Analysis
(DMFCA) allows determining bounded intervals for each
intracellular flux, and makes the most of the available
information (metabolic network and available extracellular
measurements) without introducing additional constraints
or objective function. In this work, DMFCA is applied to
experimental data collected from CHO fed-batch cultures.

This paper is organized as follows. The next section
describes the experimental data. The considered metabolic
reaction network is introduced in section 3. In section 4,
the DMFCA problem is formulated, including extracellular
dynamic mass balance equations, spline smoothing of the
experimental data, and determination of bounded intervals
for the intracellular fluxes using convex analysis. Section
5 is devoted to the numerical results and section 6 draws
some conclusions.

2. EXPERIMENTAL DATA

Our study is based on a set of the experimental data from
CHO-DXB11 cell line, producing a chimeric heavy chain
monoclonal antibody (EG2-hFc). The experimental work
has been performed at the Research Laboratory in Applied
Metabolic Engineering, University of Montréal, Quebec,
Canada (Robitaille et al., 2015). This set of experimental
data results from a fed-batch culture and contains the time
evolution of the extracellular concentrations of biomass,
recombinant mAb, glucose, glutamine, lactate, alanine,
ammonia and 15 amino acids (except leucine, tryptophan
and cysteine). The fed-batch culture was fed daily, with
punctual injections of fresh medium, to avoid nutrients
limitations (see figure 1). Mathematically speaking, this
type of fed-batch, with punctual injections, is character-
ized as a succession of batch cultures.

For more details about the experimental procedure and
analytical methods, the reader is referred to Robitaille
et al. (2015).

0 22.5 48 71 95 119 142.5
0

10

20

30

40

50

60

70

Time [h]

F
ee

d
 [

m
L

]

Fig. 1. Feeding strategy over CHO-DXB11 fed-batch cul-
ture.

3. METABOLIC NETWORK MODEL

The metabolic network considered in this work contains
70 biochemical reactions, 45 internal metabolites and 21
extracellular metabolites present in the culture medium,
which are either substrates or products. It embraces the
major reactions of central metabolism such as glycoly-
sis, Tricarboxylic Cycle Acid (TCA), Penthose Phosphate
Pathway (PPP) and amino acids metabolism (see Table 2).
Furthermore, biomass and antibody synthesis are also in-
corporated into the model. The stoichiometric coefficients
of the biomass and antibody synthesis were taken from
literature (Robitaille et al., 2015).

The authors emphasize that there is no exact metabolic
network to represent cellular metabolism: a candidate
metabolic network is based on available metabolic knowl-
edge and built in a way that allows describing the con-
sumption and production of the available extracellular
metabolites in a satisfactory manner. However, special care
has to be exercised to preserve the stoichiometry while
lumping and/or combining reactions.

Also, note that convex analysis provides positive intervals
(solutions). Therefore the flux direction of the biochemical
reactions is fixed a priori in agreement with the metabolic
state of the cells.

Table 2. Metabolic network of CHO cells.

Flux Reactions

Glycolysis

v1 Glcext + ATP � G6P + ADP

v2 G6P ↔ F6P

v3 F6P + ATP � DHAP + G3P + ADP

v4 DHAP ↔ G3P

v5 G3P + NAD+ + ADP ↔ 3PG + NADH + ATP

v6 3PG + ADP � Pyr + ATP

Tricarboxylic Acid Cycle

v7 Pyr + NAD+ + CoASH � AcCoA + CO2 + NADH

v8 AcCoA + Oxal + H2O � Cit + CoASH

v9 Cit + NAD(P )+ � αKG + CO2 + NAD(P )H

v10 αKG + CoASH + NAD+ � SucCoA + CO2 + NADH

v11 SucCoA + GDP + Pi ↔ Succ + GTP + CoASH

v12 Succ + FAD ↔ Fum + FADH2

v13 Fum ↔ Mal

v14 Mal + NAD+ ↔ Oxal + NADH

Pyruvate Fates

v15 Pyr + NADH ↔ Lacext + NAD+

v16 Pyr + Glu ↔ Ala + αKG

Pentose Phosphate Pathway

v17 G6P + 2NADP+ + H2O � R5P + 2NADPH + CO2

v18 R5P ↔ X5P

v19 2X5P + R5P ↔ 2F6P + G3P

Anaplerotic Reaction

v20 Mal + NAD(P )+ ↔ Pyr + CO2 + NAD(P )H

Amino Acid Metabolism

v21 Glu + NAD(P )+ ↔ αKG + NH+
4 + NAD(P )H

v22 Oxal + Glu ↔ Asp + αKG

v23 Gln � Glu + NH+
4

v24 Thr + NAD+ + CoASH � Gly + NADH + AcCoA

v25 Ser ↔ Gly
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Flux Reactions

v26 3PG + Glu + NAD+ � Ser + αKG + NADH

v27 Gly + NAD+ � CO2 + NH+
4 + NADH

v28 Ser � Pyr + NH+
4

v29 αKb + CoASH + NAD+ � PropCoA + NADH + CO2

v30 PropCoA + HCO−
3 + ATP � SucCoA + ADP + Pi

v31 Lys + 2αKG + 3NAD(P ) + FAD+ � αKa + 2Glu+

3NAPH + FADH2

v32 αKa + CoASH + 2NAD+ � AcetoAcCoA + 2NADH + 2CO2

v33 AcetoAcCoA + CoASH � 2AcCoA

v34 V al + αKG + CoASH + 3NAD+ + FAD+ � PropCoA + Glu+

2CO2 + 3NADH + FADH2

v35 Ile + αKG + 2CoASH + 2NAD+ + FAD+ � AcCoA + Glu+

CO2 + 2NADH + FADH2 + PropCoA

v36 AcetoAc + SucCoA � AcetoAcCoA + Succ

v37 Phe + NADH � Tyr + NAD+

v38 Tyr + αKG � Fum + AcetoAc + Glu + CO2

v39 Met + Ser + ATP � Cys + αKb + NH+
4 + AMP

v40 Cys � Pyr + NH+
4

v41 Asn ↔ Asp + NH+
4

v42 Arg � Orn + urea

v43 Orn + αKG ↔ GluγSA + Glu

v44 Pro � GluγSA

v45 GluγSA + NAD(P )+ � Glu + NAD(P )H

v46 His � Glu + NH+
4

v47 Orn + CarbP � Cln

v48 Cln + Asp + ATP � ArgSucc + AMP

v49 ArgSucc � Arg + Fum

Biomass Synthesis

v50 0.06Ala + 0.04Arg + 0.04Asn + 0.03Asp + 0.02Gln

+0.04Glu + 0.06Gly + 0.02His + 0.09Ile + 0.06Lys

+0.01Met + 0.02Phe + 0.03Pro + 0.05Ser + 0.04Thr

+0.02Tyr + 0.04V al + 3.78ATP + 0.03G6P + 0.03R5P

+0.09Cit � Biomass + 3.78ADP

Antibody Synthesis

v51 0.06Ala + 0.02Arg + 0.05Asn + 0.04Asp + 0.04Gln

+0.05Glu + 0.07Gly + 0.02His + 0.10Ile + 0.06Lys

+0.01Met + 0.04Phe + 0.07Pro + 0.11Ser + 0.11Thr

+0.03Tyr + 0.09V al + 4ATP � mAb + 3.78ADP

Transport Reactions

v52 Aspext � Asp

v53 Asnext � Asn

v54 Gly � Glyext

v55 Serext � Ser

v56 Glu � Gluext

v57 Tyrext � Tyr

v58 Ala � Alaext

v59 Argext � Arg

v60 Glnext � Gln

v61 Hisext � His

v62 Ileext � Ile

v63 Lysext � Lys

v64 Metext � Met

v65 Pheext � Phe

v66 Thrext � Thr

v67 V alext � V al

v68 NH+
4 � NH+

4 ext
v69 Proext � Pro

v70 CO2 � CO2ext

4. DYNAMIC METABOLIC FLUX CONVEX
ANALYSIS

The goal of DMFCA is to compute a set of admissible flux
distributions continuously over time v(t), using a pseudo-
steady state assumption (no accumulation of internal
metabolites):

(
N45×70

i 0
N21×70

m −v21×1
m (t)

)
×
(
v(t)
1

)
= 0 (1)

where Ni is the stoichiometric matrix deduced from the
metabolic network, Nm is the matrix connecting the fluxes
to the available measurements and vm represents the spe-

Fig. 2. Convex polyedron cones S and F .

cific uptake and excretion rates of the measured extracel-
lular species.

The metabolic network under study is not redundant
(rank(Ni) = m = 45 ), and with the information provided
by 21 extracellular measurements, it is an underdeter-
mined system with a degree of freedom of 4.

4.1 Extracellular flux determination

Extracellular fluxes of the twenty-two metabolites can
be computed based on their mass balance differential
equations, involving cellular growth (µ), substrate uptake
(υs) and product secretion (υp), as described by:

dX

dt
= (µ−D)X (2)

dS

dt
= −DS − υsX +DSin (3)

dP

dt
= −DP + υpX +DPin (4)

where X, S, P, Sin, Pin and D denote biomass, substrate,
product, influent substrate and product and dilution rate,
respectively. The dilution rate is defined as D = Fin

V , where
Fin is the inlet feed rate and V the broth volume.

Firstly, the experimental data is smoothed off using
smoothing splines and then the time derivatives appearing
on the left-hand side of equations 2-4 are evaluated.

4.2 Intracellular flux determination

The set of solutions to equation 1 can be computed using
convex analysis. This approach is based on the inter-
pretation of elementary fluxes modes (simplest metabolic
pathways linking substrates to products) and makes the
most of the available information (i.e., metabolic network
and extracellular measurements) without imposing any
artificial constraint.

Geometrically speaking, the set of positive solutions to
Niv(t) = 0 generates a convex polyhedron cone S (see
figure 2). Any flux distribution v in the cone S can be
expressed as a non-negative linear combination of a set
of elementary flux vectors ei, which are the edges of the
polyhedral cone S:

v(t) = w1(t)e1(t)+w2(t)e2(t)+· · ·+wp(t)ep(t), wi(t) ≥ 0
(5)
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pretation of elementary fluxes modes (simplest metabolic
pathways linking substrates to products) and makes the
most of the available information (i.e., metabolic network
and extracellular measurements) without imposing any
artificial constraint.

Geometrically speaking, the set of positive solutions to
Niv(t) = 0 generates a convex polyhedron cone S (see
figure 2). Any flux distribution v in the cone S can be
expressed as a non-negative linear combination of a set
of elementary flux vectors ei, which are the edges of the
polyhedral cone S:

v(t) = w1(t)e1(t)+w2(t)e2(t)+· · ·+wp(t)ep(t), wi(t) ≥ 0
(5)
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Fig. 3. Temporal evolution of the number of computed
elementary flux modes.

If the system is further constrained with the information
provided by the extracellular measurements (specific up-
take and excretion rates), the solution space reduces to
a convex polytope F in the positive orthant, where each
admissible flux distribution v(t) can be expressed as a
convex combination of a set of non-negative basis vectors fi
which are the edges of this polytope. The set of admissible
flux vectors is defined as:

v(t) =
∑
i

wi(t)fi(t), wi(t) ≥ 0,
∑
i

wi(t) = 1 (6)

The basis vectors fi(t), the so-called elementary flux vec-
tors of the flux space F , can be obtained applying the
software METATOOL (Pfeiffer et al., 1999) to the matrix:

(
N45×70

i 0
N21×70

m −v21×1
m (t)

)
(7)

and in turn the admissible bounds vmin
j (t) and vmax

j (t) for
each admissible flux vj(t):

vmin
j (t) ≤ vj(t) ≤ vmax

j (t),

with

vmin
j (t) = min

i
f j
i (t), v

max
j (t) = max

i
f j
i (t)

(8)

where f j
i (t) is the j-th component of the i-th basis vector

fi(t). Note that METATOOL calculates 70 650 elementary
flux modes from the set of positive solutions Niv(t) = 0.
However, after the system being constrained with the in-
formation provided by the extracellular measurements, the
number of elementary flux vectors decreases drastically.
For example, at t = 0 only 16 elementary flux vectors are
computed. Figure 3 shows the evolution of the number of
elementary flux modes computed over time.

The system is said well posed if the solution set is not
empty and if all the metabolic fluxes are bounded. Oth-
erwise, the system is said to be ill posed and additional
extracellular information has to be provided.

5. DMFCA IN ACTION

In this section, DMFCA is applied to the available exper-
imental data from CHO fed-batch cultures. Recombinant
mAb, glucose, glutamine, lactate, alanine, ammonia and
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Fig. 4. Dynamic evolution of glycolysis metabolic fluxes
along culture time.

15 amino acids (except leucine, tryptophan and cysteine)
are the extracellular available experimental data.

Note that the authors do not have access to the extra-
cellular carbon dioxide (CO2ext). However, the metabolic
network considered in this work allows an estimation of the
carbon dioxide flux (more details are given in subsection
5.3).

5.1 Glycolytic fluxes

The rate of glycolysis is similar to the glucose uptake rate
(see figure 4). It can also be observed that the highest flux
through the glycolytic pathway occurs at early exponential
phase. Indeed, in most metabolic flux studies of CHO cells,
glycolytic fluxes are typically observed to be maximum at
early exponential phase and are also associated with high
production rates of lactate (see figure 5: flux v15) (Ahn
and Antoniewicz, 2013; Templeton et al., 2013).

5.2 Tricarboxylic Acid cycle

According to the DMFCA results, the major nutrient flux
for the TCA cycle is glucose-derived pyruvate (v6). The
pyruvate generated from glycolysis can be metabolized
via lactic acid fermentation to be reduced to lactate, can
participate in the synthesis of alanine or enter in the TCA
cycle to be oxidized to CO2. From figure 5 one can see
that, in the first 95 hours, pyruvate is channeled mainly
towards lactate (phenomenon characterized as Warburg
effect (Vazquez et al., 2010)); while in the last 45 hours,
the majority of pyruvate is channeled into TCA cycle via
pyruvate dehydrogenase (v7) flux to be oxidized to CO2,
meaning that most of the pyruvate is used to obtain energy
by means of the cellular respiration. This high pyruvate
dehydrogenase (PDH) complex activity was also found in
other studies of mammalian cells metabolism (Ahn and
Antoniewicz, 2013; Sheikholeslami et al., 2014).

5.3 Pentose phosphate pathway

The PPP is the pathway used by the cells to synthesize the
precursors of nucleic acids (DNA and RNA) and reducing
power in the form of NADPH.

Several studies have demonstrated that the G6P is mostly
converted to pyruvate by glycolysis and in less quantities
by PPP either in hybridoma or CHO cells (Ahn and
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Fig. 5. Dynamic evolution of pyruvate fates along culture
time. Turquoise: Pyruvate entering TCA cycle v7.
Black: Pyruvate reduced to lactate v15. Magenta:
Pyruvate reduced to alanine v16.
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Fig. 6. Dynamic evolution of PPP metabolic fluxes deter-
mined by DMFCA.

Antoniewicz, 2011; Sengupta et al., 2011). However, in
this study, comparing metabolic fluxes v2 and v17 one can
observe that there is no difference between the conversion
of G6P to pyruvate by glycolysis (figure 4) and by PPP
(figure 6). This is explained by the fact that Glycolysis and
PPP are set in parallel, and thus are not distinguishable
from extracellular measurements only. The assimilation of
G6P could occur in the Glycolysis or in the PPP indis-
tinctly, and thus their flux intervals are in counterbalance.

5.4 Amino acid metabolism

A simple way to determine which amino acid is the main
contributor to antibody production is to calculate the ratio
between essential amino acid uptake rate and the corre-
sponding stoichiometric coefficient for antibody synthesis.
The lowest the ratio, the more that given amino acid
contributes to antibody production. The average ratios are
depicted in figure 7, from which it appears that the amino
acid valine is the most significant contributor to antibody
production. Concerning the conditionally or non-essential
amino acids (aspartate, glycine, serine, glutamate, alanine,
arginine and asparagine) they can be consumed or synthe-
sized according to the cell needs.
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Fig. 7. Ratio (in average) between essential amino acids
uptake rate and its stoichiometry for cellular anti-
body.

5.5 Estimation of carbon dioxide flux

Carbon dioxide is difficult to measure and is seldom an
available measurement (Frahm et al., 2002). Looking at
cellular metabolism we can note that carbon dioxide par-
ticipates in several pathways and, therefore it would be
interesting and in some cases necessary to have access to
this measurement. For instance, in previous works by the
same authors (Zamorano et al., 2010; Fernandes et al.,
2015), an estimate of the CO2 measurement had to be
borrowed from the literature in order to solve the system
of equations. This happened due to the presence of some
elementary paths linking non-measured inputs to non-
measured outputs. To solve the problem it was necessary to
identify which were the unmeasured extracellular metabo-
lites participating in these paths and add them to the set
of extracellular measurements. From the global reaction
deduced from the elementary flux modes, it appeared that
either CO2ext or urea were the extracellular species in
question and one of them had to be measured.

With the metabolic network considered in the present
work and the available extracellular measurements an
estimation of the carbon dioxide flux can be achieved
since proline, which participates in urea cycle, can be
measured. However, the estimated carbon dioxide flux
appears larger than the values reported in (Gray et al.,
1996; Lovrecz and Gray, 1994). An interpretation of this
result is difficult in view of the different experimental
conditions (particularly the variation of the dilution rate
in the experiment considered in the present study).

6. CONCLUSION

In this study, the dynamic metabolism of fed-batch CHO
cell culture is achieved, using a new approach: a dynamic
metabolic flux analysis based on convex analysis (posi-
tive algebra). This method allows the determination of
bounded intervals for the intracellular metabolic fluxes
continuously over the culture time. The main advantage
of the proposed procedure is that it does not require
additional constraints or objective functions, and provides
relatively narrow intervals for the intracellular metabolic
fluxes.

IFAC DYCOPS-CAB, 2016
June 6-8, 2016. NTNU, Trondheim, Norway

470



	 Sofia	Fernandes	et	al.	/	IFAC-PapersOnLine	49-7	(2016)	466–471 471

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [h]

m
m

o
l/1

09  c
el

ls
.h

Fig. 5. Dynamic evolution of pyruvate fates along culture
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mined by DMFCA.

Antoniewicz, 2011; Sengupta et al., 2011). However, in
this study, comparing metabolic fluxes v2 and v17 one can
observe that there is no difference between the conversion
of G6P to pyruvate by glycolysis (figure 4) and by PPP
(figure 6). This is explained by the fact that Glycolysis and
PPP are set in parallel, and thus are not distinguishable
from extracellular measurements only. The assimilation of
G6P could occur in the Glycolysis or in the PPP indis-
tinctly, and thus their flux intervals are in counterbalance.

5.4 Amino acid metabolism

A simple way to determine which amino acid is the main
contributor to antibody production is to calculate the ratio
between essential amino acid uptake rate and the corre-
sponding stoichiometric coefficient for antibody synthesis.
The lowest the ratio, the more that given amino acid
contributes to antibody production. The average ratios are
depicted in figure 7, from which it appears that the amino
acid valine is the most significant contributor to antibody
production. Concerning the conditionally or non-essential
amino acids (aspartate, glycine, serine, glutamate, alanine,
arginine and asparagine) they can be consumed or synthe-
sized according to the cell needs.
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Fig. 7. Ratio (in average) between essential amino acids
uptake rate and its stoichiometry for cellular anti-
body.

5.5 Estimation of carbon dioxide flux

Carbon dioxide is difficult to measure and is seldom an
available measurement (Frahm et al., 2002). Looking at
cellular metabolism we can note that carbon dioxide par-
ticipates in several pathways and, therefore it would be
interesting and in some cases necessary to have access to
this measurement. For instance, in previous works by the
same authors (Zamorano et al., 2010; Fernandes et al.,
2015), an estimate of the CO2 measurement had to be
borrowed from the literature in order to solve the system
of equations. This happened due to the presence of some
elementary paths linking non-measured inputs to non-
measured outputs. To solve the problem it was necessary to
identify which were the unmeasured extracellular metabo-
lites participating in these paths and add them to the set
of extracellular measurements. From the global reaction
deduced from the elementary flux modes, it appeared that
either CO2ext or urea were the extracellular species in
question and one of them had to be measured.

With the metabolic network considered in the present
work and the available extracellular measurements an
estimation of the carbon dioxide flux can be achieved
since proline, which participates in urea cycle, can be
measured. However, the estimated carbon dioxide flux
appears larger than the values reported in (Gray et al.,
1996; Lovrecz and Gray, 1994). An interpretation of this
result is difficult in view of the different experimental
conditions (particularly the variation of the dilution rate
in the experiment considered in the present study).

6. CONCLUSION

In this study, the dynamic metabolism of fed-batch CHO
cell culture is achieved, using a new approach: a dynamic
metabolic flux analysis based on convex analysis (posi-
tive algebra). This method allows the determination of
bounded intervals for the intracellular metabolic fluxes
continuously over the culture time. The main advantage
of the proposed procedure is that it does not require
additional constraints or objective functions, and provides
relatively narrow intervals for the intracellular metabolic
fluxes.

IFAC DYCOPS-CAB, 2016
June 6-8, 2016. NTNU, Trondheim, Norway

470

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4
v70

Time [h]

m
m

o
l/1

09  c
el

ls
.h

Fig. 8. Dynamic evolution of CO2 flux determined by
DMFCA.
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