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Chapter 1

Introduction

We address in this thesis the scheduling problem of production lines of a plant.
We want to obtain the best production program of these lines according to a given
criterion.

The scheduling problem considered in this thesis is composed of tasks that
have to be processed taking into account that some capacity restrictions have to
be satisfied for some resources shared among the tasks. We consider two types of
tasks : batch and continuous. A batch task is processed during a certain amount
of time and produces at the end a fixed amount of product. A continuous task
is processed continuously and its decision variable is the speed or processing rate
at which it is performed. Both types of tasks consume resources with limited
capacity or availability. The objective is to obtain a schedule optimizing a specific
productivity criterion.

In order to model and solve such a problem, we use the mixed integer program-
ming (MIP) approach, i.e. the approach based on the optimization of a mixed
integer program defined by linear constraints and both continuous and discrete
variables.

In Section 1.1, we describe the scheduling problem that we have to solve and
we illustrate how to model a special case of the general problem. In Section 1.2, we
outline the mixed integer programming algorithm used to solve such a problem. In
this approach, the quality or tightness of the formulation is crucial in order to be
able to solve large scale instances to optimality. In Section 1.3, we give the main
methods used in the thesis in order to improve or tighten model formulations.
Even with good or tight formulations, it remains sometimes difficult to solve large
instance to optimality. Therefore, heuristic methods have to be used in order
to obtain good solutions quickly. In Section 1.4, we present MIP-based heuristic
methods and finally, in Section 1.5, we give the outline of the thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1 Scheduling of a mixed plant : Models and

Algorithms

We consider a production process where the resources are the processing units
and the utilities shared by the tasks, and the storage tanks containing the inter-
mediate products produced or consumed by the tasks. In this process, there are
both batch and continuous tasks. Each batch task has a processing time (fixed or
variable), can be processed on a subset of the reactors or processing units, and can
be repeated several times. The starting time of each instance of a batch task, as
well as the processing unit used, have to be decided by the scheduler. Precedence
and zero waiting time constraints exist between some of the batch tasks. Each
continuous task has a processing rate that has to be decided by the scheduler,
and falls between some lower and upper technological limits. The batch and the
continuous tasks consume and produce resources, for which we have some capacity
restrictions. Moreover, some of the continuous tasks cannot be interrupted. The
objective is to obtain a schedule of the mixed plant optimizing a given criterion.
The criterion used in this thesis is the productivity.

Two types of formulations are typically proposed in the literature to model
such scheduling problems as mixed integer programs : discrete time formulations
and continuous time formulations.

Initially, scheduling problems were modeled by discrete time formulations (see
for example Kondili et al. [25]) using time intervals of fixed duration and a state
task network representation to model the process network. To better model the
various types of resources used, the resource task network was introduced (see
Pantelides [35]) to generalize the concept of state task network. Typically discrete
time formulations require a large number of small time intervals to model the prob-
lem accurately and obtain realistic solutions. This gives rise to large size models
in terms of number of variables. However, given that the formulation is usually
strong (i.e. the duality gap is rather small), one can hope to solve moderate size
problems to near optimality.

Even though the number of variables is very large, the number of time intervals
in which an event occurs in an optimal solution is usually quite small. Therefore,
continuous time formulations were proposed to reduce the size of the formulation,
see among others Zhang and Sargent [51], Pinto and Grossmann [36] and Mockus
and Reklaitis [32]. The characteristic of these types of formulations is that time
intervals have variable duration, and the end of a time interval corresponds to an
event (start or end of a batch, modification of the availability of a resource, . . .)
where the status of the scheduling system changes. Consequently, the number of
time intervals required to model the scheduling problem accurately can be much
smaller and is close to the number of events that really occur. The continuous
time formulations can be based on time slots or on events.
For the slot-based formulation, time is decomposed into a set of consecutive time
slots of variable duration and a batch task is assigned to a set of consecutive
time slots. The representation of time can be global, i.e synchronized for all pro-
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cessing units (see for example Schilling and Pantelides [43]) or unit specific, i.e
asynchronous (see for example Karimi and McDonald [24]).
For the event-based formulations, the variables correspond to the starting and
the ending times of each batch task expressed in absolute time units, and model
events that occur at different moments. Here also, the representation of time can
be global (see for example Zhang and Sargent [51] and Mockus and Reklaitis [32]
) or unit specific (see for example Ierapetritou and Floudas [22]).
The main interest of continuous time formulations is that the number of variables
is very small. The mixed integer program is compact but typically weak in the
sense that the duality gap is large, and therefore the number of Branch and Bound
nodes needed to obtain an optimal solution is large. This is due, very often, to
the necessary introduction of so-called big M type constraints to obtain a correct
model formulation.

For recent literature reviews about scheduling formulations for chemical pro-
cessing systems, see Floudas and Lin [21] and Mendez et al. [30].

In order to illustrate the difference between discrete and continuous time for-
mulations, we show how to model a special case of the general problem that we
want to address.

Consider the scheduling of a mixed plant composed of one batch and one con-
tinuous task. The batch task has a fixed processing time p. This batch task can be
performed on nbr unit reactors. At the end of the batch task, a fixed quantity (B
[ru](resource units, for generality)) of an intermediate product is discharged in a
storage tank. The continuous task pumps continuously this intermediate product
from the storage tank either to distribute it or to feed into a next processing stage.
The speed of the continuous task must be in the interval [ρ, ρ] [ru/h]. The capacity
of the storage tank is limited between [0, C] [ru]. The objective is to maximize for
a fixed time horizon of length T the quantity processed by the continuous task. In
Figure 1.1, this problem is represented.

Reactor 1

Storage 

  Tank

 

Reactor nbr_unit

. 

. 

.

Continuous 

   process

Figure 1.1: A simple production process

We first formulate this problem as a discrete time MIP formulation based on the
paper by Kondili et al. [25]. The scheduling time horizon is divided into T 1 time
intervals (t = 1, . . . , T1) of fixed and equal duration (∆t such that T = T 1.∆t)
that is a divisor of the processing time of the batch task p. Below, p1 = p

∆t
is

integral and corresponds to the number of discrete time periods needed in order
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to perform the batch task. The parameters T 1 and ∆t are critical because they
determine the size of the formulation, and have to be fixed before solving the
problem instance. These parameters fix the length of the time horizon.

The variables of the problem are

Wj,t : equals 1 if processing unit j starts processing a batch task at the

beginning of time period t, and equals 0 otherwise.

qt : is the quantity [ru] processed by the continuous task during time

period t, qt ≥ 0

st : is the quantity [ru] of intermediate product in the storage tank

at the beginning of time period t, after addition of the output of

batches finished at the end of time period t − 1.

sft : is the quantity [ru] of intermediate product in the storage tank

at the end of time period t, just before adding the output of

batches finishing at the end of time period t.

The MIP discrete time formulation for this example is

max

T1∑

t=1

qt (1.1)

st

t∑

t′=t−p1+1|t′≥1

Wj,t′ ≤ 1 ∀j ∈ {1, . . . , nbr unit}, t ∈ {1, . . . , T1} (1.2)

st = sft−1 + B

nbr unit∑

j=1|t−p1≥1

Wj,t−p1 ∀t ∈ {2, . . . , T1} (1.3)

sft = st − qt ∀t ∈ {1, . . . , T1} (1.4)

ρ∆t ≤ qt ≤ ρ∆t ∀t ∈ {1, . . . , T1} (1.5)

0 ≤ st, sft ≤ C ∀t ∈ {1, . . . , T1} (1.6)

Wj,t ∈ {0, 1} ∀j ∈ {1, . . . , nbr unit}, t ∈ {1, . . . , T1} (1.7)

s1 = ST 0 (1.8)

where the objective (1.1) is to maximize the quantity processed by the continuous
task over the time horizon, constraint (1.2) imposes that for each processing unit
and during each time period, at most one batch task can be performed, constraint
(1.3) and (1.4) are the balance constraint for the product in the storage tank at
the beginning and at the end of the time period t, where the output of a batch task
finishing at the end of time period t− 1 is added to sft−1 to obtain st, and where
the continuous discharge qt during time period t is subtracted from st to obtain sft.
Constraint (1.5) limits the speed of the continuous task, constraint (1.6) restricts
the storage tank level. Constraint (1.7) defines W as binary variables, and finally
constraint (1.8) are the specific initial conditions considered for this example, i.e.
we impose an initial storage tank level ST 0.

We then formulate the problem with a continuous time formulation as a MIP
based on a formulation similar to the one proposed by Schilling and Pantelides
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[43]. The time horizon is divided into T 2 time intervals t = 1, . . . , T2 of variable
duration. To avoid confusion, we call such time intervals of variable duration time
slots. The main difference between the discrete and continuous time formulations is
that, because we do not know in advance the moments in time when new batches
start their processing, T 1 has to be large in order to model these start times
with enough accuracy. Whereas T 2 can be as small as the number of batches
starting over the entire scheduling horizon. Therefore, T 1 >> T 2 in a typical
application. The parameter T 2 is critical and has to be fixed before solving the
problem instance. There is no way to decide the best value of T 2 for a given
problem. T 2 is therefore part of the problem formulation.

The variables of the continuous time formulation of this problem are

τt : is the duration of time slot t [h], τt ≥ 0.

zt,t′ : = 1 if a batch task starts at the beginning of time slot t and

finishes at the end of time slot t′,

= 0 otherwise.

qt : is the quantity [ru] processed by the continuous task during time

slot t, qt ≥ 0.

rt : is the quantity [ru] of intermediate product in the storage tank

at the beginning of time slot t, just after the event occurring at

the end of time slot t − 1 (end of batches), rt ≥ 0.

rft : is the quantity [ru] of intermediate product in the storage tank

at the end of time slot t, just before the event occurring at the

end of time slot t (end of batches), rft ≥ 0.

The MIP continuous time formulation for this example is

max

T2∑

t=1

qt (1.9)

st p zt,l ≤

l∑

k=t

τk ∀t, l : 1 ≤ t ≤ T 2, t ≤ l ≤ T 2 (1.10)

l∑

k=t

τk ≤ pzt,l + T (1 − zt,l)∀t, l : 1 ≤ t ≤ T 2, t ≤ l ≤ T 2 (1.11)

T2∑

l=t

zt,l ≤ 1 ∀t : 1 ≤ t ≤ T 2 (1.12)

l∑

t=1

zt,l ≤ 1 ∀l : 1 ≤ l ≤ T 2 (1.13)
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t′′∑

t=1

T2∑

t′=t′′

zt,t′ ≤ nbr unit ∀t′′ : 1 ≤ t′′ ≤ T 2 (1.14)

rt = rft−1 + B

t−1∑

t′=1

zt′,t−1∀t ∈ {2, . . . , T2} (1.15)

rft = rt − qt ∀t : 1 ≤ t ≤ T 2 (1.16)

ρτt ≤ qt ≤ ρτt ∀t : 1 ≤ t ≤ T 2 (1.17)

0 ≤ rt, rft ≤ C ∀t ∈ {1, . . . , T2} (1.18)

zt,l ∈ {0, 1}∀t, l : 1 ≤ t ≤ T 2, t ≤ l ≤ T 2

τt ≥ 0∀t : 1 ≤ t ≤ T 2 (1.19)

r1 = ST 0,

T2∑

t=1

τt ≤ T (1.20)

where the objective (1.9) is to maximize the quantity processed by the continuous
task over the time horizon, constraints (1.10)-(1.11) impose that if a batch task
starts at time slot t and finishes at time slot l (i.e., zt,l = 1) then the sum of the

time slot durations from t to l equals p. In particular, in (1.11),
∑l

k=t τk ≤ p if

zt,l = 1, and
∑l

k=t τk ≤ T otherwise because we do not have any bound on the
time slots durations when zt,l = 0. This constraint (1.11) is a so called big M con-
straint and usually leads to weak model formulations. Constraints (1.12)-(1.13)
impose that at each time event, at most one batch task can start and one can
finish. Two tasks starting (or finishing) at the same time are modeled as one task
starting (finishing) at time slot t, the other starting (finishing) at time slot t + 1,
and τt = 0 (τt+1 = 0). In Figure 1.2, we represent how we model two tasks starting
at the same time. So, when adding constraints (1.12)-(1.13), one needs to increase

t
t+2

t
t+3

t
t
=0

z
t,t+2

=1

t
t+1

time

z
t+1,t+3

=1

Figure 1.2: Two tasks starting at the same time

the size of the formulation (larger T 2) in order to obtain an equivalent formula-
tion because we limit to one the number of tasks starting or finishing at each time
event. But we do not limit the number of tasks starting or finishing at the same
time. However, as observed in practice, this new formulation is stronger, i.e. the
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duality gap is smaller, and allows one to strengthen the formulation of the timing
constraints (see Chapter 2, and tests in Chapter 3). Constraint (1.14) imposes
during each time slot t that the number of batch tasks processed in parallel is less
than the number of processing units available. Constraint (1.15) and (1.16) are
the balance constraints for the product in the storage tank at the beginning and at
the end of the time slot t, constraint (1.17) limits the speed of the continuous task
and constraint (1.18) restricts the storage tank level. Constraint (1.19) defines the
z variables as binary and τ are positive continuous variables. Finally constraint
(1.20) defines the specific conditions considered for this example, i.e. we impose
an initial condition on the storage tank level, and the sum of time slots durations
is less or equal than the scheduling time horizon.

In the literature, various algorithms are proposed for solving scheduling prob-
lems. We describe two important classes : the enumeration and the heuristic
algorithms.

The enumeration algorithms are exact (i.e., they provide an optimal solution
of the problems considered) but are usually not running in polynomial time. The
drawback is that we cannot estimate beforehand the running time of the algo-
rithm for a particular instance. Two well-known enumeration approaches for solv-
ing scheduling problems are the branch-and-bound algorithm and constraint pro-
gramming. The branch-and-bound algorithm will be explained in Section 1.2.1.
Constraint programming (CP) is a method for formulating and solving combina-
torial problems. As opposed to the branch-and-bound method, CP focuses on
the construction of a feasible solution to a scheduling problem. In order to for-
mulate combinatorial problems with CP, one (or several) Constraint Satisfaction
Problem(s) (CSP) is (are) defined. A CSP consists of a set of variables, a set
of possible discrete values for each variable and a set of constraints on the set of
variables. A solution of a CSP instance is an assignment of values to variables for
which the set of constraints is satisfied. To solve a CSP, or to find a feasible solu-
tion, we can enumerate all possible combinations of values of variables. In order to
reduce the enumeration, it is possible to use Constraint Propagation. The idea of
Constraint Propagation is to use the constraints of the problem in an active way in
order to reduce the domain of the variables. More information about Constraint
Programming for solving scheduling problems can be found in Baptiste et al. [4].

The heuristic algorithms provide at best a feasible solution. The main advan-
tage of these methods is that they can provide hopefully good solutions quickly.
Whereas, the main drawback is that it is not possible to estimate how good the
solution obtained is. The first type of heuristic algorithms are basic local search
heuristics and improved local search heuristics (also called metaheuristics) such as
Tabu Search, Simulated Annealing or Genetic algorithms, see Reeves [42] for a first
introduction to such heuristic methods. For the basic local search heuristic, the
idea is to define a neighborhood of solutions close to any given feasible solution,
and an algorithm able to find the best solution in this neighborhood (which is easy
if the neighborhood is of small size). Then, a first feasible solution is constructed,
and the best solution in its neighborhood is sought. If the best feasible solution
in the neighborhood is better than the initial feasible solution, then it replaces it
and the procedure is repeated. Otherwise, we have found a local optimal solution
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that corresponds to the best solution in this neighborhood and this is the end of
the heuristic. The improved local search heuristics try to do better. The idea is
to escape from local optimal solution by accepting feasible solutions with worse
objective value. The main difficulty of such methods is to prevent cycling.

There are also MIP-based heuristic algorithms that are based on the mixed in-
teger programming formulation of the scheduling problem to be solved. The idea
is to obtain a good feasible solution quickly, with some guarantee on the quality
of the solution, see Section 1.4 for more information about such heuristic methods.

In this thesis, we focus only on MIP scheduling algorithms which are the
branch-and-bound exact algorithm used to solve the MIP formulation of the schedul-
ing problem, and the MIP-based heuristics. In the next Sections, we show how to
solve such MIP problem formulations.

1.2 Mixed integer programming optimization

A mixed integer programming (MIP) model formulation is the minimization or
the maximization of a linear objective function subject to linear constraints over
a set of decision variables, such that a subset of it has to be integral. A general
MIP problem can be written as

max cx + hz (1.21)

st Ax + Gz ≤ b (1.22)

x ∈ Rn
+, z ∈ Zq

+ (1.23)

where c and h are n− and q− dimensional row vector, A is a m × n matrix, G is
a m × q matrix and b is a m-dimensional column vector. The variables z have to
be integral.

In order to solve such a MIP problem, a classical approach is to use a branch-
and-bound algorithm.

1.2.1 Branch-and-Bound algorithm

The branch-and-bound algorithm combines the concepts of branching and bound-
ing in order to solve MIP problems.

In order to obtain an upper bound on the objective for a maximization MIP
problem, we solve a linear programming (LP) relaxation of this problem, i.e. we
relax continuously the integrality restriction, z ∈ Rq

+. We obtain first a solution
(x∗, z∗) for this LP relaxation.

If the solution (x∗, z∗) is feasible for the MIP problem (i.e. z∗ is integral) then
it must be optimal for the MIP problem. This holds because the feasible set of
the LP relaxation contains the feasible set of the corresponding MIP problem. So,
if the best LP solution has integral values for the z variables, this solution must
also be the best MIP solution. In this case, we can stop because the MIP problem
is solved.

Otherwise, the solution of the LP is not feasible for the MIP problem (i.e.,
some zj variable takes a fractional value z∗j ), and the optimal LP objective value
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cx∗ + hz∗ defines an upper bound on the optimal objective value for the MIP
problem because we have solved a relaxation (larger feasible set) of the original
MIP. Then, we branch on one fractional decision variable that is not integral, say
z∗i for some i ∈ {1, . . . , q}, and we divide the problem into two subproblems (two
nodes). For the first subproblem (Node 1), we impose the branching constraint
zi ≤ ⌊z∗i ⌋ and for the second subproblem (Node 2), we impose zi ≥ ⌊z∗i ⌋+1. Doing
so, we replace the original problem by the union of the two subproblems, and we
eliminate the infeasible solution (x∗, z∗) from the two subproblems.

Next, we select one of the two Nodes (suppose we select Node 1), we solve the
LP relaxation of this subproblem (initial LP relaxation + one branching constraint)
and we obtain an upper bound of the optimal MIP objective value over the current
node. We can branch again on one fractional decision variable in the optimal
solution to the LP relaxation of Node 1, and the subproblem is again divided in
two subproblems (Nodes 3-4, replacing Node 1).

We have now to select a node in the set of Nodes {2,3,4}. We reoptimize the
LP relaxation of this node, and so on.

The evolution of this algorithm is represented by an enumeration tree, where
nodes are repeatedly selected and replaced by other nodes using bounding and
branching. At each node processed, one of the following situations may occur :

• the optimal solution of the LP relaxation is a feasible solution for the MIP
problem. In this case, we have obtained the best MIP solution for this
subproblem (node) and we can stop processing that node (pruning the node
by optimality).

• there are no feasible solutions for the LP relaxation. In this case, there
are no MIP solutions for the subproblem at the current node (because MIP
solutions are a subset of the LP solutions), and we can stop processing that
node. (pruning by infeasibility)

• the optimal solution (x∗, z∗) of the LP relaxation is not feasible for the MIP
problem, but the upper bound obtained (cx∗ + hz∗) is lower than the value
of the best MIP feasible solution found so far (at other nodes). In this case,
we can stop processing this node because it will never produce better MIP
solutions than the best found so far (pruning by bound).

• the optimal solution (x∗, z∗) of the LP relaxation of the node is fractional,
but not dominated by bound. In this case, we select a variable zj with a
fractional value z∗j and we branch (replace the current node by two new
nodes).

The algorithm terminates when all nodes have been treated and pruned. The
optimal solution of the MIP problem is the best solution among the MIP feasible
solutions encountered during the enumeration of the nodes.

During the branch-and-bound algorithm, three main choices can affect the
resolution of the problems :

1. The node selection
At each step of the algorithm, the choice of the next node to visit will have
an impact on the performance of the algorithm (number of nodes to process).
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2. The generation of cuts
At each node, we can improve the bound (decrease the upper bound in the
case of a maximization problem) obtained by introducing cutting planes, i.e.
new constraints in the formulation that are valid for all MIP solutions to
(1.22)-(1.23). Doing so, the total number of nodes in the branch-and-bound
tree and the CPU solution time will be reduced (see Section 1.3). A branch-
and-bound algorithm in which cuts are used to improve the bounds is called
a branch-and-cut algorithm.

3. The variable selection
When a fractional LP solution is obtained, we have to decide on which frac-
tional decision variable we branch on.

More information and details regarding branch-and-bound and branch-and-cut
algorithms can be found for example in Nemhauser and Wolsey [33]. Several soft-
ware systems (XPRESS-MP, CPLEX, . . . ) are available for solving MIP problems
by using branch-and-bound and branch-and-cut algorithms.

1.2.2 Solution of the basic example

By using the branch-and-bound algorithm, we solve an instance of the simple
production process presented in Section 1.1 with the discrete and the continuous
time formulations. This is a trivial example for pedagogy.

We suppose that there are 2 processing units and that the speed of the con-
tinuous task is in the interval [ρ; ρ] = [0.5; 1.5]ru/h. The capacity of the storage
tank is C = 15 ru. The processing time of the batch task is p = 3 hours (h), the
batch size is B = 8 ru and the initial condition for the storage tank is S0 = C.

We consider first the discrete time formulation with ∆t = 1 h, T 1 = 40, and
T = T 1∆t = 40 h.

The formulation consists of 157 constraints, 80 binary variables and 120 con-
tinuous variables. The optimal solution obtained is 60ru and is obtained after 18
nodes and less than 1 second. In Figure 1.3 on the left, we represent when the
batch tasks are in process by a solid line. We can observe that over the 40 time
periods, only 6 time periods correspond to the start of a batch task. Observe also
that, because of the storage tank capacity and maximum speed of the continuous
task, the second production line never processes. So, we only need one processing
unit for this optimal solution. Taking into account this information, we will still
need 40 binary variables for the model with the discrete time formulation. In
Figure 1.3 on the right, we represent the evolution over time of the level of the
intermediate product in the storage tank.

The solution of this instance is not unique. All other feasible solutions for which
the continuous task can be processed at maximal speed (qt = 1.5 ∀t ∈ {1, . . . , T1})
are also optimal for this problem instance. The multiple possible optimal solutions
for this problem instance shows that symmetry breaking would be necessary.

To model this problem instance with the continuous time formulation, we con-
sider T 2 = 9 and we assume that the batch task can last for at most one time slot.
Therefore, the z binary variables considered here are only the zt,t variables for
t ∈ {1, . . . , 9}. The formulation consists of only 9 binary variables, 36 continuous
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Figure 1.3: Solution of a special case with the discrete time formulation

variables and 54 constraints. The optimal objective value is 60 ru and is equal to
the one obtained when using the discrete time formulation. This optimal solution
is also obtained after 18 nodes and less than 1 second. In Figure 1.4 on the left,
we represent the batch tasks in process by a solid horizontal line. The idle times
are represented by the horizontal dashed lines. The solid line between two bul-
lets correspond to the batch task that is performed during this time interval. In
Figure 1.4 on the right, we represent the evolution of the level of the intermediate
product in the storage tank over time. This optimal solution is equivalent in terms
of total production (objective function) to the one obtained by using the discrete
time formulation.

Figure 1.4: Solution of the special case with the continuous time formulation

We can conclude that by using continuous time formulations, we can reduce the
size of model formulations. However, continuous time formulations are compact
but weak in the sense that typically such model formulations need many (or more)
branch-and-bound nodes to prove optimality for large or real life instances.

In the next Section, we discuss how to improve a model formulation in order
to make it stronger or tighter. This will be a central topic in this thesis.
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1.3 Improving MIP formulations

In this section, we analyze the quality of a model formulation. We explain how to
measure it and how to improve a model formulation. A good model formulation
is crucial in order to solve MIP optimization problems, because good formulations
allow one to reduce the number of branch-and-bound nodes needed to solve the
MIP (there are as many LPs to solve as the number of nodes to explore). Note
that the scheduling formulations we are considering need to be improved, partly
because of big M constraints like (1.11). When using such constraints, the integer
variables are often fractional in the optimal LP relaxation solution, and a lot of
nodes need to be enumerated before pruning.

One possible way to avoid weak formulations with big M constraints is to get
rid of or to avoid them by decomposing the problem. This can be done for schedul-
ing problems by decomposing the problem into an assignment master problem and
a sequencing subproblem. In the paper by Maravelias and Grossmann [28], for ex-
ample, the assignment of production units to tasks is done in the master problem
and modeled by a mixed integer linear programming (MIP) formulation, and the
sequencing subproblem, to be solved separately for each production unit, is mod-
eled and solved by constraint programming (CP). Another related decomposition
approach is proposed by Maravelias in [27]. The assignment master problem is
also modeled as a mixed integer linear program, but the feasibility check in the
subproblem, and the construction of feasible schedules for each production unit,
are performed by combinatorial sequencing algorithms.

Another way is to improve directly the model formulations with big M con-
straints by tightening the formulation. In general, to tighten a formulation , we
can use strong or facet defining valid inequalities for the problem studied (see
Nemhauser and Wolsey [33]). This can be done either in the original variable
space, or in some larger (extended) space of variables (see Pochet and Wolsey
[38]). In these approaches, one tries to obtain a better formulation by adding
“tighter” valid constraints (and possibly new variables) to the formulation. In
contrast, the strengthening techniques try to improve the original constraints of
a formulation by changing the coefficients of some variables (see Andersen and
Pochet [1]).

In the next sections, we give more details about the cutting plane algorithm,
used to add valid inequalities to the formulation, and strengthening techniques
used to improve the initial constraints (without adding new ones).

1.3.1 Cutting plane algorithm

We consider the general MIP problem (1.21)-(1.23) written as follows :

max cx + hz (1.24)

st (x, z) ∈ X (1.25)
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where X = {(x, z) : Ax + Gz ≤ b, x ∈ Rn
+, z ∈ Zq

+}.

It is possible to find alternative formulations for a problem. We explain here
that some formulations are better than others. First, we need two definitions.

Definition 1.3.1. A polyhedron P is a subset of Rn and is described by a finite
set of linear constraints {x ∈ Rn : Ax ≤ b}.

Definition 1.3.2. A polyhedron P ⊆ Rn+q is a formulation for X ⊆ Rn × Zq if
and only if X = P ∩ (Rn × Zq).

Various polyhedra can define formulations for the same mixed integer set X .
However, an interesting polyhedron (and formulation) is the convex hull of the set
of feasible points of X .

Definition 1.3.3. The convex hull of X (conv(X)) is defined as : conv(X) =
{(x, z) : (x, z) =

∑t
i=1 λi(xi, zi),

∑t
i=1 λi = 1, λi ≥ 0 for i = 1, . . . , t and for all

finite subsets {(x1, z1), . . . , (xt, zt)} ⊆ X}.

For a MIP with rational data, conv(X) is a polyhedron, i.e., conv(X) can
be defined by a finite set of linear inequalities. So, suppose that conv(X)=X̃ =
{(x, z) : Ãx + G̃z ≤ b, x ∈ Rn

+, z ∈ Rq
+}.

The MIP problem (1.24)-(1.25) can be reformulated equivalently as

max cx + hz (1.26)

st Ãx + G̃z ≤ b, x ∈ Rn
+, z ∈ Zq

+ (1.27)

This means that the linear description of conv(X) defines an alternative equivalent
formulation for the MIP problem (1.24)-(1.25). The interest of using this latter
formulation is that the linear programming relaxation of (1.26)-(1.27) (obtained
by replacing (1.27) by (x, z) ∈ X̃, i.e. z ∈ Rq

+) has extreme points that belong to
X . Consequently, for each c and each h, there exists an optimal solution of this
LP relaxation which is feasible for the corresponding MIP problem, and therefore
is the optimal solution of the MIP. So, the MIP problem can be solved as an LP,
without any branching.

This is a theoretical but not practical result because, in general, it is not pos-
sible to compute the complete linear description of the convex hull in a reasonable
amount of time. Based on this result, the idea for improving an initial model
formulation is to find a formulation whose LP relaxation better approximates or
comes closer to the convex hull of solutions of the problem. If we have two formu-
lations for X (say P1, P2), since X ⊆ conv(X) ⊆ Pi for i ∈ {1, 2}, we say that P1

is a better formulation than P2 if P1 ⊂ P2.

As an illustration, in Figure 1.5, we consider a problem composed of two vari-
ables (x (a continuous variable) and z (an integer variable)). The feasible mixed
integer solutions are represented by the three horizontal normal lines and the corre-
sponding feasible set is denoted by X . We suppose that we have two formulations
for the problem, P1 (bold lines) and P2 (dashed lines). One can observe that the
feasible set P2 is included in the feasible set P1 and therefore the formulation P2
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X

z

x

P
1

:

P
2

:

(4,3)

1

Figure 1.5: Comparison of two formulations

is better than P1. Geometrically, we can observe that the formulation P2 is better
than the formulation P1 since it is closer to the convex hull of the set X of feasible
solutions.

We can improve a formulation P to get a formulation that is closer to the
convex hull of X , by using the notion of valid inequality.

Definition 1.3.4. An inequality π1x+π2z ≤ π0 is a valid inequality for X ⊆ Rn+q

if π1x + π2z ≤ π0 for all (x, z) ∈ X.

Valid inequalities can be added to any formulation P , to obtain a better for-
mulation. So, we want to compute the best possible valid inequalities. We give
below four definitions and then we explain which valid inequalities are important
to improve formulations and to approximate the convex hull of X .

Definition 1.3.5. The face F of X induced by a valid inequality π1x + π2z ≤ π0

of X is F = {(x, z) ∈ X : π1x + π2z = π0}.

Definition 1.3.6. x1, . . . , xn ∈ RT+Td are affinely independent if
∑n

i=1 αixi = 0
and

∑n
i=1 αi = 0 implies αi = 0 for i = 1, . . . , n, or equivalently if the directions

x2 − x1, . . . , xn − x1 are linearly independent.

Definition 1.3.7. The dimension of X (dim(X)) is equal to the maximum number
of affinely independent points in X minus 1.

Definition 1.3.8. A face F of X is a facet of X if dim(F )=dim(X)-1.

For any set X , it is possible to show that a valid inequality π1x + π2z ≤ π0 is
needed for the linear description of the polyhedron conv(X), and therefore impor-
tant in the description of X , if and only if this valid inequality defines a facet of
X . In other words, the linear description of conv(X) is made of all facet defining
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valid inequalities for X plus the linear equalities that are satisfied by all feasible
solutions.

The next question to address is how to generate all facet defining valid inequal-
ities for a given set X . For a given problem instance (with fixed data), by using
the POlyhedron Representation Transformation Algorithm (PORTA, see Christof
and Loebel [16]), starting from the extreme points and the extreme rays of the
problem instance, we can generate the complete linear inequality representation of
the convex hull of the instance. The algorithm implemented in PORTA in order
to compute this, is the Fourier-Motzkin elimination algorithm.

In Figure 1.6-1.7, we show the relation between the extreme points of a set X
and its convex hull, for a problem instance with the two variables x and z. The
polyhedron (conv(X)) is bounded and the convex hull of the feasible solutions can
be implicitly represented by its extreme points (large dots) (see Figure 1.6) or
explicitly by linear inequalities (see Figure 1.7).

X

z

x

: extreme points

: feasible points

(4,3)

1

Figure 1.6: Convex hull : extreme points

X

z

x

:

P
2

:

Conv(X)

(4,3)

1

Figure 1.7: Convex hull : linear inequalities
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Although PORTA can be used for any instance X , it is very time consuming
and can only be used for small polyhedra. Moreover, PORTA provides only the
linear description of the convex hull of a problem instance with fixed data (matrix
coefficients and right-hand-side coefficients), but not the complete linear descrip-
tion of all instances in a problem class. Therefore, PORTA can be used to analyze
small instances, and its results have to be analyzed and generalized to suggest
(facet defining) valid inequalities for all instances of a problem.

There are other methods to identify valid inequalities for a MIP problem X .
Pochet and Wolsey in [38] classify general valid inequalities in two classes. First,
there are so called high level valid inequalities based on the complete formula-
tion of a problem, or based on the structure of some relaxations of it. There
are also low level valid inequalities based only on some more local information in
the formulation (like knapsack or Gomory cuts derived from a single constraint
in the original formulation). These low level constraints are generated automati-
cally by MIP solvers by using the coefficient matrix of the constraints. But such
constraints do not exploit the global structure of the formulation, and therefore
the generation of high level valid inequalities remains a problem specific task that
is not performed automatically. This will be done in this thesis for some specific
scheduling formulations.

When one or several classes of valid inequalities have been identified for a
problem X , the final question to address is how to add these valid inequalities
to the original formulation, in order to improve or to tighten it. Very often, the
number of valid inequalities grows exponentially in the problem size. It is therefore
not practical to add all these valid inequalities a priori (i.e., before the optimization
starts) to the formulation.

For a specific problem instance and objective function, we are not interested
in computing the whole convex hull. We want to have a good approximation of
it in the neighborhood of the optimal solution. For instance, in Figure 1.7, if the
optimal solution is (x, z) = (4, 3), then we only need to add z ≤ 3 to the original
formulation in order to solve the integer program as an LP (i.e., by branch-and-
bound, without any branching). The aim of cutting plane algorithm is to generate
such valid inequalities during the optimization, and only when they are needed.

The branch-and-bound and cutting plane algorithm works as follows. We start
by solving the LP relaxation of the initial formulation. At the root branch-and-
bound node, if the solution (x∗, z∗) of the linear relaxation is fractional (z∗j 6∈ Z
for some j), we solve a so-called separation problem where we try to find a valid
inequality π1x + π2z ≤ π0 that is violated (not satisified, i.e. π1x

∗ + π2z
∗ > π0)

by the solution (x∗, z∗) of the relaxation. If we find such a valid inequality, we can
cut off the optimal solution of the linear relaxation by adding the valid inequality
π1x + π2z ≤ π0 to the initial formulation. The inequality π1x + π2z ≤ π0 is called
a cutting plane, or simply a cut. By resolving this augmented linear relaxation, we
obtain a solution closer to the convex hull of the problem, for which we can again
try to identify a cut. The cutting plane algorithm is iterated until no violated
valid inequality can be found.

If the final solution (x∗, z∗) is still fractional, we can continue with the classical
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branch-and-bound algorithm. This combined branch-and-bound and cutting plane
algorithm is also called cut-and-branch.

The variant where cuts (violated valid inequalities) are added at all nodes of
the branch-and-bound tree (and not just the root node) is called branch-and-cut
(see for example for more details Wolsey [49] and Pochet and Wolsey [38]).

We present in the next section another way to improve model formulations,
the so-called strengthening technique. The main difference with respect to the
cutting plane technique is that one tries to improve the initial constraints of the
formulation by changing some coefficients of the variables, but not by adding new
constraints.

1.3.2 Strengthening techniques

Andersen and Pochet [1] propose to analyze the quality of MIP formulations by
considering whether or not some of the coefficients in the constraints can be
strengthened. The idea is to create a tighter model formulation P ′ (i.e., closer
to the convex hull of the solutions of the problem than the initial model formula-
tion P , i.e. P ′ ⊂ P ) without increasing the number of constraints.

They describe and show how to solve the optimization problem corresponding
to this strengthening problem, where the objective is to strengthen the coefficients
as much as possible. It is a procedure that tightens iteratively the coefficients of
integer variables in existing constraints.

We introduce now the general concept of coefficient strengthening in existing
constraints. Suppose that we want to improve the inequality aT

k x+gT
k z ≤ bk, where

aT
k and gT

k are the kth line of the matrices A and G, defining the initial formulation
Ax+Gz ≤ b, respectively. We select another constraint of the matrix, for example
the lth one, aT

l x + gT
l z ≤ bl. The idea is to find wk,l > 0 such that

(aT
k x + gT

k z) − wk,l(a
T
l x + gT

l z − bl) ≤ bk (1.28)

is valid for X. This new inequality is stronger than aT
k x + gT

k z ≤ bk because
aT

l x+gT
l z−bl ≤ 0 for all feasible solutions (x, z) ∈ X , and therefore (1.28) implies

that aT
k x + gT

k z ≤ bk is also satisfied.

To find the best or strongest inequality (1.28), one has to solve the following
strengthening problem

w∗
k,l := max{wk,l : (1.28) is valid for X̄}, (1.29)

where X ⊆ X̄ ⊆ P = {(x, z) : Ax + Gz ≤ b, x ∈ Rn
+, z ∈ Rq

+}.
The formulation is strengthened by solving a sequence of strengthening prob-

lems for various relaxations X̄ of X (in the simplest case, X̄ = P ), and for various
combinations of constraints k and l. A similar strengthening problem can be de-
fined for improving the right-hand-side bk of any constraint.

Andersen and Pochet show how to model this general strengthening prob-
lem. In particular, they focus on strengthening the coefficients of binary variables.
Suppose zl is a binary variable and we want to introduce this variable in the con-
straint aT

k x + gT
k z ≤ bk. We have to find the best δ for which the constraint



18 CHAPTER 1. INTRODUCTION

aT
k x+gT

k z + δzl ≤ bk remains valid for X . We only have to consider the case when
zl = 1, since otherwise there is no condition on δ.

In this particular case, they show that the strengthening problem reduces to
the MIP problem

max aT
k x + gT

k z − bk

st (x, z) ∈ X

zl = 1

If (x∗, z∗) is the optimal solution of this MIP problem, then δ∗ = bk−(aT
k x∗+gT

k z∗).
If δ∗ > 0, then aT

k x + gT
k z + δ∗zl ≤ bk is stronger than aT

k x + gT
k z ≤ bk, and we

have strengthened the constraint. This problem is solved sequentially for every
binary variable in every constraint k.

In Figure 1.8, we illustrate the effect of coefficient strengthening on a problem
with the two variables x (continuous variable) and z (integer variable), and initial
formulation P . We want to improve the inequality I1 := −1/3x + z ≤ 3. We
select another constraint I2 := −x ≤ 0. It is possible to show that the optimal
solution of the problem (1.29) for X̄=X is wI1,I2 = 1/3. The new inequality is
I3 := (−1/3x + z) − 1/3(−x − 0) ≤ 3, or equivalently z ≤ 3 and is represented in
solid line. We can observe that the improved formulation becomes closer to the

X

z

x

P :

1

I1

I3

Figure 1.8: Coefficient Strengthening

convex hull of X and is strictly included in P .
Taking into account the fact that the computation of the strengthening coeffi-

cients is heavy (one has to solve a MIP over X to improve each single coefficient),
we will use this coefficient strengthening technique as a tool in order to produce
tight model formulations in the following way. First, we start with some small
instances of the problem to reformulate. We strengthen the coefficients as much
as possible. Then, we analyze the improved coefficients for the small instances and
try to generalize the improvements obtained in order to make them valid for all
instances of the problem.
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In the next section, we illustrate how it is possible to improve the model for-
mulation of the special case of the general problem presented in Section 1.1.

1.3.3 Application to the basic example

We propose valid and strengthened inequalities for the special case presented in
Section 1.1 and tested in Section 1.2.2. All the corresponding proofs are presented
in Chapter 2.

In order to compare the quality of the initial and the strengthened continuous
time formulations, we consider a larger instance than the one tested in Section
1.2.2, with the following parameters : T 2 = 40, nbr unit = 4, ρ = 5 ru/h and ρ = 8
ru/h. We assume that the batch task can last for at most 10 time slots. Therefore,
the z binary variables considered here are only the zt,t, zt,t+1,. . ., zt,min(t+9,40)

variables for t ∈ {1, . . . , 40}.
The initial continuous time formulation is described by (1.9)-(1.20). We de-

scribe now a valid inequality, as well as strengthened versions of inequalities (1.10)-
(1.11). The variables are not affected by the reformulations.

The batch task can be performed on each reactor. The valid inequality (1.30)
below takes into account the fact that the time needed to complete all the tasks
is greater or equal to the time needed if the batch tasks and the total processing
time are evenly allocated among all the nbr unit reactors.

The new (high level) valid inequality expressing this observation can be written
as

1

nbr unit

(
T2∑

t=1

T2∑

t′=t

pzt,t′

)

≤

T2∑

t=1

τt. (1.30)

We present now two strengthened inequalities of (1.10) and (1.11) for this
special case. The analysis of these inequalities and proofs of validity will be given
in Chapter 2. The main reason of this strengthening is that at most one batch
task can start (see (1.12)) and at most one can finish (see (1.13)) at each time
slot. We also impose without loss of generality for this strengthened formulation
that the duration of a time slot is limited by the maximum processing time of the
batch task, i.e., τt ≤ p for all t.

The initial timing constraint (1.10) can be strengthened to

l∑

k=t

τk ≥

l∑

k=t|t6=l

pzt,k + pzl,l (1.31)

for all t, l : 1 ≤ t ≤ T 2, t ≤ l ≤ T 2.

Similarly, the timing constraint (1.11) can be strengthened to

l∑

k=t

τk + p

l−1∑

k=1

min{l − t, l − k}zk,l ≤ p(l − t + 1) (1.32)

for all t, l : 1 ≤ t ≤ T 2, t ≤ l ≤ T 2.
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The problem instance is first solved with the initial continuous time formulation
and without adding any cut during the branch-and-bound algorithm. Then, we
solve the problem with the valid and strengthened inequalities presented above,
and with low level cuts generated automatically by the MIP solver. We call it the
improved (continuous time) formulation. The results obtained are presented in
Table 1.1.

T2=40, d=10
nbr unit=4 Initial formulation Improved formulation

Constraints 948 949
Nodes 37512 8134
Time 81 s 49 s

Objective 311 ru 311 ru

Table 1.1: The improvement of a model formulation

There is only one optimal solution for the quantity processed by the continuous
task for this instance. The optimal solution is the following : qt = 5 for t ∈ {1, 2, 3},
qt = 8 for t ∈ {4, . . . , 40} and τt = 1 for t ∈ {1, . . . , 40}. The evolution of the level
of the intermediate product in the storage tank is represented in Figure 1.9.

Figure 1.9: The level of the intermediate product

On this small example, we can already observe the effects of taking into account
valid and strengthened inequalities. The total number of branch-and-bound nodes
for solving this problem to optimality is reduced as well as the CPU time.

In Figure 1.10, we observe first that the LP relaxation of the improved formu-
lation (316.33 ru) provides a better upper bound for the MIP problem than the
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one provided by the initial formulation (320 ru). Then, by using the low level cuts
generated automatically by the MIP solver for the initial formulation, we get as
upper bound 314.27 ru. In order to obtain this upper bound, 391 knapsack cuts
and 145 Gomory cuts were generated and 47 cuts were kept in the formulation
after processing the top node. The others were generated during the cutting plane
phase but were removed from the final formulation obtained at the root node be-
cause they become inactive. By using the low level cuts generated automatically
by the MIP solver for the improved formulation, the value of the upper bound at
the root node (314.25 ru) is improved furthermore. For the improved formulation,
131 knapsack cuts and 122 Gomory cuts were generated and 35 cuts were kept in
the formulation at the top node.

By improving the upper bound at the root node, one can hope to reduce the
number of nodes in the branch-and-bound tree. However, a trade-off exists since
if many cuts or dense cuts (i.e., cuts with many non zero coefficients) are added to
the formulation then the resolution at each node can be much slower than before.

            LP relax. at root node 

    with strength. form.

            LP relax. at root node 

    with strength. form. 

    +MIP solver cuts

       Opt. sol. of the MIP

           LP relax. at root 

           node with init. form.

LP relax. at root 

node with init. form. 

+MIP solver cuts

320 

314.27 

311

314.25 

316.33

Figure 1.10: Representation of the solution of the LP relaxation and of the MIP

1.4 MIP heuristics

Even if we use an improved model formulation, the time needed to solve some
larger instances to optimality remains very long. For the scheduling problems
tackled in this thesis, this difficulty arises because of the size of the problems and
because it seems difficult for the MIP solver to find feasible solutions even though
the duality gap (=LP relaxation objective value-MIP objective value) is small.
Therefore, we consider MIP heuristic techniques in order to obtain good feasible
solutions quickly. MIP heuristics are heuristics based on MIP formulations. We
have tried to use such heuristics in order to take advantage of the improved formu-
lations obtained. In other words, their performance usually improves when they
are applied on improved formulations of a problem. The MIP heuristic methods
can be subdivided into two groups. The first type are the construction heuristic
methods that construct a feasible solution from scratch (Truncated MIP, LP-and-
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Fix or Cut-and-Fix, Relax-and-Fix (see Stadtler [46]), . . . ), and the second type
are the improvement heuristic methods that try to improve some initial feasible
solution (Relaxation Induced Neighborhood Search (RINS) (see Danna et al. [18]),
Local Branching (LB) (see Fischetti and Lodi [20]), Exchange (EXCH)). For more
details about these heuristic methods, see for instance Pochet and Wolsey [38].

As an illustration, we use first the construction heuristic called truncated MIP
on the problem instance solved in the previous section. It consists in solving the
problem by branch-and-bound for a fixed CPU time. The best solution obtained
at the end is the solution of the heuristic.

For the special case instance presented above, we use the improved formulation
and we solve the problem by branch-and bound during 6 sec. and the truncated
MIP heuristic provides a feasible solution (a lower bound on the optimal objective
value) with an objective function of 231 ru. The best upper bound obtained after
6 s is 314.25 ru. This upper bound is the maximum LP relaxation objective value
among all branch-and-bound nodes that are still active (not pruned) after 6 sec.
The remaining duality gap (BestBound−BestSolution

BestBound
) is of 26.5 % and is a measure

of the quality of the feasible solution obtained.
Then, we test the same construction heuristic on the initial formulation. We

solve the problem by branch-and-bound during 13 sec. and the truncated MIP
heuristic provides a first feasible solution with an objective function of 207 ru.
The best upper bound obtained after 13 s is 317.85 ru. The remaining duality
gap is of 34.87 %. This feasible solution is worse than the one obtained when using
the improved formulation and needs more CPU time to be computed.

The combination of formulation strengthening and MIP-based heuristic meth-
ods seems important.

We continue with the improved formulation and we look at the improvement
heuristics. We propose to use Local Branching (LB). Based on an initial feasible
solution (x∗, z∗), the aim of this heuristic is to look for a better solution in the
neighborhood of the current solution. The neighborhood is defined by allowing at
most k binary variables to change their value with respect to the currently best
solution. This condition can be imposed by adding the following linear constraint
to the problem formulation :

∑

(t,l):1≤t≤T2,t≤l≤T2|z⋆
t,l

=0

zt,l +
∑

(t,l):1≤t≤T2,t≤l≤T2|z⋆
t,l

=1

(1 − zt,l) ≤ k.

This heuristic can be applied iteratively in order to improve the objective function
further.

Other related neighborhoods could be defined. For instance, another neigh-
borhood is defined by allowing at most k binary variables to change their values
from 1 to 0 with respect to the currently best solution. This neighborhood was
not tested in this thesis.

Based on the initial feasible solution obtained in less than 6 sec. by the trun-
cated MIP with an objective function of 231 ru, we use the Local Branching
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heuristic. We allow at most k = 5 binary variables to change their value. We
apply the Local Branching heuristic and in 2 sec., a better feasible solution is
obtained with an objective of 255 ru. The total CPU time needed when combin-
ing the two heuristics is 8 sec. The same feasible solution cannot be obtained by
the branch-and-bound algorithm in less than 35 sec. This illustrates that such a
combination of heuristics can be important in practice in order to obtain quickly
a better feasible solution than the one obtain by the truncated branch-and-bound
algorithm for the same amount of CPU time.

1.5 Outline and contribution of the thesis

The aim of this thesis is to solve scheduling problems for mixed production lines,
i.e., involving batch and continuous processes, and some resource restrictions. Dis-
crete time formulations were initially proposed in the literature in order to solve
such problems, but their drawback is the large size of formulations for solving real
industrial cases. This is why continuous time formulations were then proposed. To
the best of our knowledge, in the literature, there is no study about the strengthen-
ing of the continuous time formulations used to solve scheduling problems. Various
authors did compare different types of continuous time formulations, but did not
try to improve or tighten such formulations.

In Chapter 2, we study a specific continuous time formulation for the cyclic
scheduling problem of a mixed plant, where we suppose that all the processing
times of batch processes are known and fixed before the scheduling phase. For a
subcase of the general cyclic scheduling problem composed of one batch process
and no resource restriction, we propose first a strengthened formulation, prove its
validity and prove that our strengthened continuous time formulation has no du-
ality or integrality gap. We also prove that some of the strengthened inequalities
found are facet defining for this subcase. Moreover, when the number of process-
ing units is limited, we prove by adding one valid inequality that the integrality
gap remains 0. We then extend the tightened formulation to make it valid for
multiple batch processes and, by using strengthening techniques, we show how to
additionally improve the model formulation. Finally, we extend the tightened for-
mulation obtained for these subcases in order to model and optimize the general
cyclic scheduling problem composed of batch and continuous processes and again
we show, by using strengthening techniques, how to additionally tighten the basic
constraints limiting the processing rate of the continuous processes.

In Chapter 3, by using the tightened formulations proposed in Chapter 2 for
various subcases of the general problem, and for the general one, we show that
we can solve problem instances quicker than with the initial formulation. For the
large instances that we cannot solve to optimality, we propose and test a number of
MIP based heuristic methods. These heuristics find feasible solutions quicker than
exact solution methods. MIP heuristic methods are based on model formulations
and we show by computational experiments that they also take advantage of the
improvements obtained by tightening the continuous time formulations. Finally,
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we show that one of the MIP heuristic method can provide for an industrial case a
better feasible solution than truncated exact branch-and-bound methods. There-
fore we show that the combination of formulation strengthening and MIP-based
heuristic methods seem to be important in order to get good solutions quickly for
such industrial problems.

Chapter 3 except Section 3.1, and Chapter 2 except Section 2.2 and 2.3 have
been accepted for publication in the Special issue of Computers & Chemical Engi-
neering on Enterprise-wide optimization [37]. Moreover, this paper has been first
presented in November 2006 at the annual meeting of the American Institute of
Chemical Engineers (AIChE) in San Francisco, California and also in August 2007
at the third Multidisciplinary International Scheduling Conference : Theory and
Applications (MISTA) in Paris, France.

In contrast to the earlier models, in Chapter 4, we consider a scheduling prob-
lem in which we model the dynamics of the process. The processing times of the
batch tasks are therefore considered to be variable in this case. These process-
ing times are determined as the solution of the system of differential equations
describing the process dynamics, and influenced by process parameters that have
to be optimized. Here we consider a single process step, and our objective is to
minimize the time needed to perform this step by optimizing the process param-
eters. Two classical time discretization approaches (the trapezoidal method and
the collocation method) are proposed and tested in order to model the dynam-
ics of such a process and to schedule it. The corresponding model formulation is
composed of non linear equations and we solve this problem by sequential mixed
integer programming (SMILP). We also model the dynamics of such a process by
two piecewise linear approximation methods. In these models, both the time and
the state space of the system are discretized. The idea of the first piecewise linear
approach is to decompose the space of variables involved in the process dynamics
into a set of hypercubes and in every hypercube, we approximate the solutions of
the system of nonlinear differential equations by a linear approximation around
the point in the middle of the hypercube. For the second piecewise linear approxi-
mation, we decompose the space of variables involved in the process dynamics into
a set of simplices. Every point in the state space can be expressed as a convex
combination of extreme points of a simplex. The values of nonlinear functions
describing the process dynamics are then linearized by taking the corresponding
convex combination of the values of the nonlinear functions at the extreme points
of the simplex. This piecewise linear approximation is then integrated by using
the euler explicit method. We show that, by using the classical approaches (trape-
zoidal rule and the collocation method), the optimal solutions obtained for the
optimization problem approximate very well the dynamics of the process, but are
obtained slower than with the two piecewise linear formulations proposed. We
show that the second piecewise linear approximation can give an optimal solution
quicker than the other methods with a good approximation of the process dynam-
ics.

Chapter 4 except Section 4.3 was presented in March 2005 at the third FNRS
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Cycle in Mathematical Programming Seminar in Han-sur-Lesse, Belgium.

Finally, in Chapter 5, we conclude and propose some future works.
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Chapter 2

Continuous time formulation
for the cyclic schedule
optimization

The problem that we address in this chapter is the optimization of the cyclic sched-
ule of a general mixed plant in order to maximize its productivity. A mixed plant
is composed of batch and continuous tasks. A batch task has a fixed processing
time and produces at the end a fixed amount of product. A continuous task is
processed continuously and its decision variable is the speed or processing rate at
which this continuous task is performed. Both types of tasks consume resources
with limited capacity or availability.

In order to solve such a scheduling problem, continuous time formulations were
proposed in the literature. The characteristic of continuous time formulation is
that the time is discretized in a finite number of time slots of variable duration that
are decision variables of the optimization problem. Therefore, time is decomposed
into a set of consecutive time slots of variable duration. The end of a time slot
corresponds to an event where the status of the process is changed (start or end
of a batch task, modification of the speed of a continuous task). The execution of
each batch task is assigned to a set of consecutive time slots, whose global duration
is equal to the processing time of the batch.

Schilling and Pantelides in [44] propose a mixed integer non linear program-
ming (MINLP) formulation of this scheduling problem. They solve the problem
by developing a special Branch and Bound algorithm that branches on both con-
tinuous and discrete variables. Then, Castro et al. [12] propose a continuous
time formulation where the sum of the durations of the consecutive time slots to
which a batch task is assigned can be greater or equal to the processing time of
the batch task. This relaxation, in which the end of a batch task is not modeled
explicitly, allows one to obtain better results (reduced running times thanks to a
tighter formulation), but does not allow to model cases with zero waiting time con-
straints between successive processing stages. They also show that a discrete time

27
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formulation, i.e., a formulation where the time is discretized in a larger but finite
number of time slots of fixed duration, seems more appropriate to solve their case
study. Finally, Wu and Ierapetritou [50] propose a continuous time formulation
with a reduced number of binary variables obtained by using a time representation
(decomposition into time slots) that is specific for each processing unit or reactor.
Unfortunately, this model does not allow to treat cases where resources are shared
by the different processing units.

The formulation used in this chapter is similar to the one proposed by Schilling
and Pantelides [44] in order to be able to model shared resources and some zero
waiting time constraints between successive process stages. Therefore we cannot
take advantage of the continuous time formulations proposed by Castro et al. [12]
or Wu and Ierapetritou [50]. The number of binary variables corresponding to
such continuous time formulations is drastically reduced in comparison with the
corresponding discrete time formulation. The drawback is that such continuous
time formulations are usually weak because of the introduction of so called big M
types of constraints in order to build a correct model formulation. The tightness
of the continuous time formulation has to be improved in order to solve larger
instances. To the best of our knowledge, there are no study of the strength of
those continuous time formulations, or results showing how to strengthen them,
published in the literature.

In this chapter, we study the quality and strengthen the mathematical pro-
gramming formulation of three special cases of a batch-plant and mixed-plant
scheduling problem.

In the first special case, we maximize (a measure of) the productivity of a plant
performing only one batch task with (Capacitated case) and without (Uncapaci-
tated case) restrictions on the number of processing units available to perform this
batch task. For the uncapacitated case, we prove that some of the strengthened
inequalities are facet defining and that the duality gap of the strengthened formu-
lation is zero. By adding a valid inequality for the capacitated case, we also prove
that the duality gap is zero in that case.

In the second special case, we maximize (a measure of) the productivity of a
batch plant performing multiple batch tasks. We show how to extend the strength-
ened formulation obtained in the first special case and how to additionally tighten
some inequalities.

In the third special case, we maximize (a measure of) the productivity of a
plant performing both batch and continuous tasks. We derive some new valid
inequalities.

The outline of the chapter is the following. In section 2.1, we describe the
general scheduling problem addressed in this chapter and we give the definitions
of the sets and the variables used in our formulations. In section 2.3, we show how
to strengthen the initial continuous time formulation for the first special case with
only one batch task. We consider both the uncapacitated (no limit on the number
of reactors) and capacitated cases. In section 2.4, we study the formulation for
the second special case that takes into account multiple batch tasks. In section
2.5, we propose valid inequalities for the third special case that takes into account
batch and continuous tasks. Finally, in section 2.6, we conclude.
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2.1 Problem description

We consider a general production process modeled by a resource task network (see
Pantelides [35]), where the resources are the processing units, the utilities shared
by the tasks, and the storage tanks containing the intermediate products produced
or consumed by the tasks. In Figure 2.1, we represent a resource task network
with 2 tasks and 5 resources. In this case, task 1 produces the set of resources
{2, 4} and consumes resources {1, 4}. Task 2 produces the set of resources {3, 5}
and consumes resources {2, 5}, where resources 1 to 3 model the storage tanks for
raw material, intermediate product and finished product, respectively. Resources
4,5 are the processing units performing tasks 1 and 2, respectively.

Task 1

Task 2

R1

R2

R3

R4

R5

Figure 2.1: Resource Task Network

In this process, there are both batch and continuous tasks. Each batch task
has a fixed processing time, can be processed on a subset of reactors and can be
repeated several times. The main decision for a batch task is to determine the
starting times of the corresponding instances of the task. Precedence and zero
waiting time constraints exist between some of the batch tasks. For each contin-
uous task, the processing rate has to be determined over time. This rate has to
satisfy some given lower and upper limits. The batch and the continuous tasks
consume and produce resources, for which we have some capacity restrictions.
Moreover, the continuous tasks cannot be interrupted. The objective is to obtain
a cyclic schedule of the mixed plant maximizing its productivity, where productiv-
ity is defined as the quantity of finished product produced over one cycle, divided
by the cycle duration.

We consider a cyclic scheduling problem since the demand of product is rel-
atively stable. Therefore, the objective of the scheduling problem is to obtain a
schedule that can be repeated over time, and that maximizes long term productiv-
ity. This is also the reason why we do not include inventory costs and change over
costs in the model. We also do not consider change over times between different
products processed in a same reactor. This would deserve further investigations.

In this section, we propose a general definition of the sets and variables used
in order to model this scheduling problem. We are given a set of batch tasks BT ,
a set of continuous tasks CT and a maximum number T of time slots.
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An event is here defined as the beginning or end of a batch task, and a time
slot is the time between two events. The number of time slots t ∈ {1, . . . , T} in
the cycle is limited. Events and time slots are numbered from 1 up to T . In cyclic
scheduling, the event at the end of time slot T coincides with the event occurring
at the beginning of time slot 1, and is numbered as event 1. In Figure 2.2 we
represent the time decomposition into time slots.

Event t Event t+1

Time slot t

time

t
t

t
t +1

Figure 2.2: Event and Time slot

For generality, we suppose that each resource has its own resource unit that
we call ru. The size of a batch of task i is denoted by BSi[ru]. The processing
time of a batch task i ∈ BT is constant and is given by pi[h]. The continuous
tasks j ∈ CT are performed continuously. The lower and upper bound on the
speed or processing rate of the continuous task j ∈ CT are ρ

j
[ru/h] and ρj [ru/h],

respectively. There are some precedence constraints between specific batch tasks
and some resources r ∈ {1, . . . , R} are shared between the tasks.

The four types of sets are the following :

i : is the index of a batch task, i ∈ BT

j : is the index of a continuous task, j ∈ CT

t : is the index of a time slot, t ∈ {1, . . . , T}

r : is the index of a resource, r ∈ {1, . . . , R}

The five types of decision variables are the following :

τt : is the duration of time slot t.[h]

zi,t,t′ : = 1 if a batch of task i starts at the beginning of time slot t

and finishes at the end of time slot t′

= 0 otherwise

qj,t : is the quantity processed by the continuous task j during time

slot t [ru]; (at rate
qj,t

τt

)
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wr,t : is the rate [ru/h] or the quantity [ru] of resource r available at

the beginning of time slot t, after adding (resp. removing) the

resources released (resp. consumed) at the event placed at the

beginning of time slot t.

wfr,t : is the rate [ru/h] or the quantity [ru] of resource r available at

the end of time slot t, before adding (resp. removing) the

resources released (resp. consumed) at the event at the end

of time slot t.

As proposed in Castro et al. [12], to reduce the number of binary variables
zi,t,t′ , we impose the following rule. A batch task i can only be performed during a
maximum number of consecutive time slots denoted by d. This means that if task
i starts at time slot t, this task has to end at or before time slot t + d − 1. This
implies that zi,t,t′ exists for all i ∈ BT, t ∈ {1, . . . , T} and t′ ∈ {t, . . . , t + d − 1}.
The choice of the value for T and d induces very restrictive condition not related
to the physical description of the plant. There is no way to decide the best value
of T and d for a given problem. Therefore, we take into account that T and d are
part of the problem formulation. This will be illustrated in Section 3.2.5.

In general, it is possible that a task starts in the current cycle and finishes
in the next cycle. As observed in Shah et al. [45], it is possible to optimize the
schedule over one cycle by using the concept of task ‘wrap-around’, because the
end of the task in the next cycle has a corresponding end in the current cycle.

Definition 2.1.1. Ω(t) is the ‘wrap-around’ time operator defined in Schilling and
Pantelides [44] as

Ω(t) = t ∀t : 1 ≤ t ≤ T,

Ω(t) = Ω(t − T ) for t > T,

Ω(t) = Ω(t + T ) for t < 1.

So, a batch task i starting in time slot t, 1 ≤ t ≤ T , and finishing in time slot
t + k corresponds to zi,t,Ω(t+k) = 1 as illustrated in Figure 2.3.

Typically, continuous time formulations are weak (i.e. implying a large number
of branch-and-bound nodes to solve the scheduling problem to optimality) and our
goals are to improve the tightness of the formulation for special cases of the general
scheduling problem that we want to solve, and to show how to extend and use these
strengthened formulations for the general case.

2.2 Models Classification

In this thesis, we are addressing various cyclic scheduling problems. We define a
classification scheme of such cyclic scheduling problems composed of four fields:
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1 t T 1 t+k

1 t T

1 Cycle

W(t+k)

time

z

i,t,t+k

z

i,t,W(t+k)

Figure 2.3: The ‘wrap-around’ time operator Ω(t)

BT/CT/REACTORS/RESOURCES.
We also add one field F describing the formulation used to model each cyclic
scheduling problem.
The general classification proposed for our cyclic scheduling problems is thus ex-
pressed as follows :

BT/CT/REACTORS/RESOURCES//F

In each field, the notation [x, y, z]1 means that we select exactly one element from
the set {x, y, z}, and the notation [x, y, z]∗ means that we select any subset of
{x, y, z}. Empty fields are dropped.

We start by describing the four fields related to the problem description.

The first field BT defines the number of batch tasks of the scheduling problem.
BT=[1B,nB]1.

1B : the problem contains one batch task.

nB : the problem contains multiple batch tasks.

The second field CT defines the number of continuous tasks of the scheduling
problem.
CT=[0C,1C,nC]1.

0C : there is no continuous task in the problem.

1C : the problem contains one continuous task.
nC : the problem contains multiple continuous tasks.

The third field REACTORS characterizes the restriction on the number of
reactors for the scheduling problem.
REACTORS=[CAP,UNCAP]1.

CAP : the number of reactors is limited for the problem.
UNCAP: the number of reactors is not limited for the problem.

Note that the parameter d defines implicitly a capacity constraint because at
most d batches can be in process at any time. This parameter is present in all
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formulations used, CAP or UNCAP.

The fourth field RESOURCES indicates whether or not the problem contains
restriction on the consumption or production of additional resources (other than
the number of reactors to process the batch tasks) in the scheduling problem.
RESOURCES=[Res]∗.

Res : the restricted resources in the problem can be : a storage tank, utilities,
. . .

The field F describes the model formulation.
F=[INIT,STR]1.

INIT : we use the initial formulation in order to model the problem
STR : we use the strengthened formulation, or variants of the strengthened

formulation, in order to model the problem.

To illustrate the classification scheme proposed for cyclic scheduling problems,
we give below two examples :

1) 1B/0C/UNCAP//INIT means that the scheduling problem is composed
of one batch task, the number of reactors is not limited and we use the initial
formulation in order to model the problem.

2) nB/1C/CAP/Res//STR means that the scheduling problem is composed of
multiple batch tasks and of one continuous task. The number of reactors is re-
stricted and some other resources are taken into account. The problem is modeled
by using the strengthened formulation.

2.3 One batch task

First we analyze a continuous time formulation for special case one, i.e., the cyclic
scheduling of a batch plant performing one batch task of fixed duration p. Multiple
instances or realizations of this batch task can be processed in parallel on several
processing units or reactors. For this special case of the general problem, the
process contains no continuous task and no resource restrictions. The objective
is to maximize the productivity of the process. This problem reduces to the
maximization of the number of batches produced per unit of time. This objective
function is non linear. It was shown by Isbell and Marlow [23], and also extended
by Dinkelbach [19], that this nonlinear objective function can be optimized for
continuous problems by solving a sequence of linear optimization problems where
a parameter of the objective function (the fixed cost µ per unit of time) has to
be updated at each iteration. Their proof carries over for mixed integer linear
problems (see for example in Megiddo [29]) and we give more details about this
in Section 3.2.1. We study the continuous time formulation for this special case
and we use as objective function the linearized objective corresponding to a single
iteration of this objective linearization procedure.

We divide this problem in two parts : the capacitated case, where we con-
sider that there is a limited number of processing units available to perform the
batch task in parallel, and the uncapacitated case with no restriction. The binary
variable zi,t,t′ becomes zt,t′ in this case since we consider only one batch task i.
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2.3.1 Model formulation

The initial MIP formulation for this cyclic scheduling problem is the following :

1B/0C/CAP//INIT

max
T∑

t=1

t+d−1∑

l=t

zt,Ω(l) − µ
T∑

t=1

τt (2.1)

pzt,Ω(l) ≤

l∑

k=t

τΩ(k) ∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.2)

l∑

k=t

τΩ(k) ≤ pzt,Ω(l) + p(l − t + 1)(1 − zt,Ω(l))

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.3)

t+d−1∑

l=t

zt,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (2.4)

l∑

t=l−d+1

zΩ(t),l ≤ 1 ∀l : 1 ≤ l ≤ T (2.5)

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zt,Ω(l) ≤ nbr unit ∀t′ : 1 ≤ t′ ≤ T (2.6)

zt,Ω(l) ∈ {0, 1}∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1,

τt ≥ 0∀t : 1 ≤ t ≤ T (2.7)

where µ ≥ 0 is a constant and where the ‘wrap-around’ time operator Ω(t) is
defined in Section 2.1.

The linear objective function (2.1) corresponds to a measure of the produc-
tivity, corresponding to total cycle production minus µ times the cycle duration.
In this linearized objective, µ corresponds to a fixed production cost per unit of
time. The constraints (2.2)-(2.3) are the timing constraints and ensure that the

duration of the batch task is well respected, i.e.
∑l

k=t τΩ(k) = p when zt,Ω(l) = 1.
In particular (2.3) for t = l reduces to τt ≤ p. The constraints (2.4)-(2.5) specify
the fact that at most one batch task can begin and finish at each time event.
The constraints (2.6) take into account the fact that the number of units available
for performing the batch task is limited. In particular, one unit is performing an
instance of the batch task at time slot t′, if an instance of the batch task starts
at a time slot t before time slot t′ and finishes after t′ at a time slot l, i.e. if
t ≤ t′ ≤ l, or if an instance of the batch task starts at a time slot t before time
slot t′ in the next cycle (i.e. before t′ + T ) and finishes after t′ + T at time slot
l, i.e. if t ≤ t′ + T ≤ l. Indeed, by using the ’wrap-around’ time operator Ω(t),
if zt,Ω(l) = 1 with t ≤ t′ + T ≤ l, this implies that an instance of the batch task
is performed on one unit at time slot Ω(t′ + T ), and we have that Ω(t′ + T ) = t′.
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Finally, the constraints (2.7) ensure that z are binary variables and time slot du-
ration variables (τ) are non negative.

To remove the redundancy in the solution set, we can fix the initial starting
time slot of one batch task that has to be processed during the cyclic schedule.
When there is only one batch task, this can be achieved by adding the constraint:
∑d

t′=1 z1,t′ = 1.

We study first a special case of this problem where we suppose that the number
of processing units is not restricted (Uncapacitated case), i.e. nbr unit ≥ d.

Uncapacitated case

We study first the quality of the initial formulation without the constraint (2.6)
limiting the number of units. Using PORTA, we can analyze polytopes and poly-
hedra of small dimensions, only one instance at a time. Given the extreme points
and extreme rays of a small instance of a given problem, PORTA can compute the
“numerical” linear representation of the convex hull of this single small instance.
Then we have to generalize the results of PORTA in order to have a correct general
“symbolic” form for the linear representation of the convex hull that is valid for ev-
ery instance of the given problem, or at least to obtain some improved formulation
for the general problem at hand.

Following this approach, we were able to suggest a tighter formulation for the
constraints (2.2) and (2.3).

We prove below that the constraints (2.2) can be tightened as follows :

p

l∑

k=t|t6=l

zt,Ω(k) + pzΩ(l),Ω(l) ≤

l∑

k=t

τΩ(k) (2.8)

p
l∑

k=t|t6=l

zΩ(k),Ω(l) + pzt,t ≤
l∑

k=t

τΩ(k) (2.9)

for all t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1

To illustrate the difference between the initial and the strengthened formula-
tion, we write the initial constraint (2.2) for t = 1 and l = 3 :

τ1 + τ2 + τ3 ≥ pz1,3.

The corresponding strengthened expression (2.8) can be written as

τ1 + τ2 + τ3 ≥ p (z1,1 + z1,2 + z1,3) + pz3,3

and intuitively explained as follows. In Figure 2.4, taking into account the fact
that we can start or finish at most one batch task at each time slot, we can see
that we may add the variables corresponding to the dashed intervals in the right
hand side, and keep the inequality valid. This holds because z1,3 + z1,2 + z1,1 ≤ 1,
and if z1,3 + z1,2 + z1,1 = 1 then τ1 + τ2 + τ3 ≥ p. Similarly, if z1,3 + z3,3 = 1 then
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we must also have τ1 + τ2 + τ3 ≥ p. Finally, when z1,1 + z1,2 + z1,3 + z3,3 = 2 (for
instance when z1,1 = z3,3 = 1) then the two batches do not overlap and we must
have τ1 + τ2 + τ3 ≥ 2p. Constraint (2.8) is clearly stronger than (2.2) because non
negative terms are added to the left hand side.

t
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Figure 2.4: Strengthened constraint (2.8) : an example

The second strengthened inequality (2.9) is closely related to the first and can
be explained in the same way.

We can mention here that the constraints (2.8) and (2.9) are equivalent for
l = t and l = t + 1.

Constraint (2.3) reduces to τt ≤ p when l = t. We prove below that the
constraints (2.3) when t < l can be tightened as follows :

l∑

k=t

τΩ(k) + p

l−1∑

k=l−d+1

min{l − t, l − k}zΩ(k),Ω(l) ≤ p(l − t + 1) (2.10)

l∑

k=t

τΩ(k) + p
t+d−1∑

k=t+1

min{l − t, k − t}zt,Ω(k) ≤ p(l − t + 1) (2.11)

for all t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1.

The two strengthened inequalities are closely related and we explain here in-
tuitively how to interpret one of them.

To illustrate the difference between the initial and the strengthened formula-
tion, we write the initial constraint (2.3) for t = 1, l = 3 and d = 4 :

τ1 + τ2 + τ3 ≤ pz1,3 + 3p(1 − z1,3) = p(3 − 2z1,3). (2.12)

The corresponding strengthened expression (2.11), can be written as

τ1 + τ2 + τ3 ≤ p(3 − z1,2 − 2z1,3 − 2z1,4)

In Figure 2.5, taking into account the fact that we can start at most one batch
task at each time slot, we can see that we may subtract in the right hand side of
(2.12) a positive multiple of the variables corresponding to the dashed intervals,
and keep the inequality valid. This holds because Z = z1,2 + z1,3 + z1,4 ≤ 1 and
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if Z = 0, then τ1 + τ2 + τ3 ≤ 3p by the initial upper bound on τt. Similarly, if
Z = 1 and z1,2 = 1 then τ1 + τ2 = p and τ3 ≤ p and finally if Z = 1 = z1,3 + z1,4

then τ1 + τ2 + τ3 ≤ p because the batch task starts in t = 1 and finishes at or after
l = 3.
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Figure 2.5: Strengthened constraint (2.11) : an example

We prove also that the constraints (2.8)-(2.9) and (2.10)-(2.11) are facet-
defining for the problem defined by constraints (2.2)-(2.5) and (2.7).

a. Valid and facet defining inequalities

The approach used for proving that the constraints (2.8)-(2.9) and (2.10)-(2.11)
are facet-defining is given in Wolsey [49].

We begin with the inequality (2.8). This inequality can be denoted as πx ≤ π0,
where x is composed of the variables τ and z such that :

x =

















τ1

. . .
τT

z1,1

. . .
z1,d

z2,2

. . .
zT,Ω(T+d−1)

















First we to prove that the inequality (2.8) is valid, and then that it is facet-
defining. Let XU = {(τ, z) ∈ RT+Td : (τ, z) satisfies constraints (2.2)−(2.5), (2.7)}.

Proposition 2.3.1. Constraint (2.8) is valid for XU .

Proof. If zΩ(l),Ω(l) = 0, then because of constraints (2.4), only one of the zt,Ω(k)

binary variable (t ≤ k ≤ l) can take the value 1. If zt,Ω(k′) = 1 (t ≤ k′ ≤ l),

then by constraints (2.2)-(2.3), τt + . . . τΩ(k′) = p and therefore
∑l

t′=t τΩ(t′) ≥ p.

Otherwise,
∑l

t′=t τΩ(t′) ≥ 0 and this is valid.
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Suppose now that zΩ(l),Ω(l) = 1, then because of constraints (2.4)-(2.5), only
one of the zt,Ω(k′) with t ≤ k′ ≤ l − 1 can be equal to 1. If zt,Ω(k′) = 1 for some k′

with t ≤ k′ ≤ l−1, then
∑k′

k=t τΩ(k) = p and τΩ(l) = p. Therefore 2p ≤
∑l

k=t τΩ(k)

is valid because the batch tasks do not overlap. If all the zt,Ω(k′) with t ≤ k′ ≤ l−1

are equal to 0, then τΩ(l) = p and the constraint becomes p ≤
∑l

k=t τΩ(k) and is
valid.

We prove below that XU is full dimensional.
We need two definitions.

Definition 2.3.2. x1, . . . , xn ∈ RT+Td are affinely independent if
∑n

i=1 αixi = 0
and

∑n
i=1 αi = 0 implies αi = 0 for i = 1, . . . , n, or equivalently if the directions

x2 − x1, . . . , xn − x1 are linearly independent.

Definition 2.3.3. The dimension of XU (dim(XU )) is equal to the maximum
number of affinely independent points in XU minus 1.

Proposition 2.3.4. dim(XU ) = T (d + 1), i.e., XU is full dimensional.

Proof. By taking τt = p for t ∈ {1, . . . , T} and z = 0, we generate T feasible points
x1, . . . , xT for XU . By taking zt,Ω(l) = 1 and τt = p for t, l : t ∈ {1, . . . , T}, l ∈

{t, . . . , t + d − 1}, we generate Td feasible points xT+1, . . . , xT+Td for XU . Since
xT+Td+1 = 0 ∈ XU , it remains to prove that the T + Td generated directions
xi − xT+Td+1 = xi, for i = 1, . . . , T + Td, are linearly independent. By observing
the structure of the points, the unique solution of

∑T+Td
i=1 λix

i = 0 is λi = 0,
∀i ∈ {1, . . . , T + Td}, and therefore the result follows.

Proposition 2.3.5. Constraint (2.8) is facet defining for XU .

Proof. (i) For given t and l (t ≤ l ≤ t + d − 1), we select first s points, s ≥
dim(X) = T (d + 1) satisfying the inequality at equality. We denote them as
follows : x1, . . . , xTd+T . By default, for each generated point, the variables that
are not mentioned take the value 0.

a. τt1 = 0 ∀ t1 : 1 ≤ t1 ≤ T, zt1,Ω(t2) = 0 ∀ t1, t2 : 1 ≤ t1 ≤ T, t ≤ t2 ≤ t+ d− 1.
This solution (x=0) satisfies the inequality at equality.

b. τΩ(t1) = p ∀ t1 : l + 1 ≤ t1 ≤ t + T − 1. These T − (l − t + 1) points satisfy
the inequality at equality.

c. For each (t1, t2): 1 ≤ t1 ≤ T , t1 ≤ t2 ≤ t1 + d − 1, such that (t1, t2) 6= (l, l)
and t1 6= t, or t1 = t and t2 > l, we select zΩ(t1),Ω(t2) = 1 and we generate a
feasible point satisfying the inequality (2.8) at equality as follows :

(1) if {t1, . . . , t2} ⊆ {t + 1, . . . , l} and t1 6= t2 then we choose τΩ(t1) = p
(τt = . . . = τΩ(t1−1) = 0), zt,Ω(t1) = 1 and zΩ(t1),Ω(t2) = 1.

(2) if t1 = t2 and t1 ∈ {t + 1, . . . , l − 1} then we take τΩ(t1) = p, zt,Ω(l) = 1
and zΩ(t1),Ω(t2) = 1.

(3) if {t1, . . . , t2} 6⊆ {t, . . . , l}, then in this case , ∃t′ ∈ {1, . . . , t − 1} ∪ {l +
1, . . . , t + T − 1} such that t′ ∈ {t1, . . . , t2} and we choose τΩ(t′) = p
and zΩ(t1),Ω(t2) = 1.
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These feasible points satisfying the inequality at equality correspond to every
variables zΩ(t1),Ω(t2) excepts the one starting in time period t and finishing
in {t, . . . , l} and the one starting and finishing in time period l. Therefore,
there are Td − (l − t + 1) − 1 such points.

d. For each t1 ∈ {t, . . . , l}, we generate one point with zt,Ω(l) = 1 and τΩ(t1) = p.
This generates (l − t + 1) points.

e. If t < l, for each t1 ∈ {t, . . . , l − 1}, we generate one point with τt = p and
zt,Ω(t1) = 1. There are (l − t) such points.

f. Finally, we generate one point with zΩ(l),Ω(l) = 1 and τΩ(l) = p and this point
satisfies the inequality at equality.

It is easy to check that all these points are feasible for (2.2)-(2.5),(2.7). The
total number of points generated satisfying the inequality at equality is Td + T .

(ii) In order to prove that (2.8) (written as πx ≤ π0) is facet defining for given t
and l, it suffices to prove that all points x1, . . . , xTd+T generated above are affinely
independent. This can be done by showing that the system of linear equalities in
the unknowns (µ, µ0) ∈ RTd+T × R,

T d+T∑

j=1

µjx
k
j = µ0 ∀k = 1, . . . , T d + T (2.13)

has a unique non zero solution (µ, µ0), up to a constant multiplier, with µ0 = π0 =
0 and µj equal to the coefficient πj of variable xj in (2.8).(see Wolsey [49])

By using the various points previously defined, we solve the system of equation
as follows :

By considering the feasible point generated in a. (i.e., x = 0), we can deduce
that µ0 = 0. For ease of notation, we denote by µτt

(resp. µzt,l
) the coefficient of

µ corresponding to variable τt (resp. zt,l).

From the feasible points in b., we observe that µτΩ(t1)
= µ0 = 0 for all

t1 ∈ {l + 1, . . . , t + T − 1}.

By considering and comparing the points generated in d., we can deduce that
µτt

= . . . = µτΩ(l)
and that µzt,Ω(l)

= −pµτt
because µ0 = 0.

Then, by considering the point generated in e. and combining the results ob-
tained with the points in d., we have that µzt,t

= µzt,Ω(t+1)
= . . . = µzt,Ω(l−1)

=
−pµτt

= µzt,Ω(l)
and by considering also the point generate in f., we have that

µzΩ(l),Ω(l)
= −pµτΩ(l)

= −pµτt
= µzt,t

= . . . = µzt,Ω(l)
.

Finally, we consider the points generated in c. It is not difficult to observe
that for each (t1, t2), t1 ≤ t2 ≤ t1 + d − 1, such that t1 6= t or t1 = t and t2 > l,
and (t1, t2) 6= (l, l), we must have µzΩ(t1),Ω(t2)

= 0. For instance, in case (1), as
µzt,Ω(t1)

= −pµτΩ(t1)
and µ0 = 0, we must have µzΩ(t1),Ω(t2)

= 0. The other cases
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are similar.

So far, we have shown that the solution (µ, µ0) of system (2.13) is defined by :

µτΩ(t1)
= µτt

for t1 ∈ {t + 1, . . . , l}

µzt,Ω(t1)
= −pµτt

for t1 ∈ {t, . . . , l}

µzΩ(l),Ω(l)
= −pµτt

and the other components of µ are equal to zero. This shows that (µ, µ0) = λ(π, π0)
for some λ ∈ R. (λ = −µτt

)
This proves that the constraint (2.8) is facet defining for the problem defined

by the equation (2.2)-(2.5) and (2.7).

Proposition 2.3.6. Constraint (2.9) is valid and facet defining for XU .

Proof. The proof is similar to the proof given for the inequality (2.8).

We now prove that the inequality (2.10) is valid and facet defining for XU .

Proposition 2.3.7. Constraint (2.10) is valid for XU .

Proof. When l = t, constraint (2.10) reduces to τt ≤ p which is valid by (2.3). We
consider now the general case with l > t.

If zΩ(k),Ω(l) = 0 ∀k ∈ {l − d + 1, . . . , l − 1}, then the constraint becomes
∑l

k=t τΩ(k) ≤ p(l − t + 1) and this is clearly valid since we know that for every
t ∈ {1, . . . , T}, τt ≤ p.

Otherwise,
∑l−1

k=l−d+1 zΩ(k),Ω(l) = 1 because of constraints (2.5). Assuming
that zΩ(k′),Ω(l) = 1 for some k′ ∈ {l − d + 1, . . . , l − 1}, constraint (2.10) becomes
∑l

k=t τΩ(k) + p min{l − t, l − k′}zΩ(k′),Ω(l) ≤ p(l − t + 1).
Suppose first that t ≤ k′ ≤ l − 1, then τΩ(k′) + . . . τΩ(l) = p and the inequality

becomes :
∑k′−1

k=t τΩ(k) ≤ p(k′ − t) and this is clearly valid because τΩ(k) ≤ p for
all k.

Suppose now that t > k′, then
∑l

k=t τΩ(k) ≤
∑l

k=k′ τΩ(k) = p and the inequal-

ity is valid because
∑l

k=t τΩ(k) + p(l − t) ≤ p + p(l − t) = p(l − t + 1).

Proposition 2.3.8. Constraint (2.10) is facet defining for XU .

Proof. We use the same technique for the proof as for constraint (2.8).
Again, by default, for each generated point, the variables that are not mentioned
take the value 0.

(i) For fixed t and l (t ≤ l ≤ t + d− 1), we enumerate Td+ T feasible solutions
of XU satisfying the corresponding inequality (2.10) at equality.

We assume first that t < l.
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a. τt = . . . = τΩ(l) = p, and in addition :

(1) All other decision variables are 0. This generates one feasible solution.

(2) For each t1 6∈ {t, . . . , l}, we generate one point with τΩ(t1) = p. This
generates T − (l − t + 1) feasible points.

(3) For each t1 ∈ {t, . . . , l}, we generate one point with zΩ(t1),Ω(t1) = 1. This
generates l − t + 1 feasible points.

(4) For each t2 6∈ {t, . . . , l}, we generate one point with zΩ(t2),Ω(t2) = 1 and
τΩ(t2) = p. This generates T − (l − t + 1) feasible points.

b. For each t1 ∈ {t, . . . , l}, we generate one point with zt,Ω(l) = 1 and τΩ(t1) = p.
This generates l − t + 1 points.

c. For each t1, t2 with 1 ≤ t1 ≤ T , t1 < t2 ≤ t1 + d − 1, t1 6= t and t2 6= l, we
generate one point with zΩ(t1),Ω(t2) = 1 and in addition :

(1) if t1 ∈ {t + 1, . . . , l}, then we take τΩ(t1) = p and zt,Ω(l) = 1.

(2) If t1 6∈ {t + 1, . . . , l} and t2 ∈ {t, . . . , l − 1} then we take τΩ(t2) = p and
zt,Ω(l) = 1.

(3) If t1, t2 6∈ {t, . . . , l} and t1 ≤ t ≤ l ≤ t2, we take zt,Ω(l) = 1 and τt = p.

(4) Finally, if t1, t2 6∈ {t, . . . , l} and either t1, t2 < t or t1, t2 > l, by taking
τt = . . . = τΩ(l) = p and τΩ(t1) = p, we get a feasible point.

The total number of points generate here is Td - T
︸︷︷︸

t1 6=t2

- (d − 1)
︸ ︷︷ ︸

t1 6=t

- (d − 1)
︸ ︷︷ ︸

t2 6=l

+

1
︸︷︷︸

zt,Ω(l) counted two times

.

d. For each t1 ∈ {t + 1, . . . , t + d − 1}, t1 6= l, we generate one feasible point
with zt,Ω(t1) = 1 and

(1) if t1 > l, we have that t 6= Ω(l − d + 1), we take zΩ(l−d+1),Ω(l) = 1 and
τΩ(l) = p.

(2) if t1 < l then we take zΩ(t+1),Ω(l) = 1, τt = p and τΩ(l) = p.

We generate d − 2 points in this way.

e. For each t1 ∈ {l − d + 1, . . . , l − 1}, t1 6= t, we generate one feasible point
with zΩ(t1),Ω(l) = 1 and

(1) if t1 > t, we take τt = . . . = τΩ(t1−1) = p and τΩ(l) = p and this point
satisfies the inequality at equality because p(t1−t)+p+p(l−t1) = p(l−t+1).

(2) if t1 < t, we take τΩ(l) = p and this is a feasible point.

We generate d − 2 points in this way.

The total number of points generated is T + Td.

If t = l then (2.10) becomes τt ≤ p. We enumerate Td + T feasible solutions
for (2.2)-(2.5), (2.7) satisfying the corresponding inequality (2.10) at equality.

τt = p, and in addition :
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a. All other decision variables are 0. This generates one feasible point.

b. For each t1 6= t, we generate one point with τΩ(t1) = p. This generates T − 1
feasible points.

c. We generate one point with zt,t = 1.

d. For each t1, t2 with 1 ≤ t1 ≤ T , t1 ≤ t2 ≤ t1 + d − 1, (t1, t2) 6= (t, t), we
generate one point with zt1,Ω(t2) = 1 and in addition :
(1) if t1 ≤ t ≤ t2 or if t1 ≤ t + T − 1 ≤ t2, we get a feasible point.
(2) Otherwise, we take τΩ(t1) = p and we get a feasible point.
The total number of points generate here is Td − 1.

The total number of points generated is T + Td.

(ii) We have to solve the system of linear equations defined by (2.13) for the
points defined in (i) satisfying the inequality (2.10) at equality, and prove that
the unique solution up to a constant is (µ, µ0) = λ(π, π0) for some λ ∈ R, where
πx ≤ π0 denotes inequality (2.10). These points impose conditions on the solution
of the linear system of equation.

First, we consider the case t < l.
By considering the feasible point generated in a(1), we can deduce that

∑l
t1=t µτΩ(t1)

p = µ0, and therefore that µτΩ(t1)
= 0 ∀t1 6∈ {t, . . . , l} by a(2) and

that µzΩ(t1),Ω(t1)
= 0 ∀t1 ∈ {1, . . . , T} by a(3) and a(4).

By looking now at the feasible points generated in b., we have that µτt
= . . . =

µτΩ(l)
, and by the condition obtained in a., we have that

µτΩ(t1)
=
(

1
p(l−t+1)

)

µ0∀t1 ∈ {t, . . . , l}.

Therefore, we can deduce that

µzt,Ω(l)
= µ0 − µ0

(
1

p(l−t+1)

)

p =
(

l−t
l−t+1

)

µ0.

By considering the results obtained above, the feasible points generated in c.
imply that µzΩ(t1),Ω(t2)

= 0 for t1 6= t, t2 6= l and t1 6= t2.
The feasible points generated in e. give the following conditions :

If t1 > t and t1 6= l then
∑t1−1

t2=t µτΩ(t2)
p + µτΩ(l)

p + µzΩ(t1),Ω(l)
= µ0, and this implies that µzΩ(t1),Ω(l)

=

µ0 − (t1 − t + 1)p 1
p(l−t+1)µ0 =

(
l−t1

l−t+1

)

µ0.

if t1 < t and t1 6= l then

µτΩ(l)
p+µzΩ(t1),Ω(l)

= µ0 and this implies that µzΩ(t1),ω(l)
= µ0 − p

(
1

p(l−t+1)

)

µ0 =
(

l−t
l−t+1

)

µ0.

We can thus conclude from b. and e. that if t1 6= l :

µzΩ(t1),Ω(l)
= min

(
l−t1

l−t+1 , l−t
l−t+1

)

µ0.
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Finally, by looking at the point generated in d., we can deduce that µzt,Ω(t1)
=

0 ∀t1 6= t and t1 6= l.

For the case t = l, by considering the point generated in a., we can deduce that
first µτt

p = µ0 and that all others µ’s are equal to zero by b,c and d.
(iii) We now check that the above conditions on (µ, µ0) allow one to obtain

(µ, µ0) = λ(π, π0) for some constant λ. The conditions for the case t < l are the
following :

µτΩ(t1)
= µ0

1

p(l − t + 1)
= λ for t1 ∈ {t, . . . , l}

and

µzΩ(t1),Ω(l)
= µ0 min

(
l − t1

l − t + 1
,

l − t

l − t + 1

)

= λp min (l − t1, l − t)

for t1 ∈ {l − d + 1, . . . , l}, and the other components of µ are equal to zero, and
take the same value as the corresponding component of π.

By taking : λ = µ0
1

p(l−t+1) , these conditions show that the system (2.13) has

a unique solution, up to the constant λ.
We have also that µ0 has to be equal to λπ0, i.e µ0 = λ(l − t + 1)p and this is

clearly valid for the solution proposed.

By taking into account the conditions above for the case t = l, this proves that
(µ, µ0) = λ(π, π0) with λ = µ0/p.

This completes the proof that constraint (2.10) is facet defining for XU .

Proposition 2.3.9. Constraint (2.11) is valid and facet defining for XU .

Proof. The proof is similar to the proof given for the inequality (2.10).

We prove below that the initial inequality (2.4) is facet defining for XU .

Proposition 2.3.10. Constraint (2.4) is facet defining for XU .

Proof. We use the same technique for the proof. Again, by default, for each gen-
erated point, the variables that are not mentioned take the value 0.

(i) For a given t and l (t ≤ l ≤ t+ d− 1), we enumerate T d+T feasible points
satisfying the corresponding inequality (2.4) at equality :

a. zt,t = 1 and τt = p, and, in addition,
(1) all other variables are 0. We generate one such feasible point.
(2) for each t1 ∈ {1, . . . , T} \ {t}, we generate one point with τt1 = p. We
generate T − 1 feasible points in this way.

b. zt,Ω(t+1) = 1 and τΩ(t+1) = p. We generate one such feasible point.

c. For each t1 ∈ {t + 1, . . . , t + d − 1}, we generate one feasible point with
zt,Ω(t1) = 1 and τt = p. We generate d − 1 such feasible points.
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d. For each t1 ∈ {t − d + 1, . . . , t − 1}, we generate one feasible point with
zΩ(t1),t = 1, zt,Ω(t+1) = 1 and τt = p. We generate d − 1 feasible points, in
this way.

e. For each t1 ∈ {1, . . . , T} and t2 ∈ {t, . . . , t+d−1} with t1 6= t and Ω(t2) 6= t,
we generate one feasible point with zΩ(t1),Ω(t2) = 1 and, in addition,
(1) if t ∈ {t1, . . . , t2}, we choose zt,t = 1 and τt = p.
(2) if t 6∈ {t1, . . . , t2}, we choose zt,t = 1, τt = p and τΩ(t1) = p.

The number of points generated here is Td − 2d + 1

We can check that we have generated T + Td feasible points that satisfy the
inequality at equality.

(ii) We have to solve the system of linear equations defined by the equation
(2.13) for the points defined in (i). By using these points, we obtain conditions on
the solution of the linear system of equations.

By comparing the feasible points generated in a(1) and a(2), we can deduce
that µτt1

= 0 ∀ t1 ∈ {1, . . . , T} \ {t}. By looking then at c., we can deduce that
µzt,t

= µzt,Ω(t+1)
= . . . = µzt,Ω(t+d−1)

and by combining the results of a. and c.,
and by considering the point in b., we can deduce that µτt

= 0, and therefore
µzt,t

= µzt,Ω(t+1)
= . . . = µzt,Ω(t+d−1)

= µ0. Finally, by considering d. and e., we
can deduce that µzΩ(t1),t

= 0 for t1 ∈ {t−d+1, . . . , t−1} and that µzΩ(t1),Ω(t2)
= 0

for all t1, t2 such that t1 6= t and t2 6= t.

(iii) It remains to check that the solution (µ, µ0) obtained is (µ, µ0) = λ(π, π0)
for some constant λ, where πx ≤ π0 denotes inequality (2.4). The solution (µ, µ0)
obtained satisfies the following conditions :

µzt,Ω(t1)
= µ0 = λ for t1 ∈ {t, . . . , t + d − 1}

and

µ0 = λ

and all other components of µ and π are equal to zero.

Therefore the unique solution of (2.13) up to the constant λ is (µ, µ0) = λ(π, π0)
with λ = µ0.

This completes the proof that constraint (2.4) is facet defining for the problem
defined by the equation (2.2)-(2.5) and (2.7).

Proposition 2.3.11. Constraint (2.5) is facet defining for XU .

Proof. The proof is similar to the proof given for the inequality (2.4).

We have proved that inequalities (2.4)-(2.5), (2.8)-(2.11) and (2.7) provide an
improved or tightened formulation of (2.2)-(2.5), (2.7), and that inequalities (2.4)-
(2.5), (2.8)-(2.11) are facet defining inequalities for the uncapacitated case.



2.3. ONE BATCH TASK 45

b. Duality gap

To characterize the tightness of the reformulation, we now prove that the im-
proved formulation obtained for the uncapacitated model leads to a formulation
with a zero duality gap when considering objective function in the form (2.1).

The improved formulation for this cyclic scheduling problem composed of one
batch task is recalled

1B/0C/UNCAP//STR

max

T∑

t=1

t+d−1∑

l=t

zt,Ω(l) − µ

T∑

t=1

τt (2.14)

p

l∑

k=t|t6=l

zt,Ω(k) + pzΩ(l),Ω(l) ≤

l∑

k=t

τΩ(k)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.15)

p

l∑

k=t|t6=l

zΩ(k),Ω(l) + pzt,t ≤

l∑

k=t

τΩ(k)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.16)

l∑

k=t

τΩ(k) + p

l−1∑

k=l−d+1

min{l − t, l − k}zΩ(k),Ω(l) ≤ p(l − t + 1)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.17)

l∑

k=t

τΩ(k) + p

t+d−1∑

k=t+1

min{l − t, k − t}zt,Ω(k) ≤ p(l − t + 1)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.18)

t+d−1∑

l=t

zt,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (2.19)

l∑

t=l−d+1

zΩ(t),l ≤ 1 ∀l : 1 ≤ l ≤ T (2.20)

zt,Ω(l) ∈ {0, 1}∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1,

τt ≥ 0∀t : 1 ≤ t ≤ T (2.21)

We consider a relaxation of the problem (2.14)-(2.21). Then, we give the
formulation of the dual of the LP relaxation of the relaxed problem. Finally,
we prove that the duality gap is zero, i.e. the difference between the optimal
objective value of the mixed integer program (2.14)-(2.21) and of the dual of the
LP relaxation of this relaxed problem is zero. This implies that problem (2.14)-
(2.21) and its LP relaxation have the same optimal objective value. This holds
because of the specific objective function considered.

We construct a relaxation of the problem (2.14)-(2.21), with the facet defining
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inequalities (2.15) and (2.19). Its LP relaxation is the following

max
T∑

t=1

t+d−1∑

l=t

zt,Ω(l) − µ
T∑

t=1

τt (2.22)

p
l∑

k=t|t6=l

zt,Ω(k) + pzΩ(l),Ω(l) ≤
l∑

k=t

τΩ(k)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.23)
t+d−1∑

l=t

zt,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (2.24)

z ≥ 0, τ ≥ 0 (2.25)

Then, we give the dual of the LP relaxation (2.22)-(2.25).
The dual variables associated with the constraints (2.23) are αt,Ω(l), for 1 ≤

t ≤ l ≤ t + d− 1, t ≤ T . The dual variables associated with the constraints (2.24)
are ut, for 1 ≤ t ≤ T .

The dual problem is formulated as :

min

T∑

t=1

ut (2.26)

st p
l−1∑

t1=l−d+1|t1 6=t,t=l

αΩ(t1),Ω(l) + p
t+d−1∑

t2=l

αt,Ω(t2) + ut ≥ 1

for all t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.27)

−
T∑

t=1

t+d−1∑

l=t|t≤k≤l or k≤Ω(l)<t

αt,Ω(l) ≥ −µ ∀k ∈ {1, . . . , T} (2.28)

α, u ≥ 0 (2.29)

In order to prove that the duality gap is zero, we take a feasible solution for
the mixed integer program (2.14)-(2.21) and a feasible solution for the dual of
the relaxation of this problem (2.26)-(2.29) and we show that the two objective
function values are equal.

Proposition 2.3.12. The duality gap is zero, i.e. problems (2.14)-(2.21) and
(2.26)-(2.29) have the same optimal objective value.

Proof. We have to distinguish two cases :

pµ

d
> 1 (2.30)

and
pµ

d
≤ 1 (2.31)

We define a feasible solution of the primal mixed integer problem (2.14)-(2.21)
for both cases.
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If the condition (2.30) is satisfied, the feasible MIP solution considered here is
the zero solution, i.e. zt,Ω(t1) = 0 for all t ∈ {1, . . . , T}, t1 ∈ {t, . . . , t + d − 1} and
τt = 0 for all t ∈ {1, . . . , T}. This solution is trivially feasible and has objective
value 0. Note that the optimality of this solution is a direct consequence of our
proof that the duality gap is zero.

If the condition (2.31) holds, we propose a feasible solution : zt,Ω(t+d−1) =
1 ∀t ∈ {1, . . . , T} and τt = p/d ∀t ∈ {1, . . . , T}.

The corresponding objective function value of the primal MIP is then

|T | − µ
p|T |

d
. (2.32)

We show first that this solution is feasible. Its optimality is a consequence of
our proof that the duality gap is zero.

The constraints (2.4), (2.5) and (2.7) are clearly satisfied. For the constraints

(2.2), if l 6= t + d − 1 then the constraint reduces to
∑l

k=t τΩ(k) ≥ 0 and this
is clearly valid. When l = t + d − 1, the inequality (2.2) is satisfied at equality.
Finally, for the constraints (2.3), if l < t + d − 1, then the constraint reduces to
(l−t+1)p/d ≤ p(l−t+1), which is valid because d ≥ 1. Otherwise, if l = t+d−1,
then the inequality (2.3) is satisfied at equality.

The proposed solution is therefore feasible for the primal MIP problem (2.2)-
(2.5), (2.7). As (2.15)-(2.21) is a valid reformulation of the problem, the proposed
solution is also feasible for (2.15)-(2.21).

We define now a feasible solution for the dual (2.26)-(2.29). We distinguish
again the two cases (2.30) and (2.31).

When condition (2.30) is satisfied, we take the following dual solution : For all t ∈
{1, . . . , T}, l ∈ {t, . . . , t+d−1} : αt,Ω(l) = 1/p if l = t+d−1 and otherwise αt,Ω(l) =
0, and ut = 0 for all t ∈ {1, . . . , T}. We show that this solution is feasible.

Constraint (2.29) is trivially satisfied. For the constraints (2.27), if t = l then
the left hand-side equal 2 and is greater than the right hand-side. Otherwise, the
left and right hand-side equal 1. For the constraints (2.28), the left hand-side is
−d/p ≥ −µ because (2.30) holds.

Therefore, the dual solution proposed is feasible when (2.30) holds.

When the other condition (2.31) is satisfied, we take the dual solution : For all t ∈
{1, . . . , T}, l ∈ {t, . . . , t+d−1} : αt,Ω(l) = µ/d if l = t+d−1 and otherwise αt,Ω(l) =
0, and ut = 1− pµ

d
for all t ∈ {1, . . . , T}. We show that this dual solution is feasi-

ble.

Constraint (2.29) is satisfied since condition (2.31) holds. For the constraints
(2.27), if t = l then the left hand-side equal 2pµ/d + (1 − pµ/d) = 1 + pµ/d and
is greater or equal to the right hand-side (0 ≤ pµ/d ≤ 1). Otherwise, the left and
right hand sides equal 1. For the constraints (2.28), we have that −d µ/d = −µ
which is clearly ≥ −µ.

Therefore, the dual solution proposed is feasible when (2.31) holds.
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For both cases ((2.30) and (2.31)) the primal feasible solutions proposed are
optimal because the objective values of the primal MIP solution and of the solution
of the dual of the relaxation coincide.

When (2.30) holds, the objective function value of the dual is equal to 0 and
is the same as the corresponding primal MIP one.

When (2.31) holds, the objective function of the dual is |T |
(
1 − pµ

d

)
, and this

is also the objective value of the primal MIP given in (2.32).

This proves the optimality for both solutions, and that the duality gap is zero.

Remark: If (2.30) holds, it can be shown that the zero solution, i.e. zt,Ω(t1) =
0 for all t ∈ {1, . . . , T}, t1 ∈ {t, . . . , t + d − 1} and τt = 0 for all t ∈ {1, . . . , T}, is
optimal for the MIP problem. We give here another direct argument of optimality
for the zero solution.

The objective of the maximization problem is greater or equal to 0, simply
because the zero solution is feasible

max

T∑

t=1

t+d−1∑

l=t

zt,Ω(l) − µ

T∑

t=1

τt ≥ 0. (2.33)

Moreover, at each time slot, only one batch task can begin and finish and a batch
task can last for at most d time slots. Therefore, at most d batch tasks can be
active during one time slot. Therefore, a lower bound for the cycle duration can
be expressed as follows :

p

d

T∑

t=1

t+d−1∑

l=t

zt,Ω(l) ≤

T∑

t=1

τt. (2.34)

This inequality is valid for the problem formulation, because p
∑T

t=1

∑t+d−1
l=t zt,Ω(l)

is the total processing time over the cycle, and at most d batches can be processed
in parallel at any moment. By combining (2.33) and (2.34), we have that :

p

d

T∑

t=1

t+d−1∑

l=t

zt,Ω(l) ≤

T∑

t=1

τt ≤

T∑

t=1

t+d−1∑

l=t

zt,Ω(l)/µ.

must be satisfied by any solution with a non negative objective function value.
Because of the condition (2.30), the only possibility to obtain a feasible solution
with a non negative objective value is that zt,Ω(t1) = 0 for all t ∈ {1, . . . , T}, t1 ∈
{t, . . . , t + d − 1} and therefore because of the equation (2.33), we have also that
τt = 0 for all t ∈ {1, . . . , T} in the optimal solution.

In conclusion, we have shown that we need only the two constraints (2.23) and
(2.24) of the relaxation of the MIP problem (2.14)-(2.21) in order to obtain a zero
duality gap. However, the other facet defining inequalities are important in order
to obtain a feasible solution for the initial problem and to reduce the number of
fractional components in the solution of the LP relaxation of (2.14)-(2.21). They
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are also important for more complex problems involving more tasks and resource
constraints. We address this question in the computational experiments in Chapter
3.

Capacited case

In this section, we look at the quality of the initial formulation when we limit the
number of units on which multiple batches of the single task can be processed
in parallel. We show that by adding an appropriate lower bound on the cycle
duration, it is possible to keep a linear formulation with zero duality gap.

The initial formulation for this cyclic scheduling problem composed of one
batch task and a limited number of units is recalled below :

1B/0C/CAP//INIT

max
T∑

t=1

t+d−1∑

l=t

zt,Ω(l) − µ
T∑

t=1

τt (2.35)

pzt,Ω(l) ≤

l∑

k=t

τΩ(k) ∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.36)

l∑

k=t

τΩ(k) ≤ pzt,Ω(l) + p(l − t + 1)(1 − zt,Ω(l))

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.37)

t+d−1∑

l=t

zt,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (2.38)

l∑

t=l−d+1

zΩ(t),l ≤ 1 ∀l : 1 ≤ l ≤ T (2.39)

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zt,Ω(l) ≤ nbr unit ∀t′ : 1 ≤ t′ ≤ T (2.40)

zt,Ω(l) ∈ {0, 1}∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1,

τt ≥ 0∀t : 1 ≤ t ≤ T (2.41)

In this formulation, and in this Section, we assume that nbr unit < d. This
means that d must be large enough to allow to use the full capacity. Because
otherwise constraint (2.40) is implied by (2.38)-(2.39), (2.40) is redundant, and
the capacitated case is identical to the uncapacitated one.

Since the batch task can be performed on every processing unit, the following
constraint (2.42) defines a lower bound on the cycle duration by taking into account
the fact that the time needed to complete all the batches (i.e. the duration of the
cycle) is greater or equal to the time needed if the batches and processing time
are evenly allocated among the nbr unit units.
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We add to the initial formulation (2.35)-(2.41) the constraint :

p

nbr unit

T∑

t=1

t+d−1∑

t′=t

zt,Ω(t′) −

T∑

t=1

τt ≤ 0. (2.42)

Let XC denote the set of feasible solutions to (2.36)-(2.41).

Proposition 2.3.13. Constraint (2.42) is valid for XC

Proof. This constraint defines a valid lower bound on the cycle duration because
this lower bound assumes 100 % utilization of the reactors in order to perform the
total processing time p

∑T
t=1

∑t+d−1
t′=t zt,Ω(t′).

We choose a relaxation of the problem (2.35)-(2.42). Then, we give the formu-
lation of the dual of its LP relaxation. Finally, we prove that the duality gap is
zero.

We construct a relaxation of the problem (2.35)-(2.42) composed of (2.35),
(2.38), (2.41) and (2.42). Its LP relaxation is

max

T∑

t=1

t+d−1∑

l=t

zt,Ω(l) − µ

T∑

t=1

τt (2.43)

st

t+d−1∑

l=t

zt,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (2.44)

p

nbr unit

T∑

t=1

t+d−1∑

t′=t

zt,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.45)

z ≥ 0, τ ≥ 0 (2.46)

Then, we give the dual of the LP relaxation (2.43)-(2.46). The dual variables
associated with the constraints (2.44) are ut, for all t, and with the constraint
(2.45) is w.

The dual problem is formulated as :

min

T∑

t=1

ut (2.47)

st ut +
( p

nbr unit

)

w ≥ 1 ∀t ∈ {1, . . . , T} (2.48)

−w ≥ −µ (2.49)

u, w ≥ 0 (2.50)

In order to prove that the duality gap is zero, we take a feasible solution of the
mixed integer program (2.35)-(2.42) and a feasible solution of the dual (2.47)-(2.50)
and we show that the two objective function values are equal.

Proposition 2.3.14. If nbr unit < d, the duality gap is zero, i.e., problems
(2.35)-(2.42) and (2.47)-(2.50) have the same optimal objective value.



2.3. ONE BATCH TASK 51

Proof. We distinguish two cases : pµ ≤ nbr unit and pµ > nbr unit.

If pµ ≤ nbr unit, then the primal solution that we propose is the following:
for all t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} : zt,Ω(l) = 1 if l = t + nbr unit − 1
and zt,Ω(l) = 0 otherwise and for all t ∈ {1, . . . , T} : τt = p/nbr unit. The
corresponding objective value is :

|T | − µ
p|T |

nbr unit
(2.51)

We show that this mixed integer solution is feasible for the MIP capacitated
problem (2.36)-(2.42).

For the constraint (2.36), if l 6= t + nbr unit − 1 then the validity condition

reduces to :
∑l

k=t τΩ(k) ≥ 0, and this is clearly always valid. Otherwise, the
validity condition is p ≤ (l − t + 1)p/nbr unit = p, and this is also valid. The
constraints (2.38)-(2.42) are trivially satisfied. Finally, for the constraints (2.37),
if l 6= t+nbr unit−1, then the validity condition becomes : (l−t+1)p/nbr unit ≤
p(l − t + 1) and this inequality is valid. If l = t + nbr unit − 1 then the validity
condition becomes (l − t + 1)p/nbr unit = p ≤ p and this is clearly valid.

We propose the following dual solution : w = µ, ut = 1 − pµ
nbr unit

∀t ∈
{1, . . . , T}. It can easily be checked that this solution is feasible for the dual
problem (2.47)-(2.50) if pµ ≤ nbr unit.

We can check that the dual objective value for the dual feasible solution pro-
posed is : |T |(1− pµ

nbr unit
) and has the same objective function value as the primal

one (2.51).

Therefore, there is no duality gap when using formulation (2.43)-(2.46). This
implies that the primal solution proposed is optimal for the problem.

Finally, if pµ > nbr unit the primal solution that we propose is zt,Ω(t′) = 0∀t ∈
{1, . . . , T}, t′ ∈ {t, . . . , t + d − 1} and τt = 0∀t ∈ {1, . . . , T}. This zero solution is
trivially valid, and has objective value 0.

If pµ > nbr unit, a feasible solution for the dual is the following : w = nbr unit
p

and u = 0. The objective function values corresponding to the primal and the
dual solutions defined above are both zero.

This proves that there is no duality gap when using formulations (2.35)-(2.42)
or (2.43)-(2.46) for solving the capacitated problem in both cases, pµ ≤ nbr unit
and pµ > nbr unit.

Remark 1: If pµ > nbr unit, the zero solution, i.e. zt,Ω(t′) = 0∀t ∈
{1, . . . , T}, t′ ∈ {t, . . . , t + d − 1} and τt = 0∀t ∈ {1, . . . , T} is optimal for the
MIP problem by Proposition 2.3.14. We give here another direct argument of
optimality for the zero solution. As we have a maximization problem, the optimal
objective function value has to be at least 0.

max

T∑

t=1

t+d−1∑

l=t

zt,Ω(l) − µ

T∑

t=1

τt ≥ 0. (2.52)
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By combining the constraint (2.42) and the constraint (2.52), we get :

p

nbr unit

T∑

t=1

t+d−1∑

l=t

zt,Ω(l) ≤

T∑

t=1

τt ≤

T∑

t=1

t+d−1∑

l=t

zt,Ω(l)/µ.

Because of the condition pµ > nbr unit, the only possibility to obtain a feasible
solution with non negative objective value in that case is that zt,Ω(t′) = 0∀t ∈
{1, . . . , T}, t′ ∈ {t, . . . , t + d− 1} and therefore, because of the equation (2.52), we
must also have that τt = 0∀t ∈ {1, . . . , T}.

Remark 2: Although there is no duality gap in the capacitated case when
using the initial formulation, plus the valid inequality (2.42), the strengthened in-
equalities found in the uncapacitated case remain valid in the capacitated case, and
may be useful to reduce the number of fractional components of the LP relaxation
solution for more complex capacitated problems.

2.3.2 Valid Inequalities : variable lower bounds on the cycle
duration

The idea presented in the valid inequality (2.42) can be generalized for the un-
capacitated and capacitated cases. We prove this result only for the capacitated
case since the uncapacitated case is a special case with a number of units equals
to d.

For every t ∈ {1, . . . , T} and l ∈ {t + 2, . . . , t + T + d − 3}, we define a vector
coeff whose components are defined by

coeffk = min(k − t + 1; l − k + 1) ∀k ∈ {t, . . . , l}

= 0 otherwise

For fixed t and l, the following valid inequality can be obtained :

l∑

k=t

min(coeffk, nbr unit, d)τΩ(k) ≥ p





l∑

t1=t

min(l,t1+d−1)
∑

t2=t1

zΩ(t1),Ω(t2)



 . (2.53)

Proposition 2.3.15. Constraint (2.53) is valid for XC.

Proof. We consider only tasks that start and end within the interval given by time
slot t to time slot l. Since at most one task can start at each time slot, then for
every k ∈ {t, . . . , l}, the maximum number of tasks that can start in the interval
{t, . . . , l} at or before slot k is k − t + 1. Moreover, since at most one task can
finish at each time slot, the maximum number of tasks that can end at or after
slot k ∈ {t, . . . , l} in the interval {t, . . . , l} is l − k + 1. By taking the minimum of
these two values, we get the maximum number of tasks, starting and finishing in
the time slot interval {t, . . . , l}, that can be active during time slot k ∈ {1, . . . , T}.
Moreover, the maximum number of batch tasks that can be active at a given time
slot has to be smaller than the number of units, otherwise we do not satisfy the
capacity restrictions. Finally, since a batch task can last only for d time slots
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and since at each time slot at most one batch task can start and at most one
batch task can finish, this implies that at each time slot at most d batch tasks can
be processed in parallel. This is why in a given interval {t, . . . , l}, the number of
batches produced during a given time slot cannot be more than the minimum value
between coeffk, nbr unit and d. Then, the inequality (2.53) is valid because the
left-hand-side is the maximum amount of processing time available in slots t up
to l for batches that are completely processed from t to l, and the right-hand-side
is the amount of processing time used in {t, . . . , l} for such batches.

We show on an example that this valid inequality is useful.

Example 2.3.16. We considered the cyclic scheduling problem composed of one
batch task and a limited number of units. The MIP formulation used is composed
of (2.35)-(2.42) for which constraints (2.36) are remplaced by (2.8)-(2.9) and con-
straints (2.37) are remplaced by (2.10)-(2.11). The characteristics of the instance
are T = 4, d = 4, nbr unit = 3, µ = 0.5 and p = 3. An optimal solution of
the linear relaxation of this problem for the tasks that start and finish within the
interval given by time slot 1 to time slot 4 is :

z∗ =







0.083 0.166 0.5 0.25
/ 0.083 0.166 0.416
/ / 0 0.166
/ / / 0.166







The optimal time slot durations are τ∗ = (1.5, 0.75, 0, 1.75). The valid inequality
(2.53) for t = 1 and l = 4 is the following :

τ1 + 2τ2 + 2τ3 + τ4 ≥ 3(z(1, 1) + z(1, 2) + z(1, 3) + z(1, 4) + z(2, 2) + z(2, 3))

+3(z(2, 4) + z(3, 3) + z(3, 4) + z(4, 4)) (2.54)

The optimal solution of the linear relaxation given above violates the valid inequal-
ity (2.54) since the left-hand-side equal 4.75 and the right-hand-side equal 6.

Although the duality gap is zero without (2.53), this example shows that the
valid inequality (2.53) is useful since the fractional optimal LP solution is cut off
by (2.53).

We can generalize the inequality (2.53). For all t ∈ {1, . . . , T}, l ∈ {t+2, . . . , t+
T + d − 3}, and c1 ∈ {1, . . . , min(d, nbr unit)}, we have that

p

l∑

t1=t

min(l,t1+d−1)
∑

t2=t1|t2−t1+1≤c1

zΩ(t1),Ω(t2) ≤

T∑

k=1

min(coeffk, c1)τk. (2.55)

The proof of validity of (2.55) is similar to the one given for (2.53). We restrict
here the set of binary variables z that start and end in the interval {t, . . . , l} by
considering only the variables that can last for maximum c1 time slots. Therefore,
the maximum number of such batches that can be active at a given time slot in
{t, . . . , l} has to be smaller or equal to c1. This inequality and its use deserve
further investigation.
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2.4 Multiple batch tasks

We consider now the special case of the general problem composed of several batch
tasks where the objective is to maximize a measure of the productivity of the plant.
We first extend the initial formulation proposed for the one batch task problem in
order to have a correct model formulation for this problem. Then, we show how to
strengthen the formulation, and finally we extend some valid inequalities obtained
for the one batch task problem.

We consider here a direct extension of the single task model, in which several
batch tasks i ∈ BT must be performed in parallel on nbr units, in order to maxi-
mize the weighted sum of the number of batch tasks produced over a cycle, minus
µ times the cycle duration. Each batch task i has its own processing time pi.

2.4.1 Initial and strengthened formulation

As a direct extension of the single task model (2.1)-(2.7), the initial formulation
proposed for the multiple batch task problem is the following :

nB/0C/CAP//INIT

max
∑

i∈BT

T∑

t=1

t+d−1∑

l=t

wizi,t,Ω(l) − µ

T∑

t=1

τt (2.56)

pizi,t,Ω(l) −

l∑

k=t

τΩ(k) ≤ 0

∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.57)

l∑

k=t

τΩ(k) ≤ pizi,t,Ω(l) + pmax(l − t + 1)(1 − zi,t,Ω(l))

∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.58)

∑

i∈BT

t+d−1∑

l=t

zi,t,Ω(l) ≤ 1 ∀t ∈ {1, . . . , T} (2.59)

∑

i∈BT

l∑

t=l−d+1

zi,Ω(t),l ≤ 1 ∀l ∈ {1, . . . , T} (2.60)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,l ≤ nbr unit ∀t′ ∈ {1, . . . , T} (2.61)

zi,t,Ω(l) ∈ {0, 1}∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1},

τt ≥ 0 ∀t ∈ {1, . . . , T} (2.62)

where pmax = maxi∈BT pi is the maximum processing time of a task and wi cor-
responds to the weight of batch task i in the objective function. Here, τt ≤ pmax
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is implied by (2.58) with l = t, for all t.
By considering the improvement obtained for the formulation of the one batch

task problem, and by using strengthening techniques, see Andersen and Pochet
[1], on small instances of such a problem, we have been able to strengthen the
constraints (2.57) and (2.58).

We denote by XM the set of feasible solutions to (2.57)-(2.62).

Strengthened formulation

By using the strengthening techniques presented in Section 1.3.2, we have obtained
that the constraint (2.57) can be strengthened as follows :

∑

i∈BT

l∑

k=t|t6=l

pizi,t,Ω(k) +
∑

i∈BT

pizi,Ω(l),Ω(l) −

l∑

k=t

τΩ(k) ≤ 0, (2.63)

and

∑

i∈BT

l∑

k=t|t6=l

pizi,Ω(k),Ω(l) +
∑

i∈BT

pizi,t,t −

l∑

k=t

τΩ(k) ≤ 0 (2.64)

for all t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1}.
The constraints (2.63)-(2.64) are straightforward extensions of the single task

constraints (2.8) and (2.9). Since only one batch task can start at each time
slot and only one can finish at each time slot, we can aggregate the inequalities
(2.57), and sum the processing times, over all the batch tasks. This allows one to
strengthen inequality (2.57) and to reduce the number of constraints by a factor
|BT |.

Proposition 2.4.1. The constraints (2.63)-(2.64) are valid for XM .

Proof. The proofs of validity are similar to the proofs of (2.8)-(2.9).

We extend the example proposed for the problem composed of one batch task,
in order to illustrate the inequality (2.63) for the problem composed of two (or
more) batch tasks. The inequalities (2.57) for t = 1, l = 3 are the following,

τ1 + τ2 + τ3 ≥ p1z1,1,3

τ1 + τ2 + τ3 ≥ p2z2,1,3

the strengthened single item inequalities (2.8) are

τ1 + τ2 + τ3 ≥ p1 (z1,1,1 + z1,1,2 + z1,1,3) + p1z1,3,3

τ1 + τ2 + τ3 ≥ p2 (z2,1,1 + z2,1,2 + z2,1,3) + p2z2,3,3

and the corresponding strengthened inequality (2.63) is

τ1 + τ2 + τ3 ≥ p1 (z1,1,1 + z1,1,2 + z1,1,3) + p1z1,3,3

+p2 (z2,1,1 + z2,1,2 + z2,1,3) + p2z2,3,3,
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which is stronger because the processing times are summed in the right hand-side.
Again, by using the strengthening techniques presented in Section 1.3.2, we

have obtained that the constraint (2.58) can be strengthened as follows :

l∑

k=t

τΩ(k) ≤
∑

i∈BT

l∑

k=l−d+1

pizi,Ω(k),Ω(l)

+pmax
(

(l − t + 1) −
∑

i∈BT

l∑

k=l−d+1

min{l − t + 1, l − k + 1}zi,Ω(k),Ω(l)

)

+
∑

i∈BT

(pi − pmax)

l−1∑

t′=t|l=t+d−1

zi,t,Ω(t′) (2.65)

for all t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1, and

l∑

k=t

τΩ(k) ≤
∑

i∈BT

t+d−1∑

k=t

pizi,t,Ω(k)

+pmax
(

(l − t + 1) −
∑

i∈BT

t+d−1∑

k=t

min{l − t + 1, k − t + 1}zi,t,Ω(k)

)

+
∑

i∈BT

(pi − pmax)
l∑

t′=t+1|l=t+d−1

zi,Ω(t′),Ω(l) (2.66)

for all t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1.

The constraints (2.65)-(2.66) are also extensions of the single task constraints
(2.10) and (2.11), plus a last strengthened term for the case where l = t + d − 1.
Again, by summing over all batch tasks, the inequalities (2.58) can be strength-
ened, and the number of inequalities reduced by a factor |BT |.

Proposition 2.4.2. Constraint (2.65) is valid for XM .

Proof. Let t ∈ {1, . . . , T} and l ∈ {t, . . . , t + d − 1}. First observe that,
∑

i∈BT

∑l−1
t′=t zi,t,Ω(t′) ≤ 1 by (2.59), and

∑

i∈BT

∑l
k=l−d+1 zi,Ω(k),Ω(l) ≤ 1 by

(2.60).

(i) We first consider the case where l = t + d − 1 and zi,t,Ω(t′) = 1 for some
i ∈ BT and t′ ∈ {t, . . . , l − 1}. We decompose this case into two subcases.

Case 1 : zj,Ω(t1),Ω(l) = 1 for some j ∈ BT and t1 ∈ {l − d + 1, . . . , l}.

Note that t1 6= t because at most one batch can start in t. We know that t1 > t
since l = t + d − 1 and t1 6= t. This implies min{l − t + 1, l − t1 + 1} = l − t1 + 1.
There are no condition on the relative position of time slots t′ and t1.

Since constraint (2.58) with l = t imposes that the duration of a time slot

t is bounded by pmax, i.e., τt ≤ pmax, this implies that
∑l

k=t τΩ(k) ≤ pi + pj +
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pmax max(t1 − t′−1; 0) has to be satisfied, whatever the relative position of t1 and
t′, see the two possible cases (a) and (b) in Figure 2.6. Therefore we bound this

t lt

t

1
1

...

t t

t

1
1

(a)

(b)

l

p
i

p
i

p
j

p
j

Figure 2.6: The two possible cases for t′

expression as follows :
∑l

k=t τΩ(k) ≤ pi + pj + pmax(t1 − t− 1) and this is precisely
the constraint (2.65) for that case.

Case 2 : zj,Ω(t1),Ω(l) = 0 ∀j ∈ BT and ∀t1 ∈ {l − d + 1, . . . , l}.

Constraint (2.65) becomes
∑l

k=t τΩ(k) ≤ pi + pmax(l − t) and this is valid in
this case.

(ii) Then, we consider the case where l < t + d − 1 and zi,t,Ω(t′) = 1 for some
i ∈ BT and t′ ∈ {t, . . . , l − 1}.

Again, at most one task finishing in time period l can start. Suppose that
zj,Ω(t1),Ω(l) = 1 for some j ∈ BT and t1 ∈ {l−d+1, . . . , l}. If t1 < t then Constraint

(2.65) reduces to
∑l

k=t τΩ(k) ≤ pj and this is clearly valid since in that case
∑l

k=t1
τΩ(k) = pj . If t1 ≥ t then Constraint (2.65) reduces to

∑t1−1
k=t τΩ(k) + pj ≤

pj+pmax((l−t+1)−(l−t1+1)) and this is equivalent to
∑t1−1

k=t τΩ(k) ≤ pmax(t1−t),
which is valid since τt ≤ pmax for each t ∈ {1, . . . , T}.

If zj,Ω(t1),Ω(l) = 0 ∀t1 ∈ {l − d + 1, . . . , l}, then the constraint becomes
∑l

k=t τΩ(k) ≤ pmax(l − t + 1) and this is clearly valid since we know that for every
t ∈ {1, . . . , T}, τt ≤ pmax.

(iii) Finally, we consider the case where l ≤ t + d − 1 and zi,t,Ω(t′) = 0 for all
i ∈ BT and for all t′ ∈ {t, . . . , l − 1}.

This case is equivalent to the case (ii) and the validity of the constraint in this
case is proved by using exactly the same arguments as the ones used for (ii).

Proposition 2.4.3. Constraint (2.66) is valid for XM .

Proof. The proof is similar to the one given for the validity of constraint (2.65).
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We illustrate inequalities (2.65)-(2.66) with an example. Based on the example
proposed in order to illustrate the inequality (2.3), we assume that there are two
(or more) batch tasks. The inequalities (2.58) with t = 1, l = 2, d = 3 are the
following

τ1 + τ2 ≤ p1z1,1,2 + pmax(2 − 2z1,1,2)

τ1 + τ2 ≤ p1z2,1,2 + pmax(2 − 2z2,1,2),

and the strengthened inequality (2.66) is

τ1 + τ2 ≤ p1(z1,1,1 + z1,1,2 + z1,1,3) + pmax(2 − z1,1,1 − 2z1,1,2 − 2z1,1,3)

+p2(z2,1,1 + z2,1,2 + z2,1,3) + pmax(−z2,1,1 − 2z2,1,2 − 2z2,1,3)

which is stronger than the two inequalities above because the terms added in the
right hand side are non positive.

Finally, if we assume that we have two batch tasks and that d = 3, t = 1 and
l = 3 (= t + d− 1), the strengthened inequality (2.66) for that example is written
as

τ1 + τ2 + τ3 ≤ p1(z1,1,1 + z1,1,2 + z1,1,3) + pmax(3 − z1,1,1 − 2z1,1,2 − 3z1,1,3)

+(p1 − pmax)(z1,2,3 + z1,3,3)

+p2(z2,1,1 + z2,1,2 + z2,1,3) + pmax(−z2,1,1 − 2z2,1,2 − 3z2,1,3)

+(p2 − pmax)(z2,2,3 + z2,3,3).

2.4.2 Successive Batch Tasks

We model here the case where the different batch tasks have to be performed one
after the other in a fixed sequence. Such sequence restrictions may involve only
a subset of the batch tasks, or all of them. For simplicity, we assume here that
there is a single sequence involving all batch tasks. That is, the tasks must be
performed in the sequence i = 1, 2, . . . , |BT |. Such a situation occurs typically
when the tasks are successive production stages of a single process, where the final
product is produced at the end of the last task |BT |. The sequence restriction
between batch tasks is modeled by resource constraints. We define for every batch
task i an associated resource ri, i ∈ BT , as well as a variable wri,t to indicate the
availability of resource ri at the beginning of time slot t for all i ∈ BT and all
t ∈ {1, . . . , T}. When a batch of task i starts in time slot t, one unit of available
resource ri is taken from wri,t−1. Similarly, when a batch of task i finishes at
the end of time slot l, one unit of resource ri+1 is added to wri+1,l, and becomes
available to perform the next task i + 1, from time slot l + 1 on, or later.

Example 2.4.4. We consider the following precedence between three batch tasks
i1,i2 and i3. If batch task i1 starts, a unit of the associated resource (ri1) is
consumed and at the end of the batch task i1, since batch task i2 has to be processed
after batch task i1, the unit of resource is released in the resource associated to
the batch task i2 (ri2). At the end of batch task i2, since batch task i3 has to
be processed after batch task i2, the unit of resource is released in the resource
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associated to batch task i3 (ri3). Finally, at the end of batch task i3, since batch
task i1 has to be process after batch task i3, the unit of resource is released in the
resource associated to batch task i1 (ri1). We represent the resource task network
of this example in Figure 2.7.

i

1
i

2
i

3

r
i2

r
i3

r
i1

Figure 2.7: The resource task network for modeling the fixed sequence between
batch tasks

We use the classical way of modeling resources and tasks, by using a resource
task network, see Pantelides [35]. The material balance constraints used to model
the availability of resources can be written as follows :

wr1,t = wr1,Ω(t−1) +

t−1∑

t′=t−d

z|BT |,Ω(t′),Ω(t−1) −

t+d−1∑

t′=t

z1,t,Ω(t′) (2.67)

∀t : 1 ≤ t ≤ T , and

wri,t = wri,Ω(t−1) +

t−1∑

t′=t−d

zi−1,Ω(t′),Ω(t−1) −

t+d−1∑

t′=t

zi,t,Ω(t′) (2.68)

∀i, t : 2 ≤ i ≤ |BT |, 1 ≤ t ≤ T .

We suppose that each batch task can be performed on every processing unit
and has to be processed after its preceding batch task (where the predecessor of
batch task 1 is batch task BT ).

At each time slot, there are at most nbr unit units available for performing the
batch tasks.

0 ≤ wri,t ≤ nbr unit ∀i, t : 1 ≤ i ≤ |BT |, 1 ≤ t ≤ T. (2.69)

At each time slot, a batch task is performed on a unit or the unit is in stand by.
This is imposed as follows :

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,Ω(l) +

|BT |
∑

i=1

wri,t′ = nbr unit ∀t′ ∈ {1, . . . , T} (2.70)

Finally, if each batch task appears once in the resource task network and has to
be processed after another batch task, then each batch task has to be performed
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the same number of times since the scheduling problem is cyclic. Therefore, the
maximum number of times that each batch task can be performed is limited by
the total number of time slots. We can express this as follows :

T∑

t=1

t+d−1∑

l=t

zi,t,Ω(l) ≤

⌊
T

|BT |

⌋

∀i ∈ BT (2.71)

No waiting time between batch tasks

In some cases, some batch tasks have to be performed directly after others, without
any waiting time. For instance, in a chemical reactor, regulation has to start
immediately after heating. If task i + 1 has to be performed after task i, without
any waiting, this restriction can be modeled as follows :

t+d−1∑

l=t

zi+1,t,Ω(l) =

t−1∑

l=t−d

zi,Ω(l),Ω(t−1), (2.72)

and for all t ∈ {1, . . . , T}.
This constraint is the reason why we need to know or to model exactly the

duration of a batch task as the sum of time slot durations.

2.4.3 Valid inequalities : lower bounds on the cycle duration

By aggregating over all the batch tasks, we can extend the valid inequality (2.42)
as

∑

i∈BT

pi

nbr unit

T∑

t=1

t+d−1∑

t′=t

zi,t,Ω(t′) −

T∑

t=1

τt ≤ 0. (2.73)

Again, by aggregating over all the batch tasks, we can also extend the valid
inequality (2.53). For every t ∈ {1, . . . , T} and l ∈ {t + 2, . . . , t + T + d − 3}, we
define the vector coeff whose components are defined by

coeffk = min(k − t + 1; l − k + 1) ∀k ∈ {t, . . . , l}

= 0 otherwise

and the extended constraint is

l∑

k=t

min(coeffk, nbr unit, d)τk ≥
∑

i∈BT

pi





l∑

t1=t

min(l,t1+d−1)
∑

t2=t1

zi,Ω(t1),Ω(t2)





(2.74)

Finally, in the same way, we can extend the generalization of the inequal-
ity (2.53). For all t ∈ {1, . . . , T}, l ∈ {t + 2, . . . , t + T + d − 3}, and c1 ∈
{1, . . . , min(d, nbr unit)}, we have that

∑

i∈BT

l∑

t1=t

min(l,t1+d−1)
∑

t2=t1|t2−t1+1≤c1

pi zi,Ω(t1),Ω(t2) ≤

l∑

k=t

min(coeffk, c1)τk. (2.75)
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Proposition 2.4.5. Constraints (2.73)-(2.75) are valid for XM .

Proof. The proof of validity for these three extended constraints is a trivial exten-
sion of the proof of validity given for the one batch task problem.

2.5 Mixed plant : batch and continuous tasks

with resource restrictions

We introduce now the continuous tasks in the model formulation, as well as the
general resource restrictions. We study the special case composed of multiple batch
tasks with fixed sequences as defined in Section 2.4.2, multiple continuous tasks
and the sharing of some resources. The batch and the continuous tasks consume
and produce some resources r such as materials (stored in tanks) (r ∈ Rm), utilities
(r ∈ Ru), and processing equipment (r ∈ Re) involved in the process.

We consider here an extension of the multiple task model, in which several
continuous tasks j ∈ CT must be performed and several resource restrictions
must be satisfied, and the objective is to maximize the output products of the
plant, over a cycle, minus µ times the cycle duration. Each continuous task j has
its own lower and upper processing rate ρ

j
and ρj , respectively.

2.5.1 Model formulation

In order to model such a case, we introduce two new indices

j: is the index of a continuous task, j ∈ CT

r: is the index of a resource, r ∈ Rm ∪ Ru ∪ Re

and three new types of decision variables :

qj,t: is the quantity processed by the continuous task j during time slot t [ru],
qj,t ≥ 0.

wr,t: is the rate [ru/h] or the quantity [ru] of resource r available at the beginning
of time slot t, wr,t ≥ 0.

wfr,t: is the rate [ru/h] or the quantity [ru] of resource r available at the end of
time slot t, wfr,t ≥ 0.

The continuous tasks

When the continuous task is processing, this task cannot be stopped.

In a cyclic scheduling optimization problem, each continuous task has thus to
be active all the time.

The processing constraints for continuous tasks can be written as follows :

qj,t ≤ ρjτt ∀j, t : j ∈ CT, 1 ≤ t ≤ T (2.76)

qj,t ≥ ρ
j
τt ∀j, t : j ∈ CT, 1 ≤ t ≤ T (2.77)
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where ρ
j
[ru/h] and ρj [ru/h] are the lower and the upper bounds for the rate of

material that is processed by the continuous task j, respectively.

The resource constraints

The general material balance constraints (constraints (2.67)-(2.68) are a special
case of (2.78) used to model the sequence restrictions) can be written as follows:

wr,t = wfr,Ω(t−1) +
∑

i∈BT

µ̄i,r

t−1∑

t′=t−d

zi,Ω(t′),Ω(t−1) −
∑

i∈BT

µi,r

t+d−1∑

t′=t

zi,t,Ω(t′) (2.78)

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T and where

µ̄i,r : is the rate [ru/h] of renewable resource r ∈ Ru released at the end of task i,
or
the quantity [ru] of non renewable resource r ∈ Rm produced at the end of
task i, or
the number of units [ru] of non renewable resource r ∈ Re released at the
end of task i.

µi,r : is the rate [ru/h] of renewable resource r ∈ Ru consumed at the beginning
of task i, or
the quantity [ru] of non renewable resource r ∈ Rm consumed at the begin-
ning of task i, or
the number of units [ru] of non renewable resource r ∈ Re allocated to begin
task i.

Continuous tasks are in process during time slots and therefore we have to
control the levels of all the resources r ∈ Rm related to the continuous tasks at
the end of every time slot τt just before receiving possible resource releases at the
beginning of the next time slot. The resource level at the end of every time slot
can be expressed as follows :

wfr,t = wr,t +
∑

j∈CT

λj,rqj,t ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (2.79)

where

λj,r = 1 if the continuous task j produces resource r ∈ Rm

= −1 if the continuous task j consumes resource r ∈ Rm

= 0 otherwise.

The levels of resources r ∈ Re∪Ru are not changed during time slots, therefore

wfr,t = wr,t∀t, ∀r ∈ Re ∪ Ru (2.80)
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We have to verify at the beginning and at the end of each time slot that the
resource capacity limitations are satisfied.

Rminr ≤ wr,t ≤ Rmaxr ∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.81)

Rminr ≤ wfr,t ≤ Rmaxr ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (2.82)

where Rminr, Rmaxr represent the lower and upper limits on the level of resource
r, respectively, in [ru/h] for r ∈ Ru and in [ru] for r ∈ Rm ∪ Re.

However if there exists a time event t at which there exists both a release of
resource r at the end of time slot t− 1 and a consumption of r at the start of time
slot t, then we need an additional set of constraints in order to guarantee that the
maximum resource capacity usage is satisfied. This is why we have to also impose
the following condition :

wfr,t +
∑

i∈BT

µ̄i,r

t∑

t′=t−d+1

zi,Ω(t′),t ≤ Rmaxr (2.83)

for all r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T .

Finally, if for a certain resource r̃ ∈ R, µ̄i,r̃ = µi,r̃, for all i ∈ BT , then we
do not use the constraints (2.78)-(2.83) for that resource r̃. We only impose the
following set of constraints :

Rminr̃ ≤
∑

i∈BT

T∑

t1=1

t1+d−1∑

t2=t1|t1≤t≤t2
or t1≤t+T≤t2

µ̄i,r̃zi,Ω(t1),Ω(t2) ≤ Rmaxr̃ (2.84)

for all t ∈ {1, . . . , T}. This occurs typically for the modeling of the availability of
the utilities (i.e r̃ ∈ Ru).

The objective function

We consider the maximization of the following objective function :

∑

j∈OUT

T∑

t=1

qj,t − µ

T2∑

t=1

τt (2.85)

where µ is a constant processing cost per unit of time and OUT ⊆ CT is the set
of output products of the plant. It is here assumed that the output products are
produced by some of the continuous tasks. This restriction can be relaxed easily.

Let XG denote the set of feasible solutions to (2.59)-(2.62), (2.63), (2.65),
(2.71)-(2.73), (2.76)-(2.84).

2.5.2 Strengthened and valid inequalities

By using the strengthening techniques presented in Section 1.3.2, we have obtained
that if the continuous tasks j ∈ CT consume or produce a product stored into a
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resource r ∈ Rm, i.e. if λj,r 6= 0 in (2.79), then the constraint (2.76) can be
strengthened to

qj,t ≤ ρjτt −
∑

i∈BT

max(piρj − (Rmaxrj
− Rminrj

); 0)zi,t,t ∀t ∈ {1, . . . , T}

(2.86)
where rj is the resource that stores the product produced or consumed by the
continuous task j, and where Rminrj

and Rmaxrj
represent the lower and upper

limits on the level of such a resource rj , respectively.

Proposition 2.5.1. Constraint (2.86) is valid for XG.

Proof. The continuous task j has a maximum speed (ρj [ru/h]) and the resource
rj has a limited capacity ([Rminrj

; Rmaxrj
][ru]). If a batch task i starts at time

slot t and finishes at time slot t, the duration τt of the time slot t is equal to the
processing time of the batch task pi. In that case, if piρj > Rmaxrj

− Rminrj

then the continuous task cannot be performed at maximum speed and qj,t ≤
Rmaxrj

− Rminrj
. Constraint (2.86) imposes this additional restriction.

We illustrate that this constraint is useful on a small example.

Example 2.5.2. We consider the cyclic scheduling problem composed of one batch
task with a limited number of units for performing the batch task, one continuous
task and a storage tank. This test case is represented in Figure 1.1.

The MIP formulation used is composed of (2.4)-(2.11), (2.42), (2.53) and
(2.76)-(2.82). The objective function is given by (2.85). The characteristics of
the instance are T = 4, d = 4, nbr unit = 3, µ = 3, p = 3, ρ = 1, ρ = 6 and
the minimum and maximum storage tank capacity are 0 (Rmin) and 15 (Rmax),
respectively. The optimal solution x⋆ = (τ⋆, z⋆, q⋆) of the linear relaxation of this
problem at time slot t = 2 is : τ∗

2 = 2.5, z∗2,2 = 0.361 and q∗2 = 15 (where we have
dropped the indices for batch and continuous tasks). The valid inequality (2.86)
for t = 2 is :

q2 ≤ 6τ2 − 3z2,2

and this inequality clearly cuts off the optimal solution of the linear relaxation since
the left-hand-side equal 15 and the right-hand-side 13.917.

In order to limit further the amount processed by the continuous task at each
time slot, the previous valid inequalities can be extended as follows :

l∑

t′=t

qj,Ω(t′) ≤
∑

i∈BT

t+d−1∑

l′=t

min
(

piρj + Rmaxrj
− Rminrj

+ BS

max(l − l′ − 1, 0); ρj(pi + pmax max(l − l′, 0)); Rmaxrj
− Rminrj

+ BS(l − t)
)

zi,t,Ω(l′) + min
(

pmax(l − t + 1)ρj ; Rmaxrj
− Rminrj

+ BS(l − t)
)

(

1 −
∑

i∈BT

t+d−1∑

l′=t

zi,t,Ω(l′)

)

(2.87)
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for all t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} where BS is the maximum batch size
that can be discharged (output of a batch task) at each time slot in the storage
tank corresponding to resource rj .

A similar extension of this can be written as :

l∑

t′=t

qj,Ω(t′) ≤
∑

i∈BT

l∑

t′=l−d+1

min
(

piρj + Rmaxrj
− Rminrj

+ BS

max(t′ − t − 1, 0); ρj(pi + pmax max(t′ − t, 0)); Rmaxrj
− Rminrj

+ BS(l − t)
)

zi,Ω(t′),Ω(l) + min
(

pmax(l − t + 1)ρj ; Rmaxrj
− Rminrj

+ BS(l − t)
)

(

1 −
∑

i∈BT

l∑

l′=l−d+1

zi,Ω(t′),Ω(l)

)

(2.88)

for all t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1}.

Proposition 2.5.3. Constraint (2.87) is valid for XG.

Proof. (sketch)

a. If zi,t,Ω(l′) = 1 for some l′ ≤ l − 1, then
∑l′

t′=t τΩ(t′) = pi. Three possible
cases have to be satisfied.

The
∑l

t′=t qj,Ω(t′) ≤ piρj + Rmaxrj
− Rminrj

+ BS(l − l′ − 1) since the
storage tank is at the value Rmaxrj

at the beginning of time l′ + 1, we can
have at most (l− l′− 1) discharge before the end of time slot l and therefore
the continuous task can process at most such amount of material.

The
∑l

t′=t qj,Ω(t′) ≤ ρj(pi +pmax(l− l′)) since
∑l

t′=l′+1 τt′ ≤ pmax(l− l′) and
the maximum rate for performing the continuous task j is ρj .

Finally, the
∑l

t′=t qj,Ω(t′) ≤ Rmaxrj
− Rminrj

+ BS(l − t) since at the
beginning of time slot t, the storage tank is at most at level Rmaxrj

and
between time slot t and the end of time slot l, at most l − t discharge can
happen and this corresponds to the maximum amount of material that the
continuous task can process.

b. If zi,t,Ω(l′) = 1 for some l′ ≥ l, then
∑l

t′=t τΩ(t′) ≤ pi. Clearly
∑l

t′=t qj,Ω(t′) ≤

ρjpi since
∑l

t′=t τt′ ≤ pi.

We have also that
∑l

t′=t qj,Ω(t′) ≤ Rmaxrj
− Rminrj

+ BS(l − t) since at
the beginning of time slot t, the storage tank is at most at level Rmaxrj

and
between time slot t and time slot l, at most l − t discharge can happen and
this corresponds to the maximum amount of material that the continuous
task can process.

c. If zi,t,Ω(l′) = 0 for all l′ ≥ t, then clearly
∑l

t′=t qj,Ω(t′) ≤ pmax(l − t + 1)ρj

since the maximum time slot duration is pmax.

And we have that
∑l

t′=t qj,Ω(t′) ≤ Rmaxrj
− Rminrj

+ BS(l − t) since at
the beginning of time slot t, the storage tank is at most at level Rmaxrj

and
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between time slot t and time slot l, at most l − t discharge can happen and
this corresponds to the maximum amount of material that the continuous
task can process.

Proposition 2.5.4. Constraint (2.88) is valid for XG.

Proof. By using the same technique as for the proof of validity of (2.87), we can
prove that constraint (2.88) is valid.

The two previous valid inequalities can clearly be strengthened for specific test
cases.

We illustrate on a small example that these constraints are useful.

Example 2.5.5. Based on the same MIP formulation and same instance as for
Example 2.5.2, where we only have added constraint (2.86), we obtain the following
optimal solution of the linear relaxation : for the z variables starting at time slot 4
: z∗4,1 = 0.44, z∗4,3 = 0.56 and z∗4,4 = z∗4,2 = 0 and for the quantity processed by the
continuous task at each time slot, we obtain : q∗1 = 8, q∗2 = 6, q∗3 = 10 and q∗4 = 8.
The constraint (2.87) for t = 4 and l = 7 is the following :

4∑

t′=1

qt′ ≤ 39z4,4 + 39z4,1 + 33z4,2 + 18z4,3 + 39(1 −

4∑

t′=1

z4,t′)

and this inequality clearly cuts off the optimal solution of the linear relaxation since
the left-hand-side equal 32 and the right-hand-side 27.24.

Unfortunately, for more general cases, these two valid inequalities (2.87)-(2.88)
have been tested and do not improve much the tightness of the model formulation.

2.6 Conclusion

In this Chapter, we have studied a continuous time formulation in order to model
the cyclic scheduling of a mixed plant composed of batch and continuous processes.
By improving the initial continuous time formulation of various special cases of the
general problem, we have obtained a tighter model formulation for these special
cases. In the next Chapter, we test these three improved model formulations in
order to illustrate the efficiency of such model formulations.



Chapter 3

Computational Experiments

In this Chapter, we report on tests on the efficiency of exact and heuristic methods
in order to solve special cases of the general cyclic scheduling problem that are de-
scribed in Chapter 2. By solving various instances of these special cases, we show
that the corresponding improved formulations given in Chapter 2 can solve these
problem instances faster than the original continuous time formulations derived
from Schilling and Pantelides in [44]. We solve the improved formulations of such
problems by using a standard Branch and Bound system. In order to improve the
Branch and Bound performance for the multiple batch tasks case studied, we set
priorities to branch first on the zi,t,Ω(l) binary variables. The reason is that the
other integer variables (units of resources available corresponding to machines and
equipment) depend only on the binary variables zi,t,Ω(l), and automatically take
integer values when the zi,t,Ω(l) variables take integral values. For the special cases,
we impose to branch up first because this influences more the objective function
value of the corresponding subproblem.

All the results in this Chapter have been obtained by using the Xpress MP
software on a pentium 4, running at 3 GHz.

We look at basic, multiple batch task and industrial cases and we illustrate
the resolution of the corresponding problem instances when using the improved
formulation.

In order to summarize the various cases tested in this Chapter, we present in
Figure 3.1 a map of the test cases.

The basic case is addressed in Section 3.1, the multiple batch task case in
Section 3.2 and the industrial case in Section 3.3.

For example, Figure 3.1 indicates for the multiple batch task case in Section 3.2
that in Subsection 3.2.2, the test case contains multiple batch tasks, a restricted
number of reactors and some resource capacity restrictions. Moreover, this figure
indicates that in Subsection 3.2.3, the test case contains the one described in sub-
section 3.2.2 and additionally a continuous task.

In this Chapter, we will compare the efficiency of various strengthened formu-

67
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Figure 3.1: Map of the Test Cases

lations. Therefore, we want to further subdivide the field F defined in Section 2.2
for the classification of the formulation of scheduling problems. The new definition
for F is the following :

F=[INIT,STR1,STR2,STRM]1.
INIT : we use the initial formulation in order to model the problem
STR1 : we use the basic strengthened formulation in order to model the prob-

lem
STR2 : we use the complete strengthened formulation in order to model the

problem
STRM : we use the complete strengthened formulation in order to model the

problem but some of the constraints are defined as model cuts. These constraints
are removed from the complete strengthened formulation, are added to the cutpool,
and generated as cuts when they are violated.

3.1 Basic case

The basic test case is composed of one continuous task and of a finite number of
units (reactors) denoted by nbr unit on which one batch task is performed. The
reactors are identical and produce the batches in parallel. The batches produced
are stored in a limited capacity tank before being processed by the continuous
task. The test case is represented in Figure 1.1.

The size of a batch is fixed and is equal to 8 ru and the processing time of the
batch task is 3h. The lower and upper limits on the level of product in the storage
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tank are 0 ru and 15 ru, respectively. The lower and upper bounds for the rate of
material that is processed by the continuous task are ρ = 1[ru/h] and ρ = 6[ru/h],
respectively.

In this section, we consider first a special case of this problem composed of
only one batch task. Then, we consider the basic case defined above.

3.1.1 One batch task

This case corresponds to a special case of the basic case presented above. We do
not consider the continuous task and the storage tank after the batch task. For
this special case that corresponds to the model presented in Section 2.3, we use
the data of the basic case given above.

We consider first the performance of the initial (F1) and of three strengthened
formulations (F2)-(F3)-(F4).

For the uncapacitated case, the initial formulation (F1) is based on the con-
straints (2.2)-(2.5) and (2.7). The basic strengthened formulation (F2) is based
on the constraints (2.4)-(2.5), (2.7), (2.8) and (2.10). The complete strengthened
formulation (F3) is composed of (F2) and in addition the constraints (2.9), (2.11)
and (2.53). The last strengthened formulation (F4) considers the additional con-
straints (2.9), (2.11) and (2.53) as model cuts, i.e these constraints are removed
from the initial formulation, are added to the cut pool, and generated as cuts
when they are violated. The number of units (nbr unit) in the constraint (2.53)
is unlimited (infinite).

For the capacitated case, the formulations (F1)-(F4) are composed of the con-
straints of the uncapacitated case and the constraint (2.6). The valid inequality
(2.42) is added to the formulations (F2)-(F4).

The objective function for both cases is the following (µ = 1) :

max

T∑

t=1

t+d−1∑

l=t

zt,Ω(l) −

T∑

t=1

τt

and corresponds to a measure of the productivity, corresponding to total cycle
production minus the cycle duration.

For clarity we recall these formulations below.
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F1 uncapacitated (without constraint (2.6)) / capacitated (with constraint
(2.6)) :

1B/0C/[CAP,UNCAP]1//INIT

max
T∑

t=1

t+d−1∑

l=t

zt,Ω(l) −
T∑

t=1

τt

pzt,Ω(l) ≤
l∑

k=t

τΩ(k) ∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.2)

l∑

k=t

τΩ(k) ≤ pzt,Ω(l) + p(l − t + 1)(1 − zt,Ω(l))

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.3)

t+d−1∑

l=t

zt,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (2.4)

l∑

t=l−d+1

zΩ(t),l ≤ 1 ∀l : 1 ≤ l ≤ T (2.5)

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zt,Ω(l) ≤ nbr unit ∀t′ : 1 ≤ t′ ≤ T (2.6)

zt,Ω(l) ∈ {0, 1} ∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1,

τt ≥ 0 ∀t : 1 ≤ t ≤ T. (2.7)

F2 uncapacitated (without constraints (2.6) and (2.42)) / capacitated (with
constraints (2.6) and (2.42)) :

1B/0C/[CAP,UNCAP]1//STR1

max

T∑

t=1

t+d−1∑

l=t

zt,Ω(l) −

T∑

t=1

τt

p

l∑

k=t|t6=l

zt,Ω(k) + pzΩ(l),Ω(l) ≤

l∑

k=t

τΩ(k)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.8)

l∑

k=t

τΩ(k) + p

l−1∑

k=l−d+1

min{l − t, l − k}zΩ(k),Ω(l) ≤ p(l − t + 1)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.10)
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1B/0C/[CAP,UNCAP]1//STR1 (Contd)

t+d−1∑

l=t

zt,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (2.4)

l∑

t=l−d+1

zΩ(t),l ≤ 1 ∀l : 1 ≤ l ≤ T (2.5)

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zt,Ω(l) ≤ nbr unit ∀t′ : 1 ≤ t′ ≤ T (2.6)

p

nbr unit

T∑

t=1

t+d−1∑

t′=t

zt,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.42)

zt,Ω(l) ∈ {0, 1} ∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1,

τt ≥ 0 ∀t : 1 ≤ t ≤ T (2.7)

F3/F4 uncapacitated (without constraints (2.6) and (2.42), with nbr unit in
constraint (2.53) infinite) / capacitated (with constraints (2.6) and (2.42)) :

1B/0C/[CAP,UNCAP]1//[STR2,STRM]1

max

T∑

t=1

t+d−1∑

l=t

zt,Ω(l) −

T∑

t=1

τt

p

l∑

k=t|t6=l

zt,Ω(k) + pzΩ(l),Ω(l) ≤

l∑

k=t

τΩ(k)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.8)

p

l∑

k=t|t6=l

zΩ(k),Ω(l) + pzt,t ≤

l∑

k=t

τΩ(k)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.9)

l∑

k=t

τΩ(k) + p

l−1∑

k=l−d+1

min{l − t, l − k}zΩ(k),Ω(l) ≤ p(l − t + 1)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.10)

l∑

k=t

τΩ(k) + p

t+d−1∑

k=t+1

min{l − t, k − t}zt,Ω(k) ≤ p(l − t + 1)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.11)
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1B/0C/[CAP,UNCAP]1//[STR2,STRM]1 (Contd)

l∑

k=t

min(coeffk, nbr unit, d)τΩ(k) ≥ p





l∑

t1=t

min(l,t1+d−1)
∑

t2=t1

zΩ(t1),Ω(t2)





∀t, l : 1 ≤ t ≤ T, t + 2 ≤ l ≤ t + T + d − 3 (2.53)

t+d−1∑

l=t

zt,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (2.4)

l∑

t=l−d+1

zΩ(t),l ≤ 1 ∀l : 1 ≤ l ≤ T (2.5)

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zt,Ω(l) ≤ nbr unit ∀t′ : 1 ≤ t′ ≤ T (2.6)

p

nbr unit

T∑

t=1

t+d−1∑

t′=t

zt,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.42)

zt,Ω(l) ∈ {0, 1} ∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1,

τt ≥ 0 ∀t : 1 ≤ t ≤ T. (2.7)

Uncapacitated Case

The characteristics of the small (resp. large) instance, i.e. the instance with
the smallest (resp. the highest) amount of binary variables, in Table 3.1 are the
following : T = 30 (resp. 20), d = 5 (resp. 10). There are 150 (resp. 200) binary
variables and 30 (resp. 20) continuous variables.

In Tables 3.1-3.3, “Nodes” represents the total number of Branch-and-Bound
nodes needed in order to solve the special case to optimality, “Time” represents
the corresponding total CPU time, “Optimal number of batches” represents the
optimal number of times that the batch task is performed during the cycle and
“Optimal cycle duration” represents the optimal length of the scheduling cycle.

In Table 3.1, for the small and the large instances, the formulation (F1) cannot
solve the problem to optimality within a CPU time of 1000 sec. For such cases,
a star is added to the CPU solution time of the corresponding instance in Table
3.1 and we calculate the remaining duality gap after 1000 sec. for that case as
Best bound - Best solution

Best bound .
For both instances in Table 3.1, the strengthened formulations (F2)-(F4) ob-

tain more quickly the optimal solution in fewer nodes than the initial formulation
(F1). The strengthened formulation (F4) solves both instances quicker than the
other three formulations. Not surprisingly, the strengthened formulations (F3)-
(F4) taking into account all valid inequalities need fewer nodes than the other two
formulations even though formulation (F2) has no duality gap remaining after the
root branch-and-bound node.
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Small Instance (T = 30, d = 5)
F1 F2 F3 F4

Constraints 332 332 1502 1502
Nodes 149800 190 1 1
Time 1000 s* 2.7 s 2 s 1.5 s

Remaining Duality gap 28.18 % 0 % 0 % 0 %
Optimal number of batches / 30 30 30
Optimal cycle duration (h) / 18 18 18

Large Instance (T = 20, d = 10)
F1 F2 F3 F4

Constraints 422 422 1302 1302
Nodes 198600 1817 1 1
Time 1000 s* 17.1 s 2 s 1.5 s

Remaining Duality gap 18.45 % 0 % 0 % 0 %
Optimal number of batches / 20 20 20
Optimal cycle duration (h) / 6 6 6

Table 3.1: Comparison between the initial (F1) and the strengthened formulations
(F2)-(F4); One batch task, Uncapacitated.

For each instance, the optimal number of batches and the optimal cycle dura-
tion are the same for the formulations (F2)-(F4). Note that the objective function
is the maximization of a measure of the productivity.

Capacitated Case

We suppose now that the number of units is limited to 4 (nbr unit = 4).

The characteristics of the small (resp. large) instance in Table 3.2 are the
following : T = 30 (resp. 20), d = 5 (resp. 10). There are 150 (resp. 200) binary
variables and 30 (resp. 20) continuous variables.

The formulation (F1*) is nothing else than the initial formulation (F1) where
we have added the valid inequality (2.42).

For both instances in Table 3.2, the strengthened formulations (F2)-(F4) ob-
tain the optimal solution quicker in fewer nodes than the initial formulations (F1)-
(F1*). The strengthened formulation (F4) solves the small instance quicker than
the other formulations. The strengthened formulations (F3)-(F4) taking into ac-
count all valid inequalities need fewer nodes than the other three formulations. We
can observe that, when we add (2.42) in the initial formulation (F1), the resolution
of the problem is much faster than with the initial formulation (F1).

For each instance, the optimal number of batches and the optimal cycle dura-
tion are the same for the formulations (F1*)-(F4). Again, the objective function
is the maximization of a measure of the productivity.

Note that the difference between the optimal solutions obtained for the un-
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Small Instance (T = 30, d = 5)
nbr unit=4 F1 F1* F2 F3 F4

Constraints 362 363 363 1533 1533
Nodes 196200 6627 1123 29 1
Time 1000 s* 36.4 s 8.1 s 22.8 s 7 s

Remaining Duality gap 53.34 % 0 % 0 % 0 % 0 %
Optimal number of batches / 30 30 30 30
Optimal cycle duration (h) / 22.5 22.5 22.5 22.5

Large Instance (T = 20, d = 10)
nbr unit=4 F1 F1* F2 F3 F4

Constraints 442 443 443 1323 1323
Nodes 232900 663 1 1 1
Time 1000 s* 2.6 s 0 s 0 s 0 s

Remaining Duality gap 55.42 % 0 % 0 % 0 % 0 %
Optimal number of batches / 20 20 20 20
Optimal cycle duration (h) / 15 15 15 15

Table 3.2: Comparison between the initial (F1)-(F1*) and the strengthened for-
mulations (F2)-(F4); One batch task, Capacitated.

capacited case and the ones obtained for the capacitated case, is the duration of
the cycle. We can observe for the two instances tested that for the same optimal
number of batch task performed, the length of the scheduling cycle is larger for
the capacitated case than for the uncapacitated one.

3.1.2 One batch and one continuous task

We consider the basic case where there is only one batch and one continuous
tasks, and one storage tank between the batch and the continuous tasks with
limited capacity. The objective is to maximize a measure of the productivity of
this process.

We consider first the performance of the initial (F1*) and of three strengthened
formulations (F5)-(F6)-(F7). The initial formulation (F1*) is based on the con-
straints (2.2)-(2.7), (2.42), the constraints for the continuous task (2.76)-(2.77) and
the resource restrictions given by (2.78)-(2.79) and (2.81)-(2.82). The completed
strengthened formulation (F5) is based on the same set of constraints as (F1*)
except that (2.2) is replaced by (2.8)-(2.9), (2.3) is replaced by (2.10)-(2.11) and
(2.76) is replaced by (2.86). Moreover, we have added the valid inequalities (2.53).
The strengthened formulation (F6) is composed of (F5) and of the constraints
(2.87)-(2.88). The last strengthened formulation (F7) considers the additional
constraints (2.87)-(2.88) as model cuts, i.e these constraints are removed from the
initial formulation, are added to the cut pool, and generated as cuts when they
are violated.
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The objective function is the following :

max

T∑

t=1

qt − µ

T∑

t=1

τt.

where qt is the quantity process by the continuous task at time slot t.

For clarity we recall these formulations below.
F1* :

1B/1C/CAP/Res//INIT

max

T∑

t=1

qt − µ

T∑

t=1

τt

pzt,Ω(l) ≤

l∑

k=t

τΩ(k) ∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.2)

l∑

k=t

τΩ(k) ≤ pzt,Ω(l) + p(l − t + 1)(1 − zt,Ω(l))

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.3)

t+d−1∑

l=t

zt,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (2.4)

l∑

t=l−d+1

zΩ(t),l ≤ 1 ∀l : 1 ≤ l ≤ T (2.5)

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zt,Ω(l) ≤ nbr unit ∀t′ : 1 ≤ t′ ≤ T (2.6)

p

nbr unit

T∑

t=1

t+d−1∑

t′=t

zt,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.42)

qt ≤ ρτt ∀t : 1 ≤ t ≤ T (2.76)

qt ≥ ρτt ∀t : 1 ≤ t ≤ T (2.77)

wt = wfΩ(t−1) + µ̄

t−1∑

t′=t−d

zΩ(t′),Ω(t−1) − µ

t+d−1∑

t′=t

zt,Ω(t′)

∀t : 1 ≤ t ≤ T (2.78)

wft = wt + λqt ∀t : 1 ≤ t ≤ T (2.79)

Rmin ≤ wt ≤ Rmax ∀t : 1 ≤ t ≤ T (2.81)

Rmin ≤ wft ≤ Rmax ∀t : 1 ≤ t ≤ T (2.82)

zt,Ω(l) ∈ {0, 1} ∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1,

τt ≥ 0 ∀t : 1 ≤ t ≤ T. (2.7)
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F5 :

1B/1C/CAP/Res//STR1

max

T∑

t=1

qt − µ

T∑

t=1

τt

p

l∑

k=t|t6=l

zt,Ω(k) + pzΩ(l),Ω(l) ≤

l∑

k=t

τΩ(k)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.8)

p
l∑

k=t|t6=l

zΩ(k),Ω(l) + pzt,t ≤
l∑

k=t

τΩ(k)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.9)

l∑

k=t

τΩ(k) + p

l−1∑

k=l−d+1

min{l − t, l − k}zΩ(k),Ω(l) ≤ p(l − t + 1)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.10)

l∑

k=t

τΩ(k) + p
t+d−1∑

k=t+1

min{l − t, k − t}zt,Ω(k) ≤ p(l − t + 1)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.11)

l∑

k=t

min(coeffk, nbr unit, d)τΩ(k) ≥ p





l∑

t1=t

min(l,t1+d−1)
∑

t2=t1

zΩ(t1),Ω(t2)





∀t, l : 1 ≤ t ≤ T, t + 2 ≤ l ≤ t + T + d − 3 (2.53)

t+d−1∑

l=t

zt,Ω(l) ≤ 1 ∀t : 1 ≤ t ≤ T (2.4)

l∑

t=l−d+1

zΩ(t),l ≤ 1 ∀l : 1 ≤ l ≤ T (2.5)

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zt,Ω(l) ≤ nbr unit ∀t′ : 1 ≤ t′ ≤ T (2.6)

p

nbr unit

T∑

t=1

t+d−1∑

t′=t

zt,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.42)

qt ≤ ρτt − max(pρ − (Rmax − Rmin); 0)zt,t

∀t : 1 ≤ t ≤ T (2.86)

qt ≥ ρτt ∀t : 1 ≤ t ≤ T (2.77)
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1B/1C/CAP/Res//STR1 (Contd)

wt = wfΩ(t−1) + µ̄
t−1∑

t′=t−d

zΩ(t′),Ω(t−1) − µ
t+d−1∑

t′=t

zt,Ω(t′)

∀t : 1 ≤ t ≤ T (2.78)

wft = wt + λqt ∀t : 1 ≤ t ≤ T (2.79)

Rmin ≤ wt ≤ Rmax ∀t : 1 ≤ t ≤ T (2.81)

Rmin ≤ wft ≤ Rmax ∀t : 1 ≤ t ≤ T (2.82)

zt,Ω(l) ∈ {0, 1} ∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1,

τt ≥ 0 ∀t : 1 ≤ t ≤ T. (2.7)

F6/F7 : The formulations F6 and F7 are composed of F5 and of the following
two constraints :

1B/1C/CAP/Res//[STR2,STRM]1

1B/1C/CAP/Res//STR1

l∑

t′=t

qΩ(t′) ≤

t+d−1∑

l′=t

min
(

pρ + Rmax − Rmin + BS max(l − l′ − 1, 0);

ρ(p + p max(l − l′, 0)); Rmax − Rmin + BS(l − t)
)

zt,Ω(l′)

+ min
(

p(l − t + 1)ρ; Rmax − Rmin + BS(l − t)
)

(

1 −
t+d−1∑

l′=t

zt,Ω(l′)

)

∀t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.87)

l∑

t′=t

qΩ(t′) ≤

l∑

t′=l−d+1

min
(

pρ + Rmax − Rmin + BS max(t′ − t − 1, 0);

ρ(p + p max(t′ − t, 0)); Rmax − Rmin + BS(l − t)
)

zΩ(t′),Ω(l)

+ min
(

p(l − t + 1)ρ; Rmax − Rmin + BS(l − t)
)

(

1 −

l∑

l′=l−d+1

zΩ(t′),Ω(l)

)

∀t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.88)

The characteristics of the small (resp. large) instance in Table 3.3 are the
following : T = 10 (resp. 15), d = 8, nbr unit = 4 and µ = 3. There are 80 (resp.
120) binary variables and 41 (resp. 61) continuous variables.

In Table 3.3, the formulations (F6)-(F7) need fewer nodes to solve the two
problem instances. For the small instance, the initial formulation (F1*) solves the
problem quicker. However, for the large instance, the formulation (F6) provides
the optimal solution quicker. By using all valid inequalities found, we reduce the
CPU time and the number of nodes to solve the large problem instance.
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Small Instance (T = 10, d = 8)
F1* F5 F6 F7

Constraints 223 503 663 663
Nodes 1061 2317 267 293
Time 3 s 11 s 4 s 4 s

Large Instance (T = 15, d = 8)
F1* F5 F6 F7

Constraints 333 828 1068 1068
Nodes 610379 93619 2709 3359
Time 1214 s 744 s 57 s 59 s

Table 3.3: Comparison between the initial (F1*) and the strengthened formula-
tions (F5)-(F7); One batch and one continuous task

3.2 Multiple Batch Task Case

In this section, we address a multiple batch task problem where there are multiple
batch tasks, one continuous task and some capacity restrictions. We describe first
the multiple batch task case in Section 3.2.1. Then, in Section 3.2.2, we solve two
instances of the special case of the multiple batch task problem composed of multi-
ple batch tasks and of some resource restrictions (i.e. no continuous task). Finally,
in Section 3.2.3, in addition to the multiple batch tasks, we consider a continuous
task and a storage tank between the batch and the continuous processes. We solve
various instances of this problem by using exact and heuristic methods.

3.2.1 Description

We describe first the multiple batch task case. Then we show that in order to
optimize the productivity of such a problem, i.e. a nonlinear objective function,
it is possible to solve a sequence of problems with a linear objective function that
gives at the end the solution of the problem with the nonlinear objective function.
Finally, we illustrate a typical optimal solution for the multiple batch task case.

Characteristics of the multiple batch task case

The multiple batch task test case is composed of one continuous task and of a finite
number of units (reactors) denoted by nbr unit on which a set of batch tasks are
performed. The reactors are identical and produce the batches in parallel. The
batches produced are stored in a limited capacity tank before being processed by
the continuous task. The test case is represented in Figure 1.1. The size of a batch
is fixed and is equal to 8 ru.

The polymerization process (I) that takes place in the reactors is subdivided in
five consecutive batch tasks (there are thus precedence constraints between the 5
batch tasks) : the filling of the reactor (I,1), the heating of the raw material (I,2,h),
the exothermic reaction (I,2,r), the cooling (I,2,c) and the discharge (I,3). In our
model, the exothermic reaction (I,2,r) is further subdivided in 4 batch subtasks
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because the consumption of resources varies too much during the temperature reg-
ulation task. We assume that the filling of the reactor takes 0.166 h, the heating
of the raw material takes 0.4522 h, the exothermic reaction is subdivided in 4 sub-
tasks taking 0.5 h, 0.5 h, 1 h and 1.44125 h respectively, the cooling takes 0.919 h
and the discharge 0.166 h.

The resources are the intermediate storage tank (IS), the hot water (H), the
cold water (C) and a stock attached to each batch task (a1-a5) in order to model
the number of reactors available to perform the corresponding batch task, i.e
nbr unit of resources a1 to a5 are available in total.
The rate of hot water needed to perform the heating task is 3 [ru/h]. The rates
of cold water needed to perform the four subtasks of the exothermic reaction are
3.7 [ru/h], 1.64 [ru/h], 0.92 [ru/h] and 0.41 [ru/h] respectively. The rate of cold
water needed for the cooling task is 2 [ru/h].

The lower and upper limits on the level of product in the storage tank, on
the rate of hot water and cold water are [0, 15] ru,[0, 3] [ru/h] and [0, 4.2] [ru/h],
respectively.

The lower and upper bounds for the rate of material that is processed by the
continuous task are ρ = 1[ru/h] and ρ = 6[ru/h], respectively.

The resource task network of the test case problem is represented in Figure
3.2, where the continuous task is denoted by II.

I,1 I,2,h I,2,r3 I,2,c I,3

H C

IIIS

a1 a2 a3 a41 a5

Batch Tasks Continuous

Task

I,2,r1 I,2,r2 I,2,r4

a42 a43 a44

Figure 3.2: The resource task network representation for the test case

The two main characteristics relative to this test case are that the continuous
task cannot be interrupted because we try to find a cyclic schedule and the sec-
ond is that we cannot wait between the heating, the exothermic reaction and the
cooling tasks.
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The objective function

The objective is to maximize the average production per unit of time over the
entire cycle, or the productivity. The non linear objective function is the following

max

∑

j∈OUT

∑T
t=1 qj,t

∑T
t=1 τt

, (3.1)

where OUT ⊆ CT is the set of output products of the plant. It is here assumed
that the output products are produced by some of the continuous tasks. This
restriction can be relaxed easily.

It was shown by Isbell and Marlow [23], and also extended by Dinkelbach [19],
that this nonlinear objective function can be optimized for continuous problems by
solving a sequence (iterations p = 1, 2, . . .) of linear optimization problems where
the objective function at iteration p is

max
∑

j∈OUT

T∑

t=1

qj,t − µp

T∑

t=1

τt, (3.2)

and where µp is a constant which is computed before iteration p as

µp =

∑

j∈OUT

∑T
t=1 q⋆,p−1

j,t
∑T

t=1 τ⋆,p−1
t

,

where q⋆,p−1
j,t , for j ∈ OUT and for all t, and τ⋆,p−1

t , for all t, are the optimal

solution of the problem at iteration p − 1. The initialization is µ1 =
∑

j∈OUT ρ
j
.

This iterative process stops at the end of iteration p when µp+1 − µp < ǫ, and
here typically we consider that ǫ = 10−6. In that case, the optimal objective func-
tion (3.2) is equal to 0. As explained and proved in Isbell and Marlow [23], the
corresponding optimal solution is also optimal for the problem with the nonlinear
objective function (3.1). Their proof carries over for mixed integer linear problems
(see for example in Megiddo[29]).

Another way to prove this result for the mixed integer linear case is presented
below :

Proof. Suppose that for the problem composed of the linear objective function
(3.2) and a given set of constraints, the optimal solution at iteration p is q⋆,p

j,t , for

all t and j ∈ OUT , and τ⋆,p
t , for all t. Suppose also that the

∑

t τ⋆,p
t > 0, and that

µp = µp+1 =

∑

j∈OUT

∑

t q⋆,p
j,t

∑

t τ⋆,p
t

.

The optimal objective value at iteration p for the objective function (3.2) is then
zero because the solutions of the optimization problems at iterations p − 1 and p
have the same productivity.
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Suppose also that for the problem composed of the same constraints and of the
non-linear objective function (3.1), the optimal solution is q̃j,t, for all j ∈ OUT
and t, and τ̃t for all t. Suppose also that the

∑

t τ̃t > 0.
Let µ̃ be the optimal productivity

µ̃ =

∑

j∈OUT

∑

t q̃j,t
∑

t τ̃t

We have then that :
∑

j∈OUT

∑

t q̃j,t − µ̃
∑

t τ̃t = 0.
We cannot have µp > µ̃, because q̃ and τ̃ define the optimal productivity and

q⋆,p and τ⋆,p are part of a feasible schedule.
Suppose now the µ̃ > µp, i.e :

µ̃ =

∑

j∈OUT

∑

t q̃j,t
∑

t τ̃t

>

∑

j∈OUT

∑

t q⋆,p
j,t

∑

t τ⋆,p
t

= µp

Then,
∑

j∈OUT

∑

t q̃j,t − µp
∑

t τ̃t >
∑

j∈OUT

∑

t q⋆,p
j,t − µp

∑

t τ⋆,p
t = 0

This is a contradiction because the optimal solution at iteration p of the prob-
lem with the objective function (3.2) is q⋆,p and τ⋆,p, and q̃, τ̃ is feasible for this
problem.

Therefore µ̃ = µp and the optimal solution of the problem with the objective
function (3.2), q⋆,p and τ⋆,p, is also optimal for the problem with the nonlinear
objective function (3.1).

The result is proved.

This sequence of µp converges because the value of µp increases monotonically
and is bounded from above. The sequence of µp increases monotonically because
if µp+1 < µp then

∑

j∈OUT

T∑

t=1

q∗,p
j,t − µp

T∑

t=1

τ∗,p
t < 0

and this implies

∑

j∈OUT

T∑

t=1

q∗,p
j,t − µp

T∑

t=1

τ∗,p
t < 0 =

∑

j∈OUT

T∑

t=1

q∗,p−1
j,t − µp

T∑

t=1

τ∗,p−1
t

and therefore (q∗,p, τ∗,p) cannot be optimal for iteration p because it is dominated
by (q∗,p−1, τ∗,p−1), and this is a contradiction.
Moreover, the value of the µ’s is bounded from above by the upper bound on the
rate of material that is processed by the continuous tasks in the set OUT , that is
∑

j∈OUT ρj.

Finally, as explained in Isbell and Marlow [23], this algorithm converges in a
finite number of iterations. The optimal solution of each problem with the linear
objective function (3.2) is a vertex of the feasible set and there are only a finite
number of vertices for this set. If the same vertex is returned for two successive
iterations, the corresponding µ’s are equivalent and the algorithm terminates.



82 CHAPTER 3. COMPUTATIONAL EXPERIMENTS

For the multiple batch task case, there is only one continuous task and the
output products of the plant are produced by this continuous task. The µ used
at the first iteration (µ1) equal to the lower bound on the speed of the continuous
task (µ1 = ρ) since the continuous task has to be active all the time and has a
processing rate greater or equal to ρ.

A typical solution for the multiple batch task case

Suppose that we have 2 reactors (nbr unit = 2), 17 time slots (T = 17) and a
batch task can last for 4 time slots (d = 4). A typical evolution of the resource
level of the storage tank, of the hot water rate used and of the cold water rate
used over the scheduling cycle, and the corresponding values of the zi,t,Ω(l) batch
variables are represented in Figure 3.3. The dots represent the event times over the
scheduling cycle and the two horizontal dashed lines for each resource represent
the lower and upper limits available for that resource.

3.2.2 Multiple batch tasks, no continuous task

This case corresponds to a special case of the multiple batch task test case pre-
sented above. We do not consider the continuous task and the storage tank after
the batch tasks. As explained in the multiple batch task test case description
given at the beginning of the section, the various batch tasks share some resources
(utilities and processing equipments) and some capacity restrictions have to be
satisfied. The precedence and the zero waiting constraints between some batch
tasks have also to be satisfied. The objective is to maximize a measure of the
productivity of the process. For this special case that corresponds to the model
presented in Section 2.4, we use the data of the multiple batch task case given
above.

We consider first the performance of the initial (F1*) and of three strengthened
formulations (F2)-(F3)-(F4). The initial formulation (F1*) is based on the con-
straints (2.57)-(2.62), (2.71)-(2.73) and the general resource restriction given by
(2.78), (2.81) and (2.83)-(2.84) with wfr,t = wr,t ∀r, t since we do not consider a
continuous task for this special case. We also consider the constraint (2.70) in the
model formulation. The basic strengthened formulation (F2) is based on the same
set of constraints that the one of (F1*) except that (2.57) is replaced by (2.63) and
(2.58) is replaced by (2.65). The complete strengthened formulation (F3) is com-
posed of (F2) and in addition the constraints (2.64), (2.66) and (2.74). The last
strengthened formulation (F4) considers the additional constraints (2.64), (2.66)
and (2.74) as model cuts, i.e these constraints are removed from the initial for-
mulation, are added to the cut pool, and generated as cuts when they are violated.

The objective function is the following (µ = 1):

max
T∑

t=1

t+d−1∑

l=t

BSz|BT |,t,Ω(l) −
T∑

t=1

τt.

For clarity we recall these formulations below.
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Figure 3.3: The scheduling of the batch tasks (2 reactors) and the evolution of the
resources over the scheduling cycle
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F1* :

nB/0C/CAP/Res//INIT

max

T∑

t=1

t+d−1∑

l=t

BSz|BT |,t,Ω(l) −

T∑

t=1

τt

pizi,t,Ω(l) −

l∑

k=t

τΩ(k) ≤ 0

∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.57)

l∑

k=t

τΩ(k) ≤ pizi,t,Ω(l) + pmax(l − t + 1)(1 − zi,t,Ω(l))

∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.58)

∑

i∈BT

t+d−1∑

l=t

zi,t,Ω(l) ≤ 1 ∀t ∈ {1, . . . , T} (2.59)

∑

i∈BT

l∑

t=l−d+1

zi,Ω(t),l ≤ 1 ∀l ∈ {1, . . . , T} (2.60)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,l ≤ nbr unit ∀t′ ∈ {1, . . . , T} (2.61)

T∑

t=1

t+d−1∑

l=t

zi,t,Ω(l) ≤

⌊
T

|BT |

⌋

∀i ∈ BT (2.71)

t+d−1∑

l=t

zi+1,t,Ω(l) =

t−1∑

l=t−d

zi,Ω(l),Ω(t−1) ∀t ∈ {1, . . . , T},

∀i ∈ BT : task i + 1 has to be performed after task i,

without any waiting. (2.72)

∑

i∈BT

pi

nbr unit

T∑

t=1

t+d−1∑

t′=t

zi,t,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.73)

wr,t = wr,Ω(t−1) +
∑

i∈BT

µ̄i,r

t−1∑

t′=t−d

zi,Ω(t′),Ω(t−1)

−
∑

i∈BT

µi,r

t+d−1∑

t′=t

zi,t,Ω(t′) ∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.78)

Rminr ≤ wr,t ≤ Rmaxr ∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.81)
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nB/0C/CAP/Res//INIT (Contd)

wr,t +
∑

i∈BT

µ̄i,r

t∑

t′=t−d+1

zi,Ω(t′),t ≤ Rmaxr

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.83)

Rminr̃ ≤
∑

i∈BT

T∑

t1=1

t1+d−1∑

t2=t1|t1≤t≤t2
or t1≤t+T≤t2

µ̄i,r̃zi,Ω(t1),Ω(t2) ≤ Rmaxr̃

∀r̃ ∈ R : µ̄i,r̃ = µi,r̃, ∀i ∈ BT (2.84)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,Ω(l) +

|BT |
∑

i=1

wri,t′ = nbr unit ∀t′ ∈ {1, . . . , T} (2.70)

zi,t,Ω(l) ∈ {0, 1}∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1},

τt ≥ 0∀t ∈ {1, . . . , T} (2.62)

F2 :

nB/0C/CAP/Res//STR1

max

T∑

t=1

t+d−1∑

l=t

BSz|BT |,t,Ω(l) −

T∑

t=1

τt

∑

i∈BT

l∑

k=t|t6=l

pizi,t,Ω(k) +
∑

i∈BT

pizi,Ω(l),Ω(l) −
l∑

k=t

τΩ(k) ≤ 0

∀t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.63)

l∑

k=t

τΩ(k) ≤
∑

i∈BT

l∑

k=l−d+1

pizi,Ω(k),Ω(l)

+ pmax
(

(l − t + 1) −
∑

i∈BT

l∑

k=l−d+1

min{l − t + 1, l − k + 1}zi,Ω(k),Ω(l)

)

+
∑

i∈BT

(pi − pmax)
l−1∑

t′=t|l=t+d−1

zi,t,Ω(t′)

∀t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.65)
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nB/0C/CAP/Res//STR1 (Contd)

∑

i∈BT

t+d−1∑

l=t

zi,t,Ω(l) ≤ 1 ∀t ∈ {1, . . . , T} (2.59)

∑

i∈BT

l∑

t=l−d+1

zi,Ω(t),l ≤ 1 ∀l ∈ {1, . . . , T} (2.60)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,l ≤ nbr unit ∀t′ ∈ {1, . . . , T} (2.61)

T∑

t=1

t+d−1∑

l=t

zi,t,Ω(l) ≤

⌊
T

|BT |

⌋

∀i ∈ BT (2.71)

t+d−1∑

l=t

zi+1,t,Ω(l) =

t−1∑

l=t−d

zi,Ω(l),Ω(t−1) ∀t ∈ {1, . . . , T},

∀i ∈ BT : task i + 1 has to be performed after task i,

without any waiting. (2.72)

∑

i∈BT

pi

nbr unit

T∑

t=1

t+d−1∑

t′=t

zi,t,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.73)

wr,t = wr,Ω(t−1) +
∑

i∈BT

µ̄i,r

t−1∑

t′=t−d

zi,Ω(t′),Ω(t−1) −
∑

i∈BT

µi,r

t+d−1∑

t′=t

zi,t,Ω(t′)

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.78)

Rminr ≤ wr,t ≤ Rmaxr ∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.81)

wr,t +
∑

i∈BT

µ̄i,r

t∑

t′=t−d+1

zi,Ω(t′),t ≤ Rmaxr

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.83)

Rminr̃ ≤
∑

i∈BT

T∑

t1=1

t1+d−1∑

t2=t1|t1≤t≤t2
or t1≤t+T≤t2

µ̄i,r̃zi,Ω(t1),Ω(t2) ≤ Rmaxr̃

∀r̃ ∈ R : µ̄i,r̃ = µi,r̃, ∀i ∈ BT (2.84)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,Ω(l) +

|BT |
∑

i=1

wri,t′ = nbr unit ∀t′ ∈ {1, . . . , T} (2.70)

zi,t,Ω(l) ∈ {0, 1} ∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1}

τt ≥ 0 ∀t : 1 ≤ t ≤ T (2.62)
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F3/F4 : The formulations F3 and F4 are composed of F2 and of the following
constraints :

nB/0C/CAP/Res//[STR2,STRM]1

nB/0C/CAP/Res//STR1

∑

i∈BT

l∑

k=t|t6=l

pizi,Ω(k),Ω(l) +
∑

i∈BT

pizi,t,t −

l∑

k=t

τΩ(k) ≤ 0

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.64)

l∑

k=t

τΩ(k) ≤
∑

i∈BT

t+d−1∑

k=t

pizi,t,Ω(k)

+ pmax
(

(l − t + 1) −
∑

i∈BT

t+d−1∑

k=t

min{l − t + 1, k − t + 1}zi,t,Ω(k)

)

+
∑

i∈BT

(pi − pmax)
l∑

t′=t+1|l=t+d−1

zi,Ω(t′),Ω(l)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.66)

l∑

k=t

min(coeffk, nbr unit, d)τk ≥
∑

i∈BT

pi





l∑

t1=t

min(l,t1+d−1)
∑

t2=t1

zi,Ω(t1),Ω(t2)





∀t ∈ {1, . . . , T}, l ∈ {t + 2, . . . , t + T + d − 3} (2.74)

The characteristics of the small (resp. large) instance in Table 3.4 are the
following : T = 17, d = 4 and nbr unit = 2 (resp. 3). There are 544 binary
variables, 136 integer variables and 52 continuous variables.

Small Instance (T = 17, nbr unit = 2)
F1* F2 F3 F4

Constraints 1430 495 886 886
Nodes 5954 785 190 141
Time 135.5 s 23 s 51 s 35 s

Large Instance (T = 17, nbr unit = 3)
F1* F2 F3 F4

Constraints 1430 495 886 886
Nodes 61375 19895 13260 13627
Time 1712 s 367 s 1589 s 1926 s

Table 3.4: Comparison between the initial (F1*) and the strengthened formula-
tions (F2)-(F4); Multiple batch tasks, resource restrictions.

In Table 3.4, the strengthened formulation (F2) provides the optimal solution
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quicker for the small and the larger instances. The formulation (F3)-(F4) needs
fewer nodes to solve the problem instances. A better cutting plane strategy should
be developed in order to take advantage of the valid inequalities found and reduce
the computing time.

3.2.3 Multiple batch tasks and one continuous task

We consider the multiple batch task case described above. We show first that exact
solution methods can only be used for limited size problem instances. Then, we
introduce MIP heuristic methods taking advantage of the strengthened formulation
in order to solve some larger instances. We show that, with theses MIP heuristic
methods, we can find good feasible solutions quickly.

Formulations

We pay attention first to the performance of the initial (F1) and of three strength-
ened formulations (F2)-(F3)-(F4). The initial formulation (F1) is based on the
constraints (2.57)-(2.62), (2.70)-(2.73) and (2.76)-(2.84). The basic strengthened
formulation (F2) is based on the constraints (2.59)-(2.62), (2.63), (2.65), (2.70)-
(2.73), (2.77)-(2.84) and (2.86). The complete strengthened formulation (F3) is
composed of (F2) and in addition the constraints (2.64), (2.66) and (2.74). The last
strengthened formulation (F4) considers the additional constraints (2.64), (2.66)
and (2.74) as model cuts, i.e these constraints are removed from the initial for-
mulation, are added to the cut pool, and generated as cuts when they are violated.

The initial objective function is the following (µ1 = ρ = 1) :

max

T∑

t=1

qt −

T∑

t=1

τt.

For clarity we recall these formulations below.
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F1 :

nB/1C/CAP/Res//INIT

max

T∑

t=1

qt −

T∑

t=1

τt

pizi,t,Ω(l) −

l∑

k=t

τΩ(k) ≤ 0

∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.57)

l∑

k=t

τΩ(k) ≤ pizi,t,Ω(l) + pmax(l − t + 1)(1 − zi,t,Ω(l))

∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.58)

∑

i∈BT

t+d−1∑

l=t

zi,t,Ω(l) ≤ 1 ∀t ∈ {1, . . . , T} (2.59)

∑

i∈BT

l∑

t=l−d+1

zi,Ω(t),l ≤ 1 ∀l ∈ {1, . . . , T} (2.60)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,l ≤ nbr unit ∀t′ ∈ {1, . . . , T} (2.61)

T∑

t=1

t+d−1∑

l=t

zi,t,Ω(l) ≤

⌊
T

|BT |

⌋

∀i ∈ BT (2.71)

t+d−1∑

l=t

zi+1,t,Ω(l) =

t−1∑

l=t−d

zi,Ω(l),Ω(t−1) ∀t ∈ {1, . . . , T}, ∀i ∈ BT :

task i + 1 has to be performed after task i, without any waiting. (2.72)

∑

i∈BT

pi

nbr unit

T∑

t=1

t+d−1∑

t′=t

zi,t,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.73)

qt ≤ ρτt ∀t : 1 ≤ t ≤ T (2.76)

qt ≥ ρτt ∀t : 1 ≤ t ≤ T (2.77)

wr,t = wfr,Ω(t−1) +
∑

i∈BT

µ̄i,r

t−1∑

t′=t−d

zi,Ω(t′),Ω(t−1)

−
∑

i∈BT

µi,r

t+d−1∑

t′=t

zi,t,Ω(t′) ∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.78)

wfr,t = wr,t + λrqt ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (2.79)

wfr,t = wr,t∀t, ∀r ∈ Re ∪ Ru (2.80)
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nB/1C/CAP/Res//INIT (Contd)

Rminr ≤ wr,t ≤ Rmaxr ∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.81)

Rminr ≤ wfr,t ≤ Rmaxr ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (2.82)

wfr,t +
∑

i∈BT

µ̄i,r

t∑

t′=t−d+1

zi,Ω(t′),t ≤ Rmaxr

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.83)

Rminr̃ ≤
∑

i∈BT

T∑

t1=1

t1+d−1∑

t2=t1|t1≤t≤t2
or t1≤t+T≤t2

µ̄i,r̃zi,Ω(t1),Ω(t2) ≤ Rmaxr̃

∀r̃ ∈ R : µ̄i,r̃ = µi,r̃, ∀i ∈ BT (2.84)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,Ω(l) +

|BT |
∑

i=1

wri,t′ = nbr unit ∀t′ ∈ {1, . . . , T} (2.70)

zi,t,Ω(l) ∈ {0, 1}∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1},

τt ≥ 0∀t ∈ {1, . . . , T} (2.62)

F2 :

nB/1C/CAP/Res//STR1

max

T∑

t=1

qt −

T∑

t=1

τt

∑

i∈BT

l∑

k=t|t6=l

pizi,t,Ω(k) +
∑

i∈BT

pizi,Ω(l),Ω(l) −

l∑

k=t

τΩ(k) ≤ 0

∀t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.63)

l∑

k=t

τΩ(k) ≤
∑

i∈BT

l∑

k=l−d+1

pizi,Ω(k),Ω(l)

+ pmax
(

(l − t + 1) −
∑

i∈BT

l∑

k=l−d+1

min{l − t + 1, l − k + 1}zi,Ω(k),Ω(l)

)

+
∑

i∈BT

(pi − pmax)

l−1∑

t′=t|l=t+d−1

zi,t,Ω(t′)

∀t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.65)

∑

i∈BT

t+d−1∑

l=t

zi,t,Ω(l) ≤ 1 ∀t ∈ {1, . . . , T} (2.59)
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nB/1C/CAP/Res//STR1 (Contd)

∑

i∈BT

l∑

t=l−d+1

zi,Ω(t),l ≤ 1 ∀l ∈ {1, . . . , T} (2.60)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,l ≤ nbr unit ∀t′ ∈ {1, . . . , T} (2.61)

T∑

t=1

t+d−1∑

l=t

zi,t,Ω(l) ≤

⌊
T

|BT |

⌋

∀i ∈ BT (2.71)

t+d−1∑

l=t

zi+1,t,Ω(l) =
t−1∑

l=t−d

zi,Ω(l),Ω(t−1) ∀t ∈ {1, . . . , T}, ∀i ∈ BT : task

i + 1 has to be performed after task i, without any waiting. (2.72)

∑

i∈BT

pi

nbr unit

T∑

t=1

t+d−1∑

t′=t

zi,t,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.73)

qt ≤ ρτt −
∑

i∈BT

max(piρ − (Rmaxr̃ − Rminr̃); 0)zi,t,t

for r̃ ∈ R : λr̃ = −1, ∀t ∈ {1, . . . , T} (2.86)

qt ≥ ρτt ∀t : 1 ≤ t ≤ T (2.77)

wr,t = wfr,Ω(t−1) +
∑

i∈BT

µ̄i,r

t−1∑

t′=t−d

zi,Ω(t′),Ω(t−1) −
∑

i∈BT

µi,r

t+d−1∑

t′=t

zi,t,Ω(t′)

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.78)

wfr,t = wr,t + λrqt ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (2.79)

wfr,t = wr,t∀t, ∀r ∈ Re ∪ Ru (2.80)

Rminr ≤ wr,t ≤ Rmaxr ∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.81)

Rminr ≤ wfr,t ≤ Rmaxr ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (2.82)

wfr,t +
∑

i∈BT

µ̄i,r

t∑

t′=t−d+1

zi,Ω(t′),t ≤ Rmaxr

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.83)

Rminr̃ ≤
∑

i∈BT

T∑

t1=1

t1+d−1∑

t2=t1|t1≤t≤t2
or t1≤t+T≤t2

µ̄i,r̃zi,Ω(t1),Ω(t2) ≤ Rmaxr̃

∀r̃ ∈ R : µ̄i,r̃ = µi,r̃, ∀i ∈ BT (2.84)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,Ω(l) +

|BT |
∑

i=1

wri,t′ = nbr unit ∀t′ ∈ {1, . . . , T} (2.70)
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nB/1C/CAP/Res//STR1 (Contd)

zi,t,Ω(l) ∈ {0, 1} ∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1}

τt ≥ 0 ∀t : 1 ≤ t ≤ T (2.62)

F3/F4 : The formulations F3 and F4 are composed of F2 and of the following
constraints :

nB/1C/CAP/Res//[STR2,STRM]1

nB/1C/CAP/Res//STR1

∑

i∈BT

l∑

k=t|t6=l

pizi,Ω(k),Ω(l) +
∑

i∈BT

pizi,t,t −

l∑

k=t

τΩ(k) ≤ 0

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.64)

l∑

k=t

τΩ(k) ≤
∑

i∈BT

t+d−1∑

k=t

pizi,t,Ω(k)

+ pmax
(

(l − t + 1) −
∑

i∈BT

t+d−1∑

k=t

min{l − t + 1, k − t + 1}zi,t,Ω(k)

)

+
∑

i∈BT

(pi − pmax)
l∑

t′=t+1|l=t+d−1

zi,Ω(t′),Ω(l)

∀t, l : 1 ≤ t ≤ T, t ≤ l ≤ t + d − 1 (2.66)

l∑

k=t

min(coeffk, nbr unit, d)τk ≥
∑

i∈BT

pi





l∑

t1=t

min(l,t1+d−1)
∑

t2=t1

zi,Ω(t1),Ω(t2)





∀t ∈ {1, . . . , T}, l ∈ {t + 2, . . . , t + T + d − 3} (2.74)

Exact solution methods

The characteristics of the small (resp. large) instance in Table 3.5 are the fol-
lowing : T = 10(resp. 17), d = 4, nbr unit = 2, There are 80 (resp. 136) integer
variables, 320 (resp. 544) binary variables and 61 (resp. 103) continuous variables.
The number of constraints in the strengthened formulations (F2)-(F4) is smaller
because the timing constraints have been aggregated over all batch tasks.

Table 3.5 reports on the solution of the multiple batch task case using the four
formulations and a standard MIP solver. For both instances and all formulations,
the maximal productivity for the test case is obtained by solving two mixed integer
optimization problems with the objective function (3.2). We start with µ1 = ρ.
In Table 3.5, “Nodes” represents the total number of Branch-and-Bound nodes
needed in order to solve the two iterations to optimality, “Time” represents the
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Small Instance (T=10)
nbr unit=2 F1 F2 F3 F4

Constraints 889 339 499 499
Nodes 118 21 3 1
Time 2.3 s 1.4 s 2 s 0.7 s

Productivity 3.11 3.11 3.11 3.11

Large Instance (T=17)
nbr unit=2 F1 F2 F3 F4

Constraints 1498 563 954 954
Nodes 274 334 174 644
Time 13.3 s 13.8 s 44 s 153.7 s

Productivity 3.11 3.11 3.11 3.11

Table 3.5: First comparison between the initial (F1) and the strengthened formu-
lations (F2)-(F4)

corresponding total CPU time and “Productivity” is the maximal productivity
obtained for the test case.

In Table 3.5, we can see that the small and the large instances are solved easily
by the four formulations. The small instance is solved by using the formulation
(F4) at the root node. However, for the large instance, (F1) and (F2) give the
best results and are quite comparable. In order to really test the quality of the
two formulations, we need to solve more instances.

In Table 3.6, we consider a second case where the instances characteristics
and the number of variables are the same as those in Table 3.5, except that
nbr unit = 3. In the next Tables, the star (*) after the productivity measure
means that the iterative procedure (that gives the optimal solution of the prob-
lem with the nonlinear objective function) is stopped at the end of some iteration
before obtaining the optimal productivity solution. This occurs when the CPU
solution time is too large.

For both instances in Table 3.6, the strengthened formulations (F2)-(F4) obtain
the optimal solution in fewer nodes. The strengthened formulation (F2) solves both
instances quicker than the other three formulations. Not surprisingly, the strength-
ened formulations (F3)-(F4) taking into account all valid inequalities need fewer
nodes than the other two formulations.

Finally, the characteristics and the number of variables of the small and the
large instances in Table 3.7 are the same as the one in Table 3.5, except that
nbr unit = 4. For the large instance and for all formulations except (F2), we are
not even able to solve the first iteration of the linearized objective to optimality.
For such cases, a star is added to the CPU solution time of the corresponding
instance in Table 3.7 and we calculate the remaining duality gap for that iteration
as Best bound - Best solution

Best bound and the productivity is the one corresponding to the best
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Small Instance (T=10)
nbr unit=3 F1 F2 F3 F4

Constraints 889 339 499 499
Nodes 1342 1186 700 630
Time 26.1 s 14.5 s 20.4 s 18 s

Productivity 3.27 3.27 3.27 3.27

Large Instance (T=17)
nbr unit=3 F1 F2 F3 F4

Constraints 1498 563 954 954
Nodes 48524 24009 12169 16271
Time 1744 s 496 s 1617 s 2275 s

Productivity 3.21* 3.21* 3.21* 3.21*
Nbr of iterations 1 1 1 1

Table 3.6: Second comparison between the initial (F1) and the strengthened for-
mulations (F2)-(F4), where Nbr of iterations is the number of iterations of the
objective linearization procedure

schedule obtained with respect to the linearized objective.

Small Instance (T=10)
nbr unit=4 F1 F2 F3 F4

Constraints 889 339 499 499
Nodes 1365 766 772 1114
Time 20.61 s 8.9 s 18 s 25 s

Productivity 3.27 3.27 3.27 3.27
Nbr of iterations 2 2 2 2

Large Instance (T=17)
nbr unit=4 F1 F2 F3 F4

Constraints 1498 563 954 954
Nodes 60900 25609 13000 14000
Time 2000 s* 516 s 2000 s* 2000 s*

Productivity 3.21* 3.21* 3.21* 3.21*
Nbr of iterations 1 1 1 1

Remaining Duality gap 10.72 % 0 % 5.56 % 2.5 %

Table 3.7: Third comparison between the initial (F1) and the strengthened for-
mulations (F2)-(F4)

For the small instance in Table 3.7, the strengthened formulation (F2) gets the
optimal solution quicker and with less nodes than the other three formulations.
For the large instance, only the strengthened formulation (F2) gives the optimal
solution for the first iteration of the linearization procedure in a reasonable amount
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of time.

In Tables 3.5 - 3.7, we can observe that for small instances, the four formu-
lations give good results. For the large instances, the strengthened formulation
(F2) provides almost always the optimal solution with respect to the linearized
objective in less computing time and is more efficient than the initial one (F1).
The strengthened formulations (F3)-(F4) solve the problem instances with almost
always fewer nodes but are on average slower than (F2) in term of CPU time. A
better cutting plane strategy should be developed in order to take advantage of
the valid inequalities found in a reduced amount of computing time.

We now comment the evolution of the results obtained in Tables 3.5-3.7 with
respect to the number of units. In Table 3.5, we consider two units and we can
solve the productivity maximization problem for the two instances to optimality
in a reasonable amount of time by using the four model formulations in two it-
erations of the objective linearization procedure. In Table 3.6, we consider three
units and in this case, only the first iteration of the linearization procedure for
the large instance can be solved to optimality in a reasonable amount of time by
using the four model formulations. In Table 3.7, we consider four units and in
this case, only the basic strengthened formulation (F2) can solve to optimality the
first iteration of the linearization procedure for this larger instance in a reasonable
amount of time.

However, we can observe that for larger instances, the exact methods cannot
solve the problems in a reasonable amount of time. Therefore, we consider heuristic
methods in order to obtain good feasible solutions for these larger instances quickly.

Heuristic solution methods

We introduce below a heuristic method that combines the use of various well
known MIP based heuristic methods. Our objective in using MIP based heuristics
is to find good feasible solutions quickly by taking advantage of the improved
formulations described above. We outline here the well known heuristic methods
and we explain how we combine them. All these heuristics are described in Pochet
and Wolsey [38].

The main heuristic method used is Relax-and-Fix, see Stadtler [46]. The
various steps of our specific implementation are the following :

1. We decompose the set of binary variables zi,t,Ω(l) in various non-disjoint sets
S1, S2, . . . , ST . In our case, the set St is composed of the binary variables
that can be active during time slot t. Every variable will be part of at
least one set. In other words, for each t ≤ k ≤ l ≤ t + d − 1, the variable
zi,t,Ω(l) ∈ SΩ(k).

2. We start by imposing the integrality restriction for the binary variables in
the sets S1 and S2 and we relax this constraint (i.e. 0 ≤ z ≤ 1) for variables
in the sets (S3 ∪ . . . ∪ ST ) \ (S1 ∪ S2). We solve the corresponding relaxed
MIP problem and we obtain an upper bound for the original problem (for
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the maximization of the linear objective function).
We fix the binary variables in the set S1 at their optimal values.
This is the end of the first iteration of Relax-and-Fix.

3. Then, we impose the integrality condition for the binary variables in the
sets S2 and S3 and we relax the integrality constraints for the rest of the
variables, i.e. for variables in the sets (S4 ∪ . . . ∪ ST ) \ (S1 ∪ S2 ∪ S3). We
solve the corresponding relaxed MIP problem and we fix the binary variables
in the set S2 at their optimal value. This is the end of the second iteration.

4. And so on, up to the last iteration where variables in (ST−1 ∪ ST ) \ (S1∪ . . .
∪ST−2) are binary, the other variables being fixed by previous iterations.

The difficulty is that at each step, it is possible that the MIP problem becomes
infeasible because of previous variables being fixed at inconsistent values. In such
a case, we combine this first heuristic method with a neighborhood search method
similar to the Local Branching heuristic method (see Fischetti and Lodi [20]).
More specifically, if the MIP problem is infeasible at iteration p of Relax-and-Fix,
we solve a relaxation of this MIP problem where we impose that the variables
previously fixed (zi,t,Ω(l) = z⋆,f

i,t,Ω(l) for (i, t, l) ∈ F ) have to remain binary but we

allow a limited number k of them to change their values.
This can be modeled by adding the following constraint :

∑

(i,t,l)∈F |z⋆,f

i,t,Ω(l)
=0

zi,t,Ω(l) +
∑

(i,t,l)∈F |z⋆,f

i,t,Ω(l)
=1

(1 − zi,t,Ω(l)) ≤ k

This additional Local Branching step is performed to improve the robustness of
the Relax-and-Fix heuristic method.

An additional way to improve the quality of the feasible solutions obtained
by the heuristic is to use the Local Branching heuristic method at the end of the
Relax-and-Fix algorithm. It consists in allowing k variables zi,t,Ω(l) to change their
values compared to the final Relax-and-Fix solution. This Local Branching step is
repeated until no significant improvement to the objective is obtained. This final
Local Branching step defines an improvement heuristic starting from the Relax-
and-Fix solution.

Given the superiority of reformulation (F2), the 5 heuristic methods used and
compared to solve larger instances are the following :

1. Truncated B&B (F1) : Based on the initial formulation (F1), we solve the
problem and we stop the branch and bound algorithm before the end of the
resolution.

2. Truncated B&B (F2) : Based on the basic strengthened formulation (F2),
we solve the problem and we stop the branch and bound algorithm before
the end of the resolution.

3. Relax-and-Fix (F1) : The heuristic method described above based on the
initial formulation (F1). The parameter k for Local Branching, during and
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at the end of Relax-and-Fix, takes a value in the set {6, 9, 12}. We always
start with k = 6. During Relax-and-Fix, we increase k only if we could
not find a feasible solution, otherwise we stop Local Branching. At the
end of Relax-and-Fix, we increase k as long as a significant improvement is
observed.

4. Relax-and-Fix (F2*) : The heuristic method described above based on the
formulation (F2) plus constraints (2.64) and (2.66). The parameter k follows
the same rules as for method 3.

5. Relax-and-Fix/LB (F2*) : It is a variant of method 4. The differences are
that, at each iteration p of Relax-and-Fix : (i) we allow to change k1 values
of variables in Sp−1 (p ≥ 2), (ii) the binary variables in the set {zi,t,p−2 :
i ∈ BT, t ∈ {p − d − 1, . . . , p − 2}}(if p ≥ 3) are fixed (for all subsequent
iterations of Relax-and-Fix) at the optimal value obtained at iteration p−1,
(iii) the z variables in the set (Sp ∪ Sp+1) have to be binary, and finally (iv)
the integrality condition is relaxed on the others z variables. Here, we set
k1 = 3 and the parameter k follows the same rules as for methods 3 and 4.

For the last three heuristic methods, we have imposed a maximum time for
solving each MIP optimization subproblem in the heuristic. We choose to set this
parameter to 500 sec. If at the end of the 500 sec., we have obtained a feasible so-
lution, we stop the resolution of the current problem and proceed to the next step
of the heuristic method. Otherwise, we continue to solve the current subproblem
until a first feasible solution is obtained.

For the small instance reported on in Table (3.8), we solve two iterations of
the linearization of the objective function except for the heuristic method 3. For
the large instance of Table (3.8) and for Tables (3.9)-(3.10), we only try to solve
the first iteration of the linearization of the objective function. Therefore, we
put a star (*) after the productivity obtained because we could not prove with
one iteration of the linearization that the productivity is optimal. Moreover, for
the heuristic 1 or 2, the resolution of the first linearized objective problem was
sometimes stopped before optimality was proved. For such cases, a star (*) is
added to the CPU solution time of the corresponding instance in the Table. The
duality gap indicates the remaining gap with respect to the linearized objective
and is defined as Best bound - Best solution

Best bound . For the Relax-and-Fix methods, the best
bound is the optimal solution obtained at the first iteration (before any fixing),
and the best solution is the final Relax-and-Fix solution obtained.

The first heuristic comparison is proposed in Table 3.8. The characteris-
tics of the small (resp. large) instance in Table 3.8 are the following : T =
18(resp. 26), d = 7, nbr unit = 2, ρ = 1[ru/h], ρ = 6[ru/h]. There are 144 (resp.
208) integer variables, 1008 (resp. 1456) binary variables and 109 (resp. 157)
continuous variables.

In Table 3.8, and for the small instance, the heuristic method 2 provides the
optimal solution quicker and with fewer nodes than the other heuristic methods.
It is interesting to note for the small instance that the heuristic methods 4 and 5
are also able to solve the problem to optimality. Regarding the large instance, the
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2 units B&B B&B R&F R&F R&F/LB
(F1) (F2) (F1) (F2*) (F2*)

# Constr. 2449 703 2449 919 919
Small Nodes 1643 1 18524 10 23

Instance D. Gap (%) 0 0 50.4 0 0
T=18 Time 97 s 4 s 484 s 9 s 21 s

Prod. 3.11 3.11 3.05* 3.11 3.11
Nbr of iterations 2 2 1 2 2

# Constr. 3529 1007 3529 1319 1319
Large Nodes 6200 9300 15192 493 48

Instance D. Gap (%) 14.8 0.74 40 1 0

T=26 Time 1000 s* 1000 s* 556 s 105 s 51 s

Prod. 2.37* 3.06* 2.51* 3* 3.11*

Table 3.8: First heuristic comparison, nbr unit = 2

heuristic method 5 provides the optimal solution of the first linearization quicker
and with fewer nodes.

The second heuristic comparison is proposed in Table 3.9. The characteristics
of the small (resp. large) instance in Table 3.9 are the same as the one given for
Table 3.8, except that nbr unit = 3. Again, for every instance of this table, we
only perform one linearization iteration.

3 units B&B B&B R&F R&F R&F/LB
(F1) (F2) (F1) (F2*) (F2*)

# Constr. 2449 703 2449 919 919
Small Nodes 13400 7490 12918 10647 2575

Instance D. Gap (%) 11 8.13 11 7.4 8.13
T=18 Time 1000 s* 517 s* 589 s 403 s 196 s

Prod. 3.32* 3.6* 3.32* 3.67* 3.6*

# Constr. 3529 1007 3529 1319 1319
Large Nodes 4300 5400 2019 3762 2558

Instance D. Gap (%) 48.9 40.67 48.9 11.56 22.2
T=26 Time 1000 s* 1000 s* 109 s 700 s 332 s

Prod. 2.51* 3.32* 2.51* 3.27* 2.57*

Table 3.9: Second heuristic comparison, nbr unit = 3

The heuristic methods 4 or 5 seem to outperform the other three methods, a
better solution in terms of remaining duality gap is obtained quicker. The heuristic
4 gives for the two instances a solution with a smaller remaining duality gap and
a higher productivity than heuristic 5 but needs more running time to compute
these better results. Therefore, both heuristic methods 4 and 5 can be interesting
in order to compute good feasible solutions quickly.

The third heuristic comparison is proposed in Table 3.10. The characteristics
of the small (resp. large) instance in Table 3.9 are the same as the one of Table 3.8



3.2. MULTIPLE BATCH TASK CASE 99

except that nbr unit = 4. Again, for every instance of this table, we only perform
one linearization iteration.

4 units B&B B&B R&F R&F R&F/LB
(F1) (F2) (F1) (F2*) (F2*)

# Constr. 2449 703 2449 919 919
Small Nodes 489 2545 1901 11960 13969

Instance D. Gap (%) 16.1 16.1 16.1 17.33 16.1
T=18 Time 58 s* 270 s* 95 s 1167 s 1265 s

Prod. 3.32* 3.32* 3.32* 3.21* 3.32*

# Constr. 3529 1007 3529 1319 1319
Large Nodes 8800 9300 2302 6420 5816

Instance D. Gap (%) 44.06 42.63 51.8 16.3 42.2
T=26 Time 2000 s* 2000 s* 256.4 s 1421 s 1490.3 s

Prod. 3.32* 3.53* 2.51* 3.3* 3.6*

Table 3.10: Third heuristic comparison, nbr unit = 4

In Table 3.10, we can see that for the small instance, the heuristic method 1
gives a good feasible solution quicker. For the large instance, the heuristic method
4 gives a good solution with a smaller duality gap quicker than the other heuristic
methods. We can observe in Table 3.10 that the heuristic methods 4 and 5 give
good solutions for the small instance but are quite slow. For the large instance, the
heuristic method 5 finds a good solution in terms of productivity, but a solution
with a large duality gap in terms of the linear objective. For heuristic method
5, in order to obtain a reduced duality gap (and a better feasible solution) with
respect to the linear objective, we change two parameters. The maximum time
for solving each optimization subproblem is now set to 100 sec. in order to obtain
quicker a feasible solution and we introduce more flexibility in the resolution of
each subproblem by using the parameter k1 = 5 in order to obtain a better feasible
solution.

The results obtained for the modified heuristic method 5 are presented in Table
3.11.

In Table 3.11, we can observe that for the small instance, the solution obtained
with the heuristic method 5 and the new parameters is the same as the one ob-
tained with the initial parameters but the CPU time is reduced. For the large
instance, we get quicker a very good solution with a small remaining duality gap.
With these new parameters, the heuristic method 5 provides a very good solution
quicker than the other heuristic methods.

To summarize, we can conclude that for the small instances in Tables 3.8-3.10,
the heuristic method 4 does not (except once) obtain a better feasible solution
than the heuristics 1 and 2, with a smaller duality gap. However for the large
instances in the same Tables, the heuristic methods 1 and 2 do not provide good
solutions quickly anymore. For large instances, the use of the heuristic method
4 or 5 is quite interesting because we obtain on average better feasible solutions
in less computing time. Moreover, heuristic method 5 can be more interesting
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4 units R&F/LB(F2*)

# Constr. 919
Small Nodes 5584

Instance D. Gap (%) 16.1
T=18 Time 551 s

Prod. 3.32*

# Constr. 1319
Large Nodes 4388

Instance D. Gap (%) 16.5
T=26 Time 823 s

Prod. 3.28*

Table 3.11: Modified heuristic method 5, nbr unit = 4

than heuristic method 4, because, on average, this heuristic provides good feasible
solutions quicker and with a small duality gap. However, for one instance, the
results obtained by the heuristic method 5 are not satisfactory. For this case, we
have seen that the parameters of the algorithm can be adapted in order to provide
better feasible solutions quicker.

3.2.4 Comparison with the formulation of Schilling and Pan-
telides [44]

We consider the multiple batch task problem described in Section 3.2.1 that is
classified as follows : nB/1C/CAP/Res. We want to compare the performances
of the basic strengthened formulation (F2) and of the formulation proposed by
Schilling and Pantelides (SP) in [44] adapted to our case.

The only difference between their formulations and ours is that we do not allow
to perform several batches of a task in parallel with the same starting and ending
time slots.

For the multiple batch task case, this has no impact because a same batch task
is never performed in parallel on two reactors at the same starting and ending
times.

In general, our formulation of Schilling and Pantelides would require a zero
duration time slot to start and finish several batches of a task at the same time.
So, the only consequence would be an increase in the number of time slots. This
is illustrated in Figure 3.4.

The formulation (F2) is based on the constraints : (2.59)-(2.62), (2.63), (2.65),
(2.70)-(2.73), (2.77)-(2.84) and (2.86). The formulation (SP) is based on the con-
straints (2.57)-(2.58), (2.61)-(2.62), (2.70)-(2.73) and (2.76)-(2.84). The difference
between the formulation (F1) and the formulation (SP) is that the formulation
(SP) does not limit the number of batch tasks starting or finishing at a time slot.
The formulation (SP) is composed of all the constraints of the formulation (F1)
except constraints (2.59)-(2.60).
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Figure 3.4: Difference between the formulation of Schilling and Pantelides [44] and
their formulation adapted to our case (SP), Ni,t = 2 means that two batches of
task i are started at time slot t.

To represent a solution with several events occurring at the same time, (F2)
requires zero duration time slots, and therefore requires a larger number T of time
slots than formulation (SP). This is illustrated in Figure 3.5.

The initial objective function is the following (µ1 = ρ = 1) :

max

T∑

t=1

qt −

T∑

t=1

τt.

For clarity we recall these formulations below.
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Figure 3.5: Difference between the formulation of Schilling and Pantelides adapted
to our case (SP) and the formulation (F2).

F2 :

nB/1C/CAP/Res//STR1

max

T∑

t=1

qt −

T∑

t=1

τt

∑

i∈BT

l∑

k=t|t6=l

pizi,t,Ω(k) +
∑

i∈BT

pizi,Ω(l),Ω(l) −
l∑

k=t

τΩ(k) ≤ 0

∀t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.63)

l∑

k=t

τΩ(k) ≤
∑

i∈BT

l∑

k=l−d+1

pizi,Ω(k),Ω(l)

+ pmax
(

(l − t + 1) −
∑

i∈BT

l∑

k=l−d+1

min{l − t + 1, l − k + 1}zi,Ω(k),Ω(l)

)

+
∑

i∈BT

(pi − pmax)
l−1∑

t′=t|l=t+d−1

zi,t,Ω(t′)

∀t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.65)
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nB/1C/CAP/Res//STR1 (Contd)

∑

i∈BT

t+d−1∑

l=t

zi,t,Ω(l) ≤ 1 ∀t ∈ {1, . . . , T} (2.59)

∑

i∈BT

l∑

t=l−d+1

zi,Ω(t),l ≤ 1 ∀l ∈ {1, . . . , T} (2.60)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,l ≤ nbr unit ∀t′ ∈ {1, . . . , T} (2.61)

T∑

t=1

t+d−1∑

l=t

zi,t,Ω(l) ≤

⌊
T

|BT |

⌋

∀i ∈ BT (2.71)

t+d−1∑

l=t

zi+1,t,Ω(l) =

t−1∑

l=t−d

zi,Ω(l),Ω(t−1) ∀t ∈ {1, . . . , T}, ∀i ∈ BT : task

i + 1 has to be performed after task i, without any waiting. (2.72)

∑

i∈BT

pi

nbr unit

T∑

t=1

t+d−1∑

t′=t

zi,t,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.73)

qt ≤ ρτt −
∑

i∈BT

max(piρ − (Rmaxr̃ − Rminr̃); 0)zi,t,t

for r̃ ∈ R : λr̃ = −1, ∀t ∈ {1, . . . , T} (2.86)

qt ≥ ρτt ∀t : 1 ≤ t ≤ T (2.77)

wr,t = wfr,Ω(t−1) +
∑

i∈BT

µ̄i,r

t−1∑

t′=t−d

zi,Ω(t′),Ω(t−1) −
∑

i∈BT

µi,r

t+d−1∑

t′=t

zi,t,Ω(t′)

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.78)

wfr,t = wr,t + λrqt ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (2.79)

wfr,t = wr,t∀t, ∀r ∈ Re ∪ Ru (2.80)

Rminr ≤ wr,t ≤ Rmaxr ∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.81)

Rminr ≤ wfr,t ≤ Rmaxr ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (2.82)

wfr,t +
∑

i∈BT

µ̄i,r

t∑

t′=t−d+1

zi,Ω(t′),t ≤ Rmaxr

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.83)

Rminr̃ ≤
∑

i∈BT

T∑

t1=1

t1+d−1∑

t2=t1|t1≤t≤t2
or t1≤t+T≤t2

µ̄i,r̃zi,Ω(t1),Ω(t2) ≤ Rmaxr̃

∀r̃ ∈ R : µ̄i,r̃ = µi,r̃, ∀i ∈ BT (2.84)
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nB/1C/CAP/Res//STR1 (Contd)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,Ω(l) +

|BT |
∑

i=1

wri,t′ = nbr unit ∀t′ ∈ {1, . . . , T} (2.70)

zi,t,Ω(l) ∈ {0, 1} ∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1}

τt ≥ 0 ∀t : 1 ≤ t ≤ T (2.62)

SP :

nB/1C/CAP/Res

max

T∑

t=1

qt −

T∑

t=1

τt

pizi,t,Ω(l) −

l∑

k=t

τΩ(k) ≤ 0

∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.57)

l∑

k=t

τΩ(k) ≤ pizi,t,Ω(l) + pmax(l − t + 1)(1 − zi,t,Ω(l))

∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1} (2.58)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,l ≤ nbr unit ∀t′ ∈ {1, . . . , T} (2.61)

T∑

t=1

t+d−1∑

l=t

zi,t,Ω(l) ≤

⌊
T

|BT |

⌋

∀i ∈ BT (2.71)

t+d−1∑

l=t

zi+1,t,Ω(l) =

t−1∑

l=t−d

zi,Ω(l),Ω(t−1) ∀t ∈ {1, . . . , T}, ∀i ∈ BT : task

i + 1 has to be performed after task i, without any waiting. (2.72)

∑

i∈BT

pi

nbr unit

T∑

t=1

t+d−1∑

t′=t

zi,t,Ω(t′) −

T∑

t=1

τt ≤ 0 (2.73)

qt ≤ ρτt ∀t : 1 ≤ t ≤ T (2.76)

qt ≥ ρτt ∀t : 1 ≤ t ≤ T (2.77)

wr,t = wfr,Ω(t−1) +
∑

i∈BT

µ̄i,r

t−1∑

t′=t−d

zi,Ω(t′),Ω(t−1) −
∑

i∈BT

µi,r

t+d−1∑

t′=t

zi,t,Ω(t′)

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.78)

wfr,t = wr,t + λrqt ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (2.79)
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nB/1C/CAP/Res (Contd)

wfr,t = wr,t∀t, ∀r ∈ Re ∪ Ru (2.80)

Rminr ≤ wr,t ≤ Rmaxr ∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.81)

Rminr ≤ wfr,t ≤ Rmaxr ∀r, t : r ∈ Rm, 1 ≤ t ≤ T (2.82)

wfr,t +
∑

i∈BT

µ̄i,r

t∑

t′=t−d+1

zi,Ω(t′),t ≤ Rmaxr

∀r, t : 1 ≤ r ≤ R, 1 ≤ t ≤ T (2.83)

Rminr̃ ≤
∑

i∈BT

T∑

t1=1

t1+d−1∑

t2=t1|t1≤t≤t2
or t1≤t+T≤t2

µ̄i,r̃zi,Ω(t1),Ω(t2) ≤ Rmaxr̃

∀r̃ ∈ R : µ̄i,r̃ = µi,r̃, ∀i ∈ BT (2.84)

∑

i∈BT

T∑

t=1

t+d−1∑

l=t|t≤t′≤l

or t≤t′+T≤l

zi,t,Ω(l) +

|BT |
∑

i=1

wri,t′ = nbr unit ∀t′ ∈ {1, . . . , T} (2.70)

zi,t,Ω(l) ∈ {0, 1}∀i ∈ BT, t ∈ {1, . . . , T}, l ∈ {t, . . . , t + d − 1},

τt ≥ 0∀t ∈ {1, . . . , T} (2.62)

First Comparison (SP) versus (F2)

We consider first an instance of the formulation (SP). The characteristics of this
instance are the following : T = 9, d = 9 and nbr unit = 2. There are 72 integer
variables, 648 binary variables and 55 continuous variables. The optimal solution
obtained is represented in Figures 3.6-3.7.

The same optimal solution can be obtained by using the formulation (F2). In
Figure 3.6, we can observe that no task is starting or finishing at the same time,
only eight time slot durations are non zero and the batch tasks last for at most
four time slots. Therefore, the optimal solution obtained by using the formulation
(SP) above is feasible for the formulation (F2) if the parameters used are T = 8,
d = 4 and nbr unit = 2. The characteristics of the corresponding instance are the
following : 64 integer variables, 256 binary variables and 49 continuous variables.

However, it is clear for the same reason given above for the parameter used in
formulation (F2) that the optimal solution presented in Figures 3.6-3.7 can also
be obtained by using the formulation (SP) with the parameters T = 8, d = 4
and nbr unit = 2. This will lead to a reduced formulation (SP*) with 64 integer
variables, 256 binary variables and 49 continuous variables.

In Table 3.12, we present the results obtained for this first comparison between
the three formulations.

We observe first that the number of constraints in the formulation (F2) is
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Figure 3.6: The optimal scheduling of the batch tasks using formulation (SP)

First comparison (SP) versus (F2)
nbr unit=2, p=1 SP SP* F2

Binary var. 648 256 256
Cont. var. 55 49 49
Constraints 1496 691 275

LP relax at root node 11.63 10.55 5.42
LP relax at root node + MIP solver cuts 9.02 6.56 5.42

OPT sol of the MIP 5.42 5.42 5.42
Nodes 516 387 9
Time 10 s 4 s < 1 s

Productivity 3.11 3.11 3.11
The cycle length 2.57 h 2.57 h 2.57 h

Table 3.12: First comparison between the formulations (SP), (SP*) and (F2).

smaller than in the formulations (SP) and (SP*). The reason is that in the formu-
lation (F2) the timing constraints have been aggregated over all batch tasks. We
can also observe, for the first iteration of the linearization of the objective function
(p=1), that the formulation (F2) is tighter than the other two formulations since
the difference between the optimal solution and the LP relaxation at the root node
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Figure 3.7: Optimal evolution of the resources over the scheduling cycle using the
formulation (SP)

is zero. This means that the duality gap is 0. However, the formulations (SP) and
(SP*) have large duality gap. This is mainly due to big M constraints in the
model formulation that lead to weak model formulation with large duality gap.
The consequences of large duality gap for formulations (SP) and (SP*) are first
the increase of the number of branch-and-bound nodes needed in order to solve
the first iteration to optimality and the increase of CPU solution time. As shown
in Table 3.12, the number of branch-and-bound nodes and the CPU solution time
for solving the first linearization iteration to optimality are smaller by using the
formulation (F2).

The formulation (F2) is tighter and has less constraints (more compact) than
the formulations (SP) and (SP*).

We have checked with the three formulations (SP), (SP*) and (F2) that the
productivity 3.11 obtained at the first iteration is optimal. This is proved in less
than 1 second with the three formulations by observing that the LP relaxation
objective value is zero at iteration 2.
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Second Comparison (F2) versus (SP)

We consider another instance of the formulation (F2). The characteristics of this
instance are the following : T = 17, d = 4, nbr unit = 2. There are 136 integer
variables, 544 binary variables and 103 continuous variables. The optimal solution
obtained is represented in Figure 3.3.

The same optimal solution can be obtained by using the formulation (SP). In
Figure 3.3, we observe that only fifteen time slots have non zero durations and
that the batch tasks last for at most four time slots (Two time slots have zero
duration because there are twice two events occurring simultaneously).

Therefore, the optimal solution obtained by using the formulation (F2) above
is feasible for the formulation (SP) if the parameters used are T = 15, d = 4 and
nbr unit = 2. The characteristics of the corresponding instance are the following
: 120 integer variables, 480 binary variables and 91 continuous variables.

In Table 3.13, we present the results obtained for the second comparison be-
tween these two formulations.

Second comparison (F2) versus (SP)
p=1 F2 SP

Binary var. 544 480
Cont. var. 103 91
Constraints 563 1286

LP relax at root node 10.85 16.28
LP relax at root node + MIP solver cuts 10.85 15.82

OPT sol of the MIP 10.85 10.85
Nodes 334 5707
Time 12 s 90 s

Productivity 3.11 3.11
The cycle length 5.14 h 5.14 h

Table 3.13: Second comparison between the formulations (F2) and (SP).

In this case, we have seen that the number of time slots for the formulation (F2)
is larger than one for (SP). This implies that the number of integer, binary and
continuous variables increases when we use the formulation (F2) in comparison
with the formulation (SP). However, the number of constraints is reduced when
using the formulation (F2) since the timing constraints are aggregated over all the
batch tasks.

In Table 3.13, we can observe that the number of branch-and-bound nodes and
the CPU solution time for solving the first linearization iteration to optimality is
reduced when we use the formulation (F2). The formulation (F2) has a smaller
duality gap than the formulation (SP) and is therefore tighter than the formulation
(SP). Although formulation (F2) consists in a larger number of decision variables,
we have shown that its tightness leads to a more efficient resolution of the problem
instance.
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Again, we have checked with both formulations (SP) and (F2) that the pro-
ductivity 3.11 obtained at the first iteration is optimal. This is proved in less than
1 second with the two formulations by observing that the LP relaxation objective
value is zero at iteration 2.

To conclude, the formulation (F2) is a good compromise between size of the
model formulation and tightness. These are the two central questions for solving
efficiently optimization problems. By using the formulation (F2), we have shown
that we can solve quicker such a type of scheduling problem and with less branch-
and-bound nodes than when using the formulation (SP).

3.2.5 The choice of the values of T and d

There is no way to decide the best value of T and d for a given problem. By
increasing T and or d, the number of decision variables increases and the number
of constraints as well. This leads to a larger model formulation and therefore the
CPU solution and the number of Branch-and-Bound nodes needed to solve the
problem instances usually increase as well. In general, apart from a complete enu-
meration over all the values of T and d, there is no guarantee that the solution
obtained for a given problem is globally optimal. Therefore, we consider that T
and d are part of the problem formulation.

In order to illustrate this statement, we consider the multiple batch task prob-
lem described in Section 3.2.1 (nB/1C/CAP/Res) where we set the upper limits
on the level of product in the storage tank, on the rate of hot water and cold water
to 24ru, 3[ru/h] and 6.4[ru/h], respectively.

We consider three instances of the formulation (F2). The characteristics of
these instances are presented in Table 3.14 and nbr unit = 3.

3 reactors T=8 T=9 T=10
d=8 d=9 d=10

# Constr. 339 397 459

Bin. var. 512 648 800

Int. var. 64 72 80

Cont. var. 49 55 61

Nodes 634 4722 19876

CPU sol time 16 s 83 s 288.3 s

Prod. [ru/h] 3.11 4 4

Table 3.14: The characteristics and the solutions of the three instances

Table 3.14 reports on the solution of this multiple batch task case using the
formulations (F2) and a standard MIP solver. For the three instances tested, the
maximal productivity is obtained by solving two iterations of the linearization
procedure using objective function (3.2).

For the first instance with T = 8 and d = 8, the maximal productivity obtained
is 3.11 [ru/h]. We can observe in Table 3.14 that by increasing T and d to 9, we
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get a better productivity of 4[ru/h]. Finally, the maximal productivity obtained
for the last instance with T = 10 and d = 10 is also 4[ru/h]. The solution of the
instance with T = 9 and d = 9 is obtained more quickly and with less nodes, and
gives the best productivity.

However, as shown in Table 3.15, it is possible for this problem to obtain a
better productivity than 4[ru/h] by using the following parameters : T = 30 and
d = 10. Table 3.15 reports on the characteristics and the solution of this instance.

3 reactors T=30
d=10

# Constr. 1339

Bin. var. 2400

Int. var. 240

Cont. var. 181

Nodes 194

CPU sol time 85.1 s

Prod. [ru/h] 4.66

Table 3.15: Characteristics and solution of the instance with T = 30 and d = 10
using the formulation (F2)

In Table 3.15, we have shown that by taking T = 30 and d = 10, we have
improved the productivity of this problem to 4.66[ru/h]. This improvement is
significant and we can also observe that the CPU solution time remains reasonable
in comparison with the ones obtained for the three other instances in Table 3.14.

In order to get this better solution, we have simply chosen a different value for
T and d. However, there is no way to decide for a general problem how to choose
values for T and d.

In this case, we can go one step further and prove that the solution obtained
by the instance with T = 30 and d = 10 is globally optimal for the problem con-
sidered. The maximal productivity obtained is 4.66 [ru/h] and is equal to the
theoretical maximal productivity of the batch tasks, i.e. the maximal possible
quantity produced by the sequence of batch tasks per hour, which in this case
can be expressed as follows : nbr unit∗BS∑

i∈BT
pi

. The reason is that the sequence of

batch tasks is performed in 5.14 h (
∑

i∈BT pi = 5.14 h) and produces at the end
a batch of 8 ru of product (BS = 8 ru). Since we have 3 reactors (nbr unit = 3)
and since the sequence of batch tasks can be performed in parallel on the 3 reac-
tors, the maximal productivity of the sequence of batch tasks on the 3 reactors is
(3 ∗ 8)/5.14=4.66 [ru/h].

In general, apart from a complete enumeration over all the values of T and d,
there is no guarantee that the solution obtained for a given problem is globally
optimal.

In the next section, we try to solve a larger industrial scheduling instance and
we compare the efficiency of heuristic method 5 with truncated branch and bound
corresponding to heuristic methods 1 and 2.
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3.3 Industrial case

In this section, we describe a basic industrial scheduling problem where the data
were invented. We use some of the heuristic methods defined previously and we
compare the quality of the resolution for one instance. Then, we show how it is
possible to bound the productivity improvement between two iterations when we
use linear objective functions. Finally, we illustrate a typical optimal solution for
the industrial case.

3.3.1 Problem description

There are three polymerization lines (denoted by I-II-III) with three, three and
one units respectively. The volume of the reactors for the first two lines (V 1) is
27 ru. The volume of the reactor of line three (V 2) is 140 ru. The polymerization
task performed in the reactors is decomposed into the same number of batch tasks
as in Section 3.2.1. Moreover, the same resources as for the test case are shared
among the processes of a same line, but not shared between lines. The maximum
rate of hot water for each line is 3 [ru/h]. The maximum rate of cold water is 7.4
[ru/h] for line 1, 8 [ru/h] for line 2 and 3.7 [ru/h] for line 3.

After each reactor, there is one tank for each line where the product is dis-
charged. The capacity of the tanks are 35 ru, 35 ru and 140 ru, respectively. The
discharge of these tanks into the common buffer to all lines is modeled as a contin-
uous task. We assume that the valve is processing like a continuous task and that
the rate of material processed by the valves of the two first lines is in the interval
[0ru/h, 15ru/h] and by the valves of the third line in the interval [0ru/h, 10ru/h].
The valves of the three lines do not have to process material all the time. The
capacity of the common buffer is 40 ru and the continuous task after the buffer
is a stripping task that cannot be stopped. For this task, the rate of material
processed is in the interval ρ ∈ [10ru/h, 55ru/h].

The initial objective function is the following (µ1 = 10) :

max

T∑

t=1

qt − 10

T∑

t=1

τt.

This process is represented in Figure 3.8.

3.3.2 Comparison of Heuristics

We first model the problem with the initial formulation (F1) and with the strength-
ened formulation (F2) that were proposed in Section 3.2.3 and we try to solve it
up to optimality. We decide to take 20 time slots (i.e., T = 20) and a batch task
can last for 10 time slots (i.e, d = 10). The problem has 10973 constraints for
the initial formulation and 1833 for the strengthened one. For both formulations,
we have 4800 binary variables, 480 integer variables, and 381 continuous variables.
We stopped the resolution of the problem modeled by the initial formulation at the
first linearization iteration after 20000 sec. and 21500 nodes, we got a remaining
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Figure 3.8: The industrial case

duality gap of 31.3%. The productivity corresponding to the best feasible solution
is 20.6 [ru/h]. This solution method corresponds to heuristic method 1.
Also, we stopped the resolution of the problem modeled by the strengthened for-
mulation at the first linearization iteration after 20000 sec. and 57600 nodes, we
got a remaining duality gap of 27.2%. The productivity corresponding to the
best feasible solution is 22 [ru/h]. This solution method corresponds to heuristic
method 2.

For the same problem, we used the heuristic method 5 defined previously with
the parameter k1 = 8 and the maximum time for solving each optimization sub-
problem is now set to 200 sec. The feasible solution obtained has a remaining
duality gap of 26.9%. The corresponding number of nodes is 3126 and the CPU
solution time is 1232 sec.. The productivity corresponding to this feasible solution
is 22.12 [ru/h].

After 20000 sec. of CPU time, the two methods proposed, based on the initial
(F1) and the strengthened (F2) formulation, were not able to provide a better
feasible solution than the one given by the heuristic method 5 in 1232 sec. of CPU
time. Therefore, heuristic methods such as heuristic 5 can be interesting for large
instances of the linearized objective problem, both in terms of solution quality and
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running time.

3.3.3 Bounds on the maximal productivity

However, the final objective is to maximize productivity. As explained in section
3.2.1, the optimal productivity is obtained by solving a sequence of mixed integer
linear programs where the value of µ is updated at each iteration.

Therefore, in order to obtain a good productivity for this basic industrial case,
if the feasible solution obtained at the first iteration has a productivity signifi-
cantly higher than the one fixed by default for iteration 1 (µ1), we can solve a
second iteration where µ is updated. We will obtain a feasible solution with a
productivity at least as good as the one obtained at the first iteration. We can
continue this procedure until no significant improvement of the productivity is
achieved.

In this case, µ1 = ρ = 10 and the heuristic 5 gives, for the first iteration, a
feasible solution with a duality gap of 26.9% (for the linearized objective) and a
productivity of 22.12[ru/h].

Actually, we cannot prove that this solution is optimal for the problem with the
nonlinear objective function (3.1) maximizing productivity because the solution
of the linear relaxation of the second linearized problem with objective function
(3.2) and with µ2 = 22.12 is 14.18, and is not 0.

To measure the quality of the solution obtained for the problem with the lin-
earized objective function in term of productivity (i.e. with respect to the non-
linear objective), we show that we can bound the maximal improvement of produc-
tivity that can be obtained by the optimal solution at each iteration, and that this
bound on the maximal improvement per iteration is monotonically non increasing
over the linearization iterations.

The objective value for the optimal solution of the problem with the linear
objective function at iteration p (q∗,p, τ∗,p) is bounded by :

∑

j∈OUT

T∑

t=1

q∗,p
j,t − µp

T∑

t=1

τ∗,p
t ≤ UBp

where UBp is the LP relaxation bound obtained at the root node of the Branch-
and-Bound algorithm. We show now how an upper bound on the maximal pro-
ductivity improvement can be obtained for this iteration.

We divide every term of the previous inequality by the unknown
∑T

t=1 τ∗,p
t (>

0), that is by the optimal cycle duration at iteration p for the problem with the
linear objective function, and we get :

∑

j∈OUT

∑T
t=1 q∗,p

j,t
∑T

t=1 τ∗,p
t

− µp = µp+1 − µp ≤
UBp

∑T
t=1 τ∗,p

t

This defines an upper bound on the productivity improvement (µp+1−µp). As
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∑T
t=1 τ∗,p

t is unknown, we look for a known lower bound on
∑T

t=1 τ∗,p
t in order to

obtain a known upper bound on µp+1 − µp.
First note that

∑T
t=1 τ∗,p

t ≥ pi1 because we know that in order to break the
symmetry, we have imposed that at least one batch task i1 of the line I ′ has to be
performed during the cycle. Moreover, in our case, we have some precedence con-
straints between batch tasks and therefore we know that if a batch task i1 starts
on line I ′, at least a set of batch tasks on line I ′ (BTI′) has to be processed during
the cycle. The minimum time required, in order to complete all the batch tasks in
the set BTI′ , is obtained when all the possible reactors of line I ′ are performing
the tasks in BTI′ in parallel. This is why (

∑T
t=1 τt) ≥

1
nbr unit I′

∑

i∈BTI′
pi where

nbr unit I ′ is the number of reactors available on line I ′ able to perform a batch
task of the set BTI′ .

This lower bound on the cycle length can actually be improved. If a feasible
solution at iteration p exists for the problem instance, it must satisfy
∑T

t=1 τt ≥ LBCL,p where

LBCL,p = min

T∑

t=1

τt

st
∑

j∈OUT

T∑

t=1

qj,t − µp

T∑

t=1

τt ≥ 0

and all the constraints of the basic strengthened formulation (F2)

are satisfied

Therefore, the upper bound on the maximal improvement of productivity that can
be obtained by the optimal solution at iteration p can be bounded by

µp+1 − µp ≤
UBp

∑T
t=1 τ∗,p

t

≤
UBp

LBCL,p
(3.3)

Now we prove why the upper bound on the maximal productivity improvement
that can be obtained by the optimal solution at each iteration is monotonically
non increasing over the iterations.

By starting with µ1 =
∑

j∈OUT ρ
j
, the value of µp is monotonically non de-

creasing (see Section 3.2.1).
Let q̃ and τ̃ be the solution of the linear relaxation at iteration p+1 that defines

the upper bound UBp+1 on the optimal objective value. Then, this solution
can also be a relaxed solution for iteration p. UBp+1 =

∑

j∈OUT

∑T
t=1 q̃j,t −

µp+1
∑T

t=1 τ̃t ≤
∑

j∈OUT

∑T
t=1 q̃j,t−µp

∑T
t=1 τ̃t because µp ≤ µp+1 and

∑T
t=1 τ̃t ≥

0. As q̃ and τ̃ are feasible for iteration p, we have
∑

j∈OUT

∑T
t=1 q̃j,t−µp

∑T
t=1 τ̃t ≤

UBp. This proves that UBp+1 ≤ UBp.
Moreover, since the value of µp is monotonically non decreasing, the value of

LBCL,p is also monotonically non decreasing since the constraint
∑

j∈OUT

∑T
t=1 qj,t − µp

∑T
t=1 τt ≥ 0 will restrict more and more the feasible solu-

tion set.
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Then, by dividing UBp+1 by LBCL,p+1 and UBp by LBCL,p, and by using
(3.3), the upper bound on the maximal productivity improvement that can be
obtained by the optimal solution at iteration p + 1 is less or equal than the one at
iteration p.

Therefore, if the upper bound on the maximal improvement of productivity
that can be obtained by the optimal solution between two iterations is small, we
know that for the next step this bound will be even smaller, and we can stop when
we find that the improvement will not be significant enough.

In our industrial case, we tried to solve the optimization problem in order
to determine LBCL,1 but we could not solve it to optimality. The lower bound
at the root node obtained on the minimum duration of the cycle is 1.8 h. The
upper bound obtained for the first linearization iteration is 40.5 for the three
heuristic methods. Therefore, the maximal improvement of productivity that
can be obtained by the optimal solution for the first linearization iteration is
40.5
1.8 = 22.5[ru/h]. So the maximal productivity that can be obtained by the op-
timal solution at iteration 1 is 32.5 [ru/h] (µ1 + 22.5). Heuristic 5 produces a
solution whose productivity is 22.12 ru/h (= µ2).

The upper bound obtained for the second linearization iteration is 14.18 and
the lower bound at the root node obtained on the minimum duration of the cycle
at iteration 2 is LBCL,2 ≥ 1.8 h. The maximal productivity improvement that we
can obtain by solving the second iteration up to optimality is 14.18

1.8 = 7.87[ru/h].
Therefore, the maximal productivity that can be obtained by the optimal solution
at iteration 2 is 30 [ru/h] (µ2(22.12) + 7.87). We observe that the maximal im-
provement per iteration is non-increasing.

We can also mention here the fact that during the Branch and Bound algo-
rithm, every time a feasible solution is obtained with a larger productivity than
the best current one, we could add a cut valid for the whole formulation imposing
that the productivity of the next feasible solution has to be greater or equal to this
larger productivity. This could give a better value of µ for the next iteration and
therefore speed up the convergence of the µ’s. Unfortunately, we have observed
that by adding this type of constraints, the resolution of the problem with the
linear objective function was slower.

3.3.4 Solution of the industrial case

To conclude, we describe the best solution obtained in terms of productivity by
heuristic method 5. The schedule obtained for line I and II is given in Figure 3.9.
We can observe that the three reactors of line I and the three reactors of line II
are processing during the cycle. Line III is not used.

The schedule obtained for the three reactors of line I and for the three reactors
of line II is represented in Figure 3.10.
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Figure 3.9: The schedule of the batch tasks of line I and of line II

For line 1 and 2, the resource levels are represented in Figures 3.11-3.12, re-
spectively.
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Figure 3.10: The schedule of the reactors of line I and II

The evolution of the storage tank level of the common buffer (Vr4) is repre-
sented in Figure 3.13.

3.4 Conclusion

We showed for all special cases of the general problem that the improved formu-
lations give better results (quality and/or running times) than the initial one but
the resolution of large instances remains difficult. We were still not able to solve
realistic industrial cases with exact Branch-and-Bound methods. So, we inves-
tigated MIP based heuristic methods in order to obtain good feasible solutions
quickly. We showed that, for some large instances, the heuristic solutions given
by the exact methods (truncated Branch-and-Bound) were not better than the
feasible solutions given by the MIP based heuristic methods, and the latter use
less CPU solution time. Finally, we solved a basic industrial case using the initial
and the strengthened formulations by truncated branch and bound, and also by
a MIP based heuristic method. We got quicker and better feasible solutions by
using the MIP based heuristic method, showing that such heuristic methods seem
important for large instances.
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Figure 3.11: The resources for line I

Figure 3.12: The resources for line II
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Figure 3.13: The evolution of the storage tank level of the buffer
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Chapter 4

Modeling the process
dynamics in the scheduling
problem

In the previous Chapters, we have solved scheduling problems with static processes,
i.e., where processing times of batch tasks and resource usages are constants of the
model. However, the processes involved in the scheduling problems can be modeled
dynamically with differential and algebraic equations (DAE) in order to obtain a
more flexible model, and possibly to increase productivity. The differential equa-
tions express the dynamics of the processes but, in general, explicit solutions of
differential equations are not available. Therefore, in this Chapter, various meth-
ods are proposed and investigated in order to compute numerical solutions of the
differential equations within the resolution of the scheduling optimization problem.

In the literature, two approaches are proposed in order to solve problems with
DAE. We can use a variational approach or an approach using a non linear pro-
gramming (NLP) solver. The variational approach is based on the solution of the
first order necessary conditions for optimality given by the Pontryagin’s maximum
principle (see Pontryagin et al. [39]). If the problem is composed of inequal-
ity constraints, it becomes often very difficult to solve the problem by using this
method. The other approach that uses the NLP solver can be further subdivided
into a sequential or a simultaneous approach, see Cervantes and Biegler [13] for
more details. More recently, in Mishra et al. [31], the interest of simultaneous
scheduling and control problems was highlighted.

In the sequential approach, the idea is to discretize the control variables, i.e.
the input variables of the system, and to consider them as the variables of the
optimization problem. Then, based on the optimal solution obtained for the con-
trol variables, we are able to compute, via the simulation of the DAE, the state
variables.

In the simultaneous approach, various possibilities presented below were pro-
posed in the literature. Cuthrell and Biegler in [17] compute the discretized so-

121
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lution of the differential equations by using polynomial approximations and or-
thogonal collocation. The system of equations is then solved by using a NLP
solver. In Cervantes and Biegler [14], the discretization of the solution of the
differential equations is based on a monomial basis representation that implies
smaller rounding errors, see Bader and Ascher [3]. This leads to a large-scale NLP
that is solved efficiently by using the structure of the equations. In Biegler et al.
[9], an improved nonlinear programming strategy for the simultaneous approach
using collocation formulations is proposed based on interior point methods. In
Terrazas-Moreno et al. [47], a simultaneous solution for the optimal sequencing
and optimal dynamic transition of two multi-grade polymerization reactors was
presented. This simultaneous formulation leads to a Mixed-Integer Dynamic Op-
timization (MIDO) problem that was transformed into a Mixed-Integer Nonlinear
Program by approximating the dynamics using orthogonal collocation equations.
The problem was then solved using an outer-approximation method. In Nystrom
et al. [34], the MIDO formulation is decomposed in a primal problem with the
dynamic part (a Dynamic Optimization Problem) and a master problem with the
scheduling formulation (a Mixed-Integer Linear Problem). Another idea for inte-
grating scheduling and control problem was proposed by Prata et al. in [40], the
MIDO is solved by using single and multiple shooting methods.

We can mention that collocation methods for dynamic optimization have been
used in design and scheduling optimization of batch plants, see Bhatia and Biegler
[8]. Finally, we can also indicate that in Charalambides et al. [15], the synthesis
of processes, i.e. the design of processes, including batch reaction and distillation
tasks was considered and they provide the optimal operating strategies for entire
batch processes by using a simultaneous approach.

A review on dynamic optimization methods can be found in Biegler and Gross-
mann [10].

In this Chapter, we focus on so-called simultaneous approaches that solve the
differential equations within the optimization problem. The production process
considered here is composed of a sequence of consecutive batch processes, where
the evolution of each batch task is modeled by differential equations, as a function
of some control variables (heating,. . . ), and the transitions between batch tasks
occur when specific condition on the system state are met. This is a hybrid pro-
cess described by a network composed of states and transitions. The associated
scheduling problem consists in selecting the control variables in order to minimize
the time required to produce the sequence of tasks. As in Avraam et al. [2], we
discretize the state and the control variables and we use first a collocation method
in order to solve numerically the differential equations within the scheduling op-
timization problem. The problem to solve is a mixed integer non linear program
(MINLP). In order to solve such a MINLP problem, a sequential mixed integer
linear programming (SMILP) algorithm is used.

However, in order to solve such MINLP problem, we can also use a sequential
mixed integer quadratic programming (SMIQP) algorithm instead of the SMILP
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one. We refer to the review of Boggs and Tolle in [11] for more information
on Sequential Quadratic Programming (SQP). The main advantage of SQP is
that it is possible to ensure under some assumptions that the algorithm con-
verges to a point satisfying the KKT conditions from any starting point. We can
also mention here that SQP is already implemented in several software systems
(CONOPT,MINOS,. . . ). This is clearly an important future research direction.

Then, two other non linear methods are proposed in order to numerically solve
the differential equations within the optimization problem, namely the explicit
euler method and the trapezoidal method. For more details about these methods,
see for example Ralston and Rabinowitz [41]. This leads for both cases to MINLP
problems that are solved by the SMILP algorithm.

However, even if the non linear numerical integration of the differential equa-
tions leads to a more accurate model of the process, it has the drawback that the
solution obtained, by using the SMILP algorithm, has no guarantee of optimal-
ity since the corresponding optimization problem is nonlinear and generally non
convex.

Therefore, we also propose to solve the differential equations by using two piece-
wise linear approximation methods. The idea of the first method is to discretize
the space of the state and control variables in hypercubes. In every hypercube,
we build a linear approximation of the solutions of the system of differential equa-
tions around the point in the middle of the hypercube. For the second method
proposed, we decompose the state and control variables involved in the process
dynamics into a set of simplices. Every point in the state/control space can be
expressed as a convex combination of extreme points of a simplex. Then the val-
ues of the non linear functions describing the process dynamics at a point of a
simplex are expressed as the corresponding convex combination of the values of
the nonlinear function at the extreme points of the simplex. These two methods
were inspired by finite element methods. We refer to Thomée [48] for a review on
finite element methods.

The outline of the Chapter is the following. First, we present four numerical
ways of approximating numerically the solution of the differential equations within
an optimization problem. Then, we illustrate on an example, composed of a single
batch task, the efficiency of these four methods. Finally, we solve a more general
case composed of parallel batch tasks.

4.1 Modeling the process dynamics

The solution of optimization problems with general differential equations is a very
difficult problem. Only very small instances can be succesfully solved when the
numerical solution of the differential equations has to be computed within the
optimization problem. In this section, we present four methods to compute nu-
merically the solution of the differential equations that can be used within the
resolution of an optimization problem.
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4.1.1 Description of the process dynamics

The very general process dynamics that we address in this Chapter is the following
:

dx(t)

dt
= f(x(t), u(t)) (4.1)

x(0) is fixed (4.2)

xL ≤ x(t) ≤ xU , uL ≤ u(t) ≤ uU (4.3)

where f(x(t), u(t)) is a general continuous and differentiable function, x(t) is the
vector of the state variables of the system studied and u(t) is the vector of the
control variables of the system.

4.1.2 Approximated model formulation

Next, we present four general discretization methods in order to model the dy-
namics of the system represented by (4.1).

⋄ The Euler explicit and the trapezoidal method

We begin first with the Euler explicit method. We approximate the value of
the state variables by approximating the solution of the differential equation (4.1)
by the following set of discrete time equations:

x0 = x(0)

xi = x0 + h

(
i−1∑

p=0

f(xp, up)

)

∀i ∈ {1, . . . , K}

where K+1 is the number of discrete points in the time interval for approximating
the solution of the differential equation and h is the constant time step between
two discrete points, i.e., the discrete times ti, i ∈ {0, . . . , K}, are ti = ih. We set
that x(ti) = xi and u(ti) = ui ∀ i ∈ {0, . . . , K}.

However, for such problems, there is a much more stable implicit method (see
for example Ralston and Rabinowitz [41]) than the Euler explicit one and that is
called the trapezoidal method. The value of the state variables is approximated
as follows :

x0 = x(0)

xi = x0 +
h

2

(
i∑

p=0

f(xp, up) +
i−1∑

p=1

f(xp, up)

)

∀ i ∈ {1, . . . , K}

where again K + 1 is the discrete number of points in the time interval and h is
the constant time step between two discrete points.
Since the trapezoidal method is more stable than the euler explicit one and the
number of constraints and variables for both methods are the same, we decide to
only use the trapezoidal method for the rest of the Chapter.
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⋄ The collocation method

The main idea of the method is to assume that the solution of the set of
differential equations (4.1) is a set of K + 1 polynomials of given degree K. The
derivative with respect to t of these polynomials has to be equal to the right hand
side of the differential equation (4.1), i.e. f(x(t), u(t)).

We assume that the solution of the differential equations (4.1) is the Lagrange
interpolation polynomials of degree K written as follows :

x(t) =

K∑

p=0

cpφp(t) (4.4)

where

φp(t) =

K∏

k=0,k 6=p

(t − tk)

(tp − tk)
(4.5)

for the K + 1 collocation points ti, i ∈ {0, . . . , K}, such that ti = ih.
We impose that the derivative of these polynomials is equal to f(x(t), u(t)) :

dx(t)

dt
=

K∑

p=0

cpφ
′
p(t) = f(x(t), u(t))

where

φ′
p(t) =

∑K
k=0|k 6=p

(
∏K

l=0|l 6=k,l 6=p(t − tl)
)

∏K
k=0|k 6=p(tp − tk)

for the K + 1 collocation points.
We discretize the proposed solution of the set of differential equations at the

K + 1 collocation points.
We set x(ti) = xi∀i ∈ {0, . . . , K} and φp(ti) = φp,i∀p ∈ {0, . . . , K}, i ∈

{0, . . . , K}. Then we evaluate theses polynomials at the discretized time points ti
for i = 0, . . . , K, and we have

xi =

K∑

p=0

cpφp,i ∀i ∈ {0, . . . , K} (4.6)

where

φp,i =

K∏

k=0,k 6=p

(ti − tk)

(tp − tk)
= δp,i ∀p ∈ {0, . . . , K}, i ∈ {0, . . . , K} (4.7)

and δp,i is the kronecker delta.

Therefore, we have :

xi =

K∑

p=0

cpφp,i =

K∑

p=0

cpδp,i = ci ∀i ∈ {0, . . . , K} (4.8)
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The variables for the control (u(t)) are discretized and are constant over each time
period and are expressed as follows : u(ti) = ui for i ∈ {0, . . . , K}.

The discretized conditions imposed on the approximation of the solution of the
differential equations (4.1) are written as

x0 = x(0)
K∑

p=0

xpφ
′
p,i = f(xi, ui) ∀i ∈ {0, . . . , K}

For both methods (the trapezoidal and the collocation), if f(x(t), u(t)) is non-
linear and non convex, we have nonlinear equality constraints in the model for-
mulation and therefore the optimization problem is non convex. Therefore, it is
not possible to estimate the global quality of the best solution obtained, in gen-
eral. We solve these non linear optimization problems by using a sequential linear
programming (SLP) algorithm.

⋄ A first piecewise linear approximation

We suppose that in this case the function f(x(t), u(t)) is nonlinear. The ob-
jective is to transform or approximate the general system of nonlinear differential
equations (4.1) by multiple systems of linear differential equations for which ex-
plicit solutions are known. We decompose the (x, u) space in hypercubes and the
nonlinear dynamics of the system is linearly approximated around the middle point
of the each hypercube. For each linear approximation, an explicit solution exists.
In the formulation, at each discrete time, we have to model first in which hyper-
cube we are and then use the explicit solution of the corresponding linear dynamic.

In order to model in which hypercube we are, we have to introduce a new
variable : δj,t which is equal to 1 if the system is in the hypercube j of the space
(x, u) at time t, and 0 otherwise.
We divide the (x, u) space in | J | hypercubes. Each component of the vector x
of state variables is discretized in Nbrdiv1 elements and each component of the
vector u of control variables is discretized in Nbrdiv2 elements. Suppose that Xj

and Xj are the vectors of the lower and upper bounds on the values of vector x
in hypercube j, respectively. Similarly, suppose that U j and U j are the lower and
upper bounds on the values of vector u in hypercube j.

By using the next set of inequalities, we can model in which hypercube we are
at time i ∈ {0, . . . , K} in the following way.

(xL, uL)(1 − δj,i) + (Xj , U j)δj,i ≤ (xi, ui) ≤ (Xj, U j)δj,i +
(
xU , uU

)
(1 − δj,i) ∀j ∈ {1, . . . , | J |}, i ∈ {0, . . . , K} (4.9)

∑

j∈J

δj,i = 1 ∀i ∈ {0, . . . , K} (4.10)

δj,i ∈ {0, 1} ∀j ∈ {1, . . . , | J |}, i ∈ {0, . . . , K} (4.11)

We have to approximate the solution of the nonlinear differential system around
the middle point of every hypercube j (x̃j , ũj) of the (x, u) space. This linear
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differential equation for the hypercube j can be expressed as follows :

ẋ = Ajx + Bju + Cstej (4.12)

where

Aj =
∂f

∂x

∣
∣
∣
(x̃j ,ũj)

, Bj =
∂f

∂u

∣
∣
∣
(x̃j ,ũj)

, Cstej = f(x̃j , ũj) − Aj x̃j − Bj ũj

The discrete time solution of this differential equation is the following if we
suppose that (xi−1, ui−1) is in the hypercube j :

xi = eAj∆txi−1 +

(
∫ ∆t

0

eAj(∆t−τ)dτ

)

Kj,i−1

= eAj∆txi−1 +

(

I∆t − Aj

(∆t)2

2!
+ A2

j

(∆t)3

3!
− . . .

)

eAj∆tKj,i−1

≈ eAj∆txi−1 +

(

I∆t − Aj

(∆t)2

2!
+ A2

j

(∆t)3

3!

)

eAj∆tKj,i−1

where ∆t = ti − ti−1 ∀i ∈ {1, . . . , K} is a predefined fixed constant and Kj,i =
Bjui + Cstej .

For the whole area composed of the | J | hypercubes, the approximation of the
general discrete time solution is :

xi =

|J|
∑

j=1

δj,i−1[e
Aj∆txi−1 +

(

I∆t − Aj

(∆t)2

2!
+ A2

j

(∆t)3

3!

)

eAj∆tKj,i−1]

for all i ∈ {0, . . . , K}.

This equation is nonlinear but can be transformed into a linear form, see for
example in Bemporad and Morari [6], as follows :
for all i ∈ {0, . . . , K},

xi =
∑

j∈J

zj,i

and for all i ∈ {1, . . . , K}, j ∈ J

zj,i ≤ Mjδj,i−1

zj,i ≥ mjδj,i−1

zj,i ≤ [eAj∆txi−1 +

(

I∆t − Aj

(∆t)2

2!
+ A2

j

(∆t)3

3!

)

eAj∆tKj,i−1]

−mj (1 − δj,i−1)

zj,i ≥ [eAj∆txi−1 +

(

I∆t − Aj

(∆t)2

2!
+ A2

j

(∆t)3

3!

)

eAj∆tKj,i−1]

−Mj (1 − δj,i−1)
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with

Mj ≥ max(X
j
,U

j
)≤(x,u)≤(Xj ,Uj)

[

eAj∆tx +

(

I∆t − Aj

(∆t)2

2!
+ A2

j

(∆t)3

3!

)

eAj∆t(Bju + Cstej)
]

mj ≤ min(Xj ,Uj)≤(x,u)≤(Xj ,Uj)

[

eAj∆tx +

(

I∆t − Aj

(∆t)2

2!
+ A2

j

(∆t)3

3!

)

eAj∆t(Bju + Cstej)
]

To estimate Mj and mj , we discretize the (x, u) space in the hypercube j with a
very fine grid in order to compute an accurate value for Mj and mj by complete
enumeration.

It is well known that such model formulations are very poor since big M con-
straints are usually not tight at all. Therefore, for such model formulation, refor-
mulation is crucial in order to be able to solve large instances.

⋄ A second piecewise linear approximation

We suppose here that f(x(t), u(t)) is nonlinear. The idea is to approximate
f(x(t), u(t)) by a piecewise linear function using integer linear programming, as
proposed in Lee and Wilson [26].

We first triangle the space (x, u) with a finite set of simplices △j having vertex
set ν(△j) where j ∈ {1, . . . , |J |}. Each variable [x(t); u(t)] is a convex combinaison
of predefined discrete constants Xk, Uk with k ∈ {1, . . . , m}, which are the values

of (x, u) at the extreme points of the simplices, and m =
∣
∣
∣
⋃

j∈J ν(△j)
∣
∣
∣. We

discretize the variables [x(t); u(t)] in T +1 time periods and we express the convex
combination as follows :

xi =

m∑

k=1

λk,iXk∀i ∈ {0, . . . , T}

ui =

m∑

k=1

λk,iUk∀i ∈ {0, . . . , T}

m∑

k=1

λk,i = 1, λk,i ≥ 0 ∀k ∈ {1, . . . , m}, ∀i ∈ {0, . . . , T}

We define a binary variable yj,i for each simplex j ∈ {1, . . . , |J |} and time i ∈
{0, . . . , T} to impose the adjacency condition, or membership of simplex j, as
follows :

yj,i = 0 if (xi, ui) 6∈ △j

= 1 if (xi, ui) ∈ △j
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By adding the following set of constraints,

|J|
∑

j=1

yj,i = 1 ∀i ∈ {0, . . . , T} (4.13)

λk,i ≥ 0 ∀k ∈ {1, . . . , m}, i ∈ {0, . . . , T} (4.14)
m∑

k=1

λk,i = 1 ∀i ∈ {0, . . . , T} (4.15)

xi =

m∑

k=1

λk,iXk∀i ∈ {0, . . . , T} (4.16)

ui =

m∑

k=1

λk,iUk∀i ∈ {0, . . . , T} (4.17)

λk,i −

|J|
∑

j=1|k∈ν(△j)

yj,i ≤ 0 ∀k ∈ {1, . . . , m}, ∀i ∈ {0, . . . , T} (4.18)

yj,i ∈ {0, 1} ∀j ∈ {1, . . . , |J |}, i ∈ {0, . . . , T}, (4.19)

we can model the simplex in which we are at time i and express (xi, ui) as a convex
combination of extreme points of the simplex. The solution of the differential
equation (4.1) can be approximated using the explicit Euler method as follows :

xi+1 = x(t + ∆t) =
m∑

k=1

λk,i (f(Xk, Uk)∆t + Xk)∀i ∈ {0, . . . , T − 1} (4.20)

Note that this solution satisfies the initial condition. By setting ∆t = 0, we can
observe that

xi+1 =

m∑

k=1

λk,iXk = xi∀i ∈ {0, . . . , T − 1}.

This corresponds exactly to the initial condition.
A more stable implicit method, such as the trapezoidal presented above, could

be used as well in order to approximate the solutions of the set of differential
equations.

Lee and Wilson in [26] propose a valid inequality that can help to speed up the
resolution of the problem. Let △ be the set of simplices having vertex set ν(△).
For β ⊂ △, with vertex set ν(β) =

⋃

j∈β ν(△j),
∑

j∈β

yj,i −
∑

v∈ν(β)

λv,i ≤ 0 ∀i ∈ {0, . . . , T} (4.21)

These cuts improve the model formulation and can be used in a branch-and-cut
algorithm.

4.2 Application to a single batch task

We have proposed two nonlinear non convex models for the approximation of the
solutions of the differential equations which are the trapezoidal method and the
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collocation method. We have also presented two linear approximation models for
modeling the solutions of the differential equations.

In this Section, we test the quality and the efficiency of these four models on
a simple test case composed of only one heating task. For this heating task, the
process dynamics are described by two non linear differential equations, one for the
concentration of the reactant (Ca) and one for the temperature (T ). The objective
of this simple scheduling problem is to minimize the time needed for reaching the
temperature 450.15K and the initial temperature is 298.15K.
We fix as initial conditions Ca(0) = Ca0 = 1.1mole/l and T (0) = T0 = 298.15K.
The two differential equations are the following :

dCa(t)

dt
= −2k0e

− E
R T (t) Ca(t)2 (4.22)

dT (t)

dt
= −

λ

ρ Cp

k0e
− E

R T(t) Ca(t)2 + qh(t)(Th − T (t)) (4.23)

We fixed the other parameters of these two differential equations as follows :
k0 = 3.512 ∗ 10−2 ∗ 3600[l/mole.h], E = 10560[J/mole], R = 8.314[J/mole.K],
λ = −41.85[J/mole], ρ = 0.9342[kg/l], Cp = 3.01[J/kg.K] and Th = 493.15[K].

The vector of state variables is here

x(t) =

(
Ca(t)
T (t)

)

.

The control variable u(t) is the rate qh(t) ([1/h]) of hot water given to the system.
In order to detect the end of the heating task, we add a binary variable z(t) which
is 1 when the heating task is finished and 0 otherwise. No resource is shared.

The state, the control and the binary variables are evaluated at discretized
time points ti for i ∈ {0, . . . , T} and are expressed as follows : Ca(ti) = Cai,
T (ti) = Ti , qh(ti) = qhi and z(ti) = zi. The conditions on these variables can be
written as follows :

0 ≤ qhi ≤ 3.6 ∀i ∈ {0, . . . , T}

0 ≤ Cai ≤ 1.1 ∀i ∈ {0, . . . , T}

298.15 ≤ Ti ≤ 600 ∀i ∈ {0, . . . , T}

zi ∈ {0, 1} ∀i ∈ {0, . . . , T}
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The global formulation of the optimization problem is the following :

min

T∑

i=0

i zi (4.24)

s.t. the discrete solution of the process dynamics (4.22)-(4.23) (4.25)

Ti ≥ 450.15 zi∀i ∈ {0, . . . , T} (4.26)
T∑

i=0

zi = 1 (4.27)

0 ≤ qhi ≤ 3.6 ∀i ∈ {0, . . . , T} (4.28)

0 ≤ Cai ≤ 1.1 ∀i ∈ {0, . . . , T} (4.29)

298.15 ≤ Ti ≤ 600 ∀i ∈ {0, . . . , T} (4.30)

zi ∈ {0, 1} ∀i ∈ {0, . . . , T} (4.31)

Ca0 = 1.1, T0 = 298.15 (4.32)

This is a minimum time optimal control problem for the system composed of
the two nonlinear differential equations (4.22)-(4.23). We refer to Berkovitz [7]
for a review of some important aspects of optimal control theory. The optimal
solution for this simple test case is trivial. By using the maximum rate of hot
water available, i.e. qh(t) = 3.6 ([1/h])), we will minimize the time to reach the
temperature 450.15K. In Figure 4.1, we illustrate the simulated solution of the
original nonlinear differential equations using the optimal values given above for
the control variables. The simulated solution is computed by using the Simulink
toolbox of Matlab. The temperature 450.15 K is reached after 0.4028 h.

For the four methods, the software used is Xpress-MP and the computer is a
Pentium 4, running at 3 GHz.

For solving the two nonlinear non convex mixed integer programming problems,
we use the sequential mixed integer linear programming algorithm of Xpress-MP.
For the other two linear approximation methods, we use the standard MIP solver
implemented in Xpress-MP.

The results obtained with the four methods are presented in Figures 4.2-4.5.
The solid lines represent the simulated solution of the original nonlinear differen-
tial equations using the optimal values obtained for the control variables. For the
four methods, we consider the following time interval : t ∈ [0; 0.83] [h]. The dis-
cretized solution, computed when solving the optimization problem, is represented
by discrete stars.

Figure 4.2 represents the solution obtained with the collocation method. We
select a time step of 0.083 h and 11 discrete time points.

Figure 4.3 presents the results with the trapezoidal method. We select the
same time step and the same number of discrete time points as for the collocation
method.
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Figure 4.1: The optimal solution. Evolution of the Temperature, the concentration
and the heating rate for the heating task

With the first piecewise linear approximation, we obtain the results in Figure
4.4. With this kind of approximation, the number of divisions of the space in
hypercubes has to be small. Otherwise, the size of the problem will be too big
and the solution time increases very fast. We discretize the space in three for each
state and control variables and this leads to a decomposition of the space in 8
hypercubes. Moreover, an important feature is to reduce sufficiently the time step
in order to obtain a solution of good quality. The time step is 0.055 h and the
number of discrete time points is 16.

With the second piecewise linear approximation method, we obtain the results
presented in Figure 4.5. As for the previous method, the most important design
feature for this method is to use a small time step and a small number of simplices.
We decomposed the space into 5 simplices by using the Delaunay triangulation al-
gorithm proposed by Barber et al. in [5], the time step is of 0.055 h and the
number of discrete time points is 16.

We have tried to use the trapezoidal method in the second piecewise linear
approximation method but the solution obtained for this example was not much
better than the one obtained when using the explicit euler method.

In Table 4.1, we summarize the number and type of constraints and variables
for the four methods.
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Figure 4.2: Collocation method. Evolution of the Temperature, the concentration
and the heating rate for the heating task

Lin. Constr. Nonlin. Constr. Cont. var. Bin. var.

Collocation 31 22 31 11

Trapezoidal 31 20 31 11

P. lin. approx I 1407 0 288 144

P. lin. approx II 255 0 176 96

Table 4.1: Number of constraints and variables for the four approximation methods

We can observe that the collocation and the trapezoidal methods need the
same number of constraints and variables. We can also observe that the piecewise
linear approximation method II is more compact than the piecewise linear approx-
imation method I.

In Table 4.2, we summarize the results of the optimization problem obtained
for the four methods.

We observe first that the profiles of the control variables obtained for the
trapezoidal method and for the two piecewise linear approximation methods are
not very close to the global optimal one represented in Figure 4.1. This will be
further discussed below and also in the Section “General comments about the
results”.
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Figure 4.3: Trapezoidal method. Evolution of the Temperature, the concentration
and the heating rate for the heating task

Time points CPU time (s) Nodes Object. (h)

Collocation 11 1.81 11 0.415

Trapezoidal 11 13.37 11 0.415

Piecew. lin. approx. I 16 9 2288 0.387

Piecew. lin. approx. II 16 0.3 69 0.387

Table 4.2: Solution of the optimization problem for the four approximation meth-
ods

The piecewise linear approximation method II provides the optimal objective
value in less CPU time. However, the quality of the approximation of the non
linear process dynamics has to be checked.

Note for the collocation method that the difference in the optimal objective
value obtained is partly due to the difference in the discrete time points used.
By using 16 time points for the collocation method, we get 0.387 h as optimal
objective value.

However, this was not observed using the trapezoidal method. By increasing
the number of time points to 16, the optimal objective function obtained is 0.44h.

In Table 4.3, we compute three types of error for the four approximations of the
non linear process dynamics. We compare the state variables values obtained in
the simulated solutions using the control variables obtained by optimization, with
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Figure 4.4: First piecewise linear approximation method. Evolution of the Tem-
perature, the concentration and the heating rate for the heating task

the approximate solutions of the state variables obtained by optimization. The
error is defined as ei = simulated valuei − approx. valuei at the different discrete
time points i ∈ {0, . . . , time points− 1}. We define the three types of error below.

The Average Error is equal to (
∑time points opt

i=0 ei/(time points opt + 1)), the
Maximum Error is equal to (maxi∈{0,...,time points opt} |ei|) and the Average Abso-

lute Error is equal to (
∑time points opt

i=0 |ei|/(time points opt + 1)) where for each
method time points opt corresponds to the minimum number of time points nec-
essary to complete the heating task, i.e. the optimal objective value of the corre-
sponding optimization problem.

In Table 4.4, we give the simulated values of the temperature obtained at the
end of the heating task by the four methods.

It is important to compare the best solutions obtained by the four methods
represented in Figures 4.2-4.5 with the trivial global optimal solution for this sim-
ple test case represented in Figure 4.1. The solution obtained for the collocation
method is very close to the global optimal solution of the problem, i.e. qh(t) = 3.6
([1/h]). The best solutions obtained by the three other methods have different
profile for the control variables than the optimal one represented in Figure 4.1.
However, we can observe that the best solutions obtained by the four methods
have a corresponding objective value very close to the global optimal objective
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Figure 4.5: Second piecewise linear approximation method. Evolution of the Tem-
perature, the concentration and the heating rate for the heating task

Average Error Maximum Error Av. Abs. Error

T(K) Ca(mol/l) T(K) Ca(mol/l) T(K) Ca(mol/l)

Collocation 0.62 0 1.67 0 0.62 0

Trapezoidal 0.21 0 3.1 0.01 0.82 0

PL Approx I -4.6 0.02 12.81 0.05 4.81 0.02

PL Approx II -4.37 -0.01 7.15 0.03 4.37 0.01

Table 4.3: Comparison of the average, the maximum and the average absolute
errors of approximation of the non linear dynamics of the system by the four
approximation methods

Final Temperature

Collocation 451.8 K

Trapezoidal 449.6 K

PL Approx I 437.3 K

PL Approx II 445.5 K

Table 4.4: Final simulated temperature values for the four methods

one.
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Many reasons can explain this difference. First of all, the four approximation
methods used for solving the general problem cannot ensure the global optimality
of the best solution obtained. The solution obtained by using the two first meth-
ods (the collocation and the trapezoidal method) is at best locally optimal. As
mentioned earlier in this Chapter, it could be interesting for these first two meth-
ods to compare the best solutions obtained here by using the SMILP algorithm
with the ones obtained by using the SMIQP algorithm. We can recall here also
that by using the two piecewise linear approximation methods, the selection of
their corresponding parameters is very important in order to approximate well the
nonlinear dynamics of the process.

Finally, the discretization of time can also have a strong impact on the quality of
the best solutions obtained by the four methods. The profile of the control variables
can be far from the optimal one if the discretization of time is not appropriate.

In order to further improve the solutions obtained by the four methods, we
discuss below the choice of their corresponding parameters.

General comments about the results

⋄ We can observe that the collocation method is clearly the best for this ap-
plication. The approximation of the solution of the nonlinear differential set
of equations is quite accurate and the final local optimal solution is obtained
quickly and is similar to the other methods. However, in terms of robustness,
we can observe that the collocation method is not the best. When we in-
crease the number of collocation points, the quality of the solution obtained
can vary much and therefore this method is not reliable.

If, for example, we increase by three the number of time points, we can
observe in Table 4.5 that the solution time and the total number of branch-
and-bound nodes do not increase too much in comparison with the initial
case composed of 11 time points.

Time points CPU time (s) Nodes Object. (h)

Collocation (11) 11 1.81 11 0.415

Collocation (14) 14 3 15 0.447

Table 4.5: Solution of the optimization problem for the collocation method with
11 and 14 time points

However, in Table 4.6 and in Figure 4.6, we can observe that the quality of
the approximation of the non linear dynamics of the system is very bad. We
can also mention that the best solution obtained for this case is not close to
the global optimal solution of the problem represented in Figure 4.1.

By increasing the number of time points, the approximation of the nonlinear
dynamics of the system provided by the collocation method can be strongly
affected and become extremely bad.

In fact, by increasing the number of time points, the degree of the poly-
nomials increases also and therefore the collocation method can become in-
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Average Error Maximum Error Av. Abs. Error

T(K) Ca(mol/l) T(K) Ca(mol/l) T(K) Ca(mol/l)

Collocation (14) -21.51 0.06 48 0.11 21.51 0.06

Table 4.6: The average, the maximum and the average absolute errors of approx-
imation of the non linear dynamics of the system by the collocation method with
14 time points

Figure 4.6: Collocation method (14 time points). Evolution of the Temperature,
the concentration and the heating rate for the heating task

convenient for numerical purpose because unstable. As shown in Cuthrell
and Biegler [17], by introducing finite elements, it is possible to reduce the
degree of the polynomials for the collocation method and therefore improve
its robustness. In the future, this should be tested on the problem addressed
in this Section.

⋄ The trapezoidal method provides a quite accurate approximation of the solu-
tion of the nonlinear differential equations and a good local optimal solution
but is slow in terms of CPU time. The profile of the control variable rep-
resented in Figure 4.3 is not exactly the global optimal one given in Figure
4.1. This is due to the discretization of time since if we use the maximum
quantity available of hot water at each time period, i.e. if qhi = 3.6 for
i ∈ {0, . . . , 10}, we are not able to get a better objective function than the
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one obtained in Figure 4.3, i.e. 0.415 h. The best solution for this problem
is therefore not unique and is quite dependent of the choice of the time dis-
cretization.

We can show that this method is more robust than the collocation one. We
illustrate this property below on an example.

If we increase by three the number of time points, we can observe in Table
4.7 that the solution time and the total number of branch-and-bound nodes
do not increase too much in comparison with the initial case composed of 11
time points.

Time points CPU time (s) Nodes Object. (h)

Trapezoidal (11) 11 13.37 11 0.415

Trapezoidal (14) 14 37.6 15 0.447

Table 4.7: Solution of the optimization problem for the trapezoidal method with
14 time points

In Table 4.8 and in Figure 4.7, we can observe that the quality of the ap-
proximation of the non linear dynamics of the system is still quite accurate
except the approximated value of the temperature for one time point. The
same difference between the profile of the control variable obtained here and
the global optimal one can be observed in Figure 4.7 but an equivalent ex-
planation as the one given for Figure 4.3 can be provided. The best solution
for this problem is therefore not unique and is quite dependent of the choice
of the time discretization.

Average Error Maximum Error Av. Abs. Error

T(K) Ca(mol/l) T(K) Ca(mol/l) T(K) Ca(mol/l)

Trapezoidal (14) 1.02 0 9.3 0.01 1.31 0

Table 4.8: The average, the maximum and the average absolute errors of approx-
imation of the non linear dynamics of the system by the trapezoidal method with
14 time points

The approximation of the solution of the nonlinear dynamics of the system
provided by the trapezoidal method remains accurate when we increase the
number of time points. This seems to indicate that the robustness of the
trapezoidal method is better than the one of the collocation method.

⋄ The first piecewise linear approximation method provides a not too bad
approximation of the solution of the differential equations and a local optimal
solution similar to the one obtained by the other methods. However, the
CPU solution time is large. For improving the quality of the approximation,
the idea is to increase the number of hypercubes and to decrease the time
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Figure 4.7: Trapezoidal method (14 time points). Evolution of the Temperature,
the concentration and the heating rate for the heating task

step. But, rapidly, the size of the problem increases and the CPU solution
time becomes quite large. Again, we can observe in Figure 4.4 that the
profile obtained for the control variable is not close to the global optimal
one represented in Figure 4.1. In this case, we could not show that the
bad approximation of the profile of the control variables is due to the time
discretization.

In order to obtain a better solution, we try to use another set of parameters
for the model formulation. We divide the space not in 8 hypercubes but
in 27 by discretizing the space in 3 intervals for each state and command
variables, and if we consider only 14 time points, the approximated solution
of the non linear dynamics of the system obtained, presented in Table 4.9
and in Figure 4.8, is better for the temperature than the initial one with 8
hypercubes. However, in order to obtain this result, we need a CPU solu-
tion of 196 s and 36959 branch-and-bound nodes. We can observed that the
profile of the control variables is still not close to the global optimal one but
in this case if we use the maximum quantity available of hot water at each
time period, i.e. if qhi = 3.6 for i ∈ {0, . . . , 13}, we are not able to get a
better objective function than the one obtained in Figure 4.8, i.e. 0.447 h.
The best solution for this problem is therefore not unique and is dependent
of the choice of the time discretization.
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Average Error Maximum Error Av. Abs. Error

T(K) Ca(mol/l) T(K) Ca(mol/l) T(K) Ca(mol/l)

PL Approx I (8 hy.) -4.6 0.02 12.81 0.05 4.81 0.02

PL Approx I (27 hy.) -0.46 0.03 2.23 0.09 0.6 0.03

Table 4.9: The average, the maximum and the average absolute errors of approx-
imation of the non linear dynamics of the system by the first piecewise linear
approximation method with 8 and 27 hypercubes

Figure 4.8: The first piecewise approximation method (27 hypercubes). Evolution
of the Temperature, the concentration and the heating rate for the heating task

If we also increase the number of time points, the quality of the approximated
solutions of the nonlinear dynamics of the system should be further improved.
However, it was not possible to solve such a large problem instance in a
reasonable amount of computing time.

⋄ For the second piecewise linear approximation, the quality of the approxi-
mated solution of the differential equations is better than the one obtained
by the first piecewise approximation method in terms of average, maximum
and average absolute errors, and the CPU solution time is much smaller.
The local optimal solution obtained is similar to the one obtained by the
other methods. The profile of the control variable represented in Figure 4.5
is not exactly the global optimal one given in Figure 4.1. This is due to the
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discretization of time since if we use the maximum quantity available of hot
water at each time period, i.e. if qhi = 3.6 for i ∈ {0, . . . , 15}, we are not
able to get a better objective function than the one obtained in Figure 4.5,
i.e. 0.387 h. The best solution for this problem is therefore not unique and
is quite dependent of the choice of the time discretization.

In order to increase the quality of the approximated solution of the dif-
ferential equations, we have to discretize with a finer grid and with more
simplices.

For example, we consider 56 time points for the same time interval and the
same number of simplices as for the previous piecewise linear approximation
method 2. For this case, the formulation is composed of 895 constraints, 336
binary variables and 616 continuous variables.

The quality of the approximated solution of the non linear dynamics of the
system obtained, presented in Table 4.10 and in Figure 4.9, is better for the
temperature than the previous one. In Figure 4.9, the deviation from the
optimal control profile presented in Figure 4.1 is reduced because we have
chosen a finer time grid.

We could also further improve the quality of the approximation by increasing
the number of simplices. But this leads to a larger problem instance that is
more difficult to solve.

Average Error Maximum Error Av. Abs. Error

T(K) Ca(mol/l) T(K) Ca(mol/l) T(K) Ca(mol/l)

PL Approx II (16) -4.37 -0.01 7.15 0.03 4.37 0.01

PL Approx II (56) -1.43 -0.04 1.99 0.06 1.43 0.04

Table 4.10: The average, the maximum and the average absolute errors of approx-
imation of the non linear dynamics of the system by the second piecewise linear
approximation method with 16 and 56 time points

However, in order to obtain such a good approximation, we need a CPU
solution of 341 s and 79065 branch-and-bound nodes.

It is possible to speed up the resolution of such large instances by improving
the model formulation. In order to improve the tightness of the piecewise
linear approximation II, we add, at the top node of the branch-and-bound
tree after that the cuts were generated automatically by the MIP solver, all
the violated valid inequalities of the form (4.21) to the matrix of the con-
straints.

In Table 4.11, we compare the initial piecewise linear approximation II and
the improved one.

We can observe for this instance that the improved formulation provides bet-
ter results than the initial one since the total number of nodes and the CPU
solution time are reduced. For the improved formulation, we have added, at
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Figure 4.9: The second piecewise approximation method (56 time points). Evo-
lution of the Temperature, the concentration and the heating rate for the heating
task

Time points CPU time (s) Nodes Object. (h)

PL approx II 56 341 79065 0.39

PL approx II improved 56 150 28419 0.39

Table 4.11: Comparison of the initial and improved piecewise linear approximation
method 2

the top node of the branch-and-bound tree, 18 violated valid inequalities of
the form (4.21) to the matrix of constraints.

To conclude, the results show that the second piecewise linear approximation
method makes a good compromise between quality of the solution and CPU time
needed for solving the problem. It is clear that the more accurate and robust
solution method is the trapezoidal one. The drawback of such method is that it is
difficult to solve large mixed integer problems with nonlinear constraints and that
the quality of the local optimal solution obtained cannot be measured since the
problem is not convex.
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4.3 Application to parallel batch tasks

In this Section, we consider a test case composed of a heating task that has to be
performed on two reactors. We test the quality and the efficiency of the trapezoidal
and of the second piecewise linear approximation methods on this test case. The
process dynamics of the heating task and the parameters used were given in the
previous section by the differential equations (4.22)-(4.23) and the parameters
given below these differential equations. The objective of the scheduling problem is
to minimize the time needed for reaching the temperature 400 K in the two reactors
and the initial temperature in each reactor is 298.15 K. For this heating task, the
concentration of the reactant and the temperature in reactor j are denoted by Caj

and Tj , respectively. The control variable in each reactor is the rate qhj of hot
water and the total rate of hot water is shared among the two reactors. The binary
variables zj is 1 when the heating task in reactor j is finished and 0 otherwise.
Finally, the binary variables zf is 1 when both reactors have finished the heating
task, and is 0 otherwise.

As explained in the previous section, the state, the control and the binary
variables are evaluated at discretized time points ti for i ∈ {0, . . . , T} and are
expressed as : Caj(ti) = Caj,i, Tj(ti) = Tj,i, qhj(ti) = qhj,i, zj(ti) = zj,i and

z(ti)
f = zf

i . The initial conditions are : Caj,0 = 1.1 ∀j{1, 2} and Tj,0 = 298.15 K
∀j{1, 2}.

The global formulation of the optimization problem is the following :

min
T∑

i=0

i zf
i (4.33)

s.t. the discrete solutions of the process dynamics (4.22)-(4.23)

for reactor 1 and for reactor 2. (4.34)

Tj,i ≤ (400 + ∆T )zj,i + (400 − ∆T )(1 − zj,i)

+(100 + ∆T )

(
i∑

ii=0

zj,ii − zj,i

)

∀j ∈ {1, 2}, ∀i ∈ {0, . . . , T} (4.35)

Tj,i ≥ (400 − ∆T )zj,i + 298.15(1− zj,i)

∀j ∈ {1, 2}, ∀i ∈ {0, . . . , T} (4.36)
T∑

i=0

zj,i = 1∀j ∈ {1, 2} (4.37)

T∑

i=0

zf
i = 1 (4.38)

zf
i ≤

i∑

ii=0

zj,ii∀j ∈ {1, 2}, ∀i ∈ {0, . . . , T} (4.39)
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qhj,i ≥ 0 ∀j ∈ {1, 2}, ∀i ∈ {0, . . . , T} (4.40)
∑

j∈{1,2}

qhj,i ≤ 3.6 ∀i ∈ {0, . . . , T} (4.41)

0 ≤ Caj,i ≤ 1.1 ∀j ∈ {1, 2}, ∀i ∈ {0, . . . , T} (4.42)

298.15 ≤ Tj,i ≤ 500 ∀j ∈ {1, 2}, ∀i ∈ {0, . . . , T} (4.43)

zj,i ∈ {0, 1} ∀j ∈ {1, 2}, ∀i ∈ {0, . . . , T} (4.44)

zf
i ∈ {0, 1}∀i ∈ {0, . . . , T} (4.45)

Caj,0 = 1.1, Tj,0 = 298.15 ∀j ∈ {1, 2} (4.46)

where constraints (4.35)-(4.36) impose that if zj,i = 1, i.e. if the heating task is
finished on reactor j at time period i, then (400 − ∆T ) ≤ Tj,i ≤ (400 + ∆T ),
where ∆T is a tolerance value on the temperature of 400 K (Here, ∆T = 1 K).
Constraint (4.39) imposes that the heating tasks are finished on both reactors at

time period i (zf
i = 1) if the heating task is finished on each of the reactors j at

or before time period i.

The results obtained with the two methods are represented in Figure 4.10-4.11.
Again, the solid line represents the simulated solution of the original nonlinear
differential equations using the optimal values obtained for the control variables.
The discretized solution obtained by the optimization is represented by discrete
stars. For both methods, we consider the following time interval : t ∈ [0; 0.86] [h].

Figure 4.10: The trapezoidal method. Evolution of the Temperature, the concen-
tration and the heating rate for the heating task on reactor 1 (left) and on reactor
2 (right).

Figure 4.10 represents the solution obtained with the trapezoidal method. We
select a time step of 0.086 h and 11 discrete time points.

Figure 4.11 represents the solution obtained with the second piecewise linear
approximation method. We select a time step of 0.066 h and 14 discrete time
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Figure 4.11: The second piecewise linear approximation method. Evolution of
the Temperature, the concentration and the heating rate for the heating task on
reactor 1 (left) and on reactor 2 (right).

points. We decomposed the space (Ca,T ,qh) into 18 simplices by using the De-
launay triangulation algorithm proposed by Barber et al. in [5]. The interval
0 ≤ qh ≤ 3.6 is discretized in 3 smaller interval : 0 ≤ qh ≤ 1.2, 1.2 ≤ qh ≤ 2.4
and 2.4 ≤ qh ≤ 3.6. Each interval for 0 ≤ Ca ≤ 1.1 and 298.15 ≤ T ≤ 500 is
discretized in only 1 interval.

In Table 4.12, we summarize the number and type of the constraints and of
the variables for the two approximation methods.

Lin. Constr. Nonlin. Constr. Cont. var. Bin. var.

Trapezoidal 80 40 66 33

PL approx II 741 0 532 546

Table 4.12: Number of constraints and variables for the two approximation meth-
ods.

In Table 4.13, we summarize the results of the optimization problem.

Time points CPU time (s) Nodes Object. (h)

Trapezoidal 11 38.7 25 0.43

PL Approx II 14 3.4 147 0.33

Table 4.13: Solution of the optimization problem for the trapezoidal and the second
piecewise linear approximation methods.

We have observed that in order to perform this heating task on one of the
reactor by using the maximum rate of hot water available, we will need 0.193 h.
Therefore, by performing the heating task on each of the reactors (one after the
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other) using the maximum rate of hot water available, we will need 0.386 h. This
is a feasible solution for our problem. We show in Table 4.13 that the optimal
solution obtained by the trapezoidal method is not better than the one we just
proposed above with an objective function of 0.386 h. This is mainly due to the
discrete time points used since by using the trapezoidal method with 20 time
points, we get a feasible solution with an objective value of 0.387 h.

However, we can observe in Table 4.13 that the second piecewise linear approx-
imation method provides the best objective value in less CPU solution time. The
quality of the approximation of the non linear process dynamics has to be checked.

In order to estimate the quality of the two approximation methods, we com-
pute, for the trapezoidal method in Table 4.14, and for the second piecewise linear
approximation method in Table 4.15, the three types of error defined in the pre-
vious section.

Average Error Maximum Error Av. Abs. Error

T(K) Ca(mol/l) T(K) Ca(mol/l) T(K) Ca(mol/l)

Trapezoidal (1) 4.16 -0.01 11.78 0.02 4.29 0.01

Trapezoidal (2) -9.45 0.02 23.68 0.03 9.45 0.02

Table 4.14: The average, the maximum and the average absolute errors of approx-
imation of the non linear dynamics of the system by the trapezoidal method for
reactor 1 (1) and reactor 2 (2).

Average Error Maximum Error Av. Abs. Error

T(K) Ca(mol/l) T(K) Ca(mol/l) T(K) Ca(mol/l)

PL Approx II (1) -5.36 0.07 13.74 0.1 5.36 0.07

PL Approx II (2) -6.91 0.02 11.4 0.05 6.91 0.02

Table 4.15: The average, the maximum and the average absolute errors of approx-
imation of the non linear dynamics of the system by the second piecewise linear
approximation method for reactor 1 (1) and reactor 2 (2)

The second piecewise linear approximation method provides a better approxi-
mation of the temperature than the trapezoidal method. However, the concentra-
tion of the reactant is better approximated by the trapezoidal method.

In order to significantly improve the accuracy of the approximation methods,
we have to discretize furthermore the time and/or the space (Ca,T ,qh). This leads
to larger problem instances that cannot be solved in a reasonable amount of time.

In Table 4.16, we give the simulated value of the temperature obtained for both
methods at the end of the heating task on each reactor.

To conclude, the second piecewise linear approximation method provides quicker
the optimal solution of the optimization problem with an approximation of the
process dynamics comparable to the one obtained by the trapezoidal method.
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Final Temperature

Trapezoidal (1) 412 K

Trapezoidal (2) 383.8 K

PL Approx II (1) 385.3 K

PL Approx II (2) 387.7 K

Table 4.16: Final simulated temperature values for both methods on each line

However, the adequate or best discretization of the time and of the space in a rea-
sonable amount of simplices, in order to approximate accurately the process dy-
namics but also be able to solve the optimization problem in a reasonable amount
of time, is not easy to compute. Therefore, in order to improve the efficiency of
the discretization procedure, an appropriate method should be studied.



Chapter 5

Conclusion

We now review the main results presented in the thesis and propose some direc-
tions and perspectives for future research.

In Chapter 2, three special cases of a general cyclic scheduling problem are
studied. The general cyclic scheduling problem considered is a general production
process modeled by a resource task network, where the resources are the process-
ing units, the utilities shared by the tasks, and the storage tanks containing the
intermediate products produced or consumed by the tasks. In this process, there
are both batch and continuous tasks. Each batch task has a fixed processing time,
can be processed on a subset of reactors and can be repeated several times. The
main decision for a batch task is to determine the starting times of the corre-
sponding batches. Precedence and zero waiting time constraints exist between
some of the batch tasks. For each continuous task, the processing rate has to be
determined over time. This rate has to satisfy some given lower and upper limits.
The batch and the continuous tasks consume and produce resources, for which we
have some capacity restrictions. Moreover, the continuous tasks cannot be inter-
rupted. The objective is to obtain a cyclic schedule of the mixed plant maximizing
its productivity, where productivity is defined as the quantity of finished product
produced over one cycle, divided by the cycle duration. We study and tighten the
mathematical programming continuous time formulation of three special cases of
a batch-plant and mixed-plant scheduling problem.

We show for the first special case composed of one batch task without restric-
tions on the number of processing units available to perform this batch task (un-
capacitated case) that the timing constraints can be strengthened and that these
strengthened inequalities are facet-defining for this case. Moreover, we prove that
the initial constraints specifying that at most one batch task can begin and finish
at each time event are facet-defining for this case as well. Finally, we prove for
this case that the duality gap is zero. Then, for the same special case, we consider
a restriction on the number of processing units available (capacitated case). We
prove by adding a valid inequality that the duality gap is zero as well. Finally,
we found a general valid inequality providing a variable lower bound on time slot
durations for the uncapacitated and capacitated first special case and we show

149
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that this valid inequality is useful in practice.

Then, we consider the second special case composed of several batch tasks
where the objective is to maximize a measure of the productivity of the plant.
We have shown that by extending the results obtained for the first special case,
and by using strengthening techniques, how to strengthen the timing constraints.
We also have shown how to formulate the case where different batch tasks have
to be performed one after the other in a fixed sequence. Finally, we have shown
how to extend the valid inequalities providing a variable lower bound on time slot
durations for the first special case.

Finally, we study the third special case composed of multiple batch tasks with
fixed sequences, multiple continuous tasks and the sharing of some resources. The
batch and the continuous tasks consume and produce some resources. Several re-
source restrictions must be satisfied, and the objective is to maximize a measure of
the productivity of the plant. We have shown that it is possible to strengthen one
of the processing constraints for the continuous tasks and that this strengthening
can be useful practically. We have also found two valid inequalities limiting the
amount processed by the continuous tasks at each time slot and we have shown
that these valid inequalities are useful in practice.

For the uncapacitated and capacitated first special case, a research direction
concerns an improved model formulation in order to obtain a solution of the LP
relaxation that is integral for the kind of objective functions studied. Moreover,
for this first special case, the description of the convex hull should be also further
studied. For the second special case, the strengthening of the timing constraints
should be further examined in order to improve the tightness of the constraints
furthermore. For the third special case, an important research direction concerns
the improvement of the model formulation for the coordination of the batch and
continuous tasks. Some valid inequalities found so far do not help for solving
larger instances. Therefore, some other valid inequalities must be found in order
to improve the tightness of the formulation. A lot of work must still be done here
since the introduction of the continuous tasks in the model formulation leads to a
weak model formulation.

In Chapter 3, we test the improved model formulations for basic, multiple batch
task and industrial cases. For the basic case, we solve various instances and we
show that the corresponding improved formulations can solve these problem in-
stances faster than the original continuous time formulations derived from Schilling
and Pantelides in [44]. For the multiple batch task case, we have shown also that
the corresponding improved formulation can solve the problem instances faster
than the original formulation. However, the resolution of larger instances remains
difficult. Therefore, we propose to use MIP based heuristic methods in order to
obtain a good feasible solution quickly by taking advantage of the improved formu-
lations. By using a combination of the two MIP based heuristic methods proposed,
we have shown that we can get better feasible solutions than when using truncated
branch-and-bound methods or other combinations of MIP based heuristic methods
for the same computing time. For the multiple batch task case, we also compare
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the continuous time formulation proposed by Schilling and Pantelides in [44] with
the improved formulation that we have proposed. By using the improved formu-
lation, we have shown that we can solve quicker such type of scheduling problems
with less branch-and-bound nodes than when using the formulation of Schilling
and Pantelides. Finally, we study an industrial case. We first prove that we can
bound the maximal improvement of productivity that can be obtained by the
optimal solution at each iteration of the linearization of the nonlinear objective
function, and that this bound on the maximal improvement per iteration is mono-
tonically non increasing over the iterations. Then, we show that it is not possible
to solve realistic industrial cases using an exact branch-and-bound algorithm in
a reasonable amount of time. Therefore, we solved the industrial case using the
initial and the strengthened formulations by truncated branch and bound, and
also by a combination of MIP based heuristic methods. We got quicker and bet-
ter feasible solutions by using the combination of MIP based heuristic methods,
showing that such heuristic methods seem important for large instances.

A first research direction concerns the implementation of an efficient cutting
plane strategy for the basic, the multiple batch task and the industrial cases in
order to fully take advantage of all the valid inequalities found so far and reduce
furthermore the CPU solution time. Another research direction concerns other
combinations of MIP based heuristic methods and also other parameter usages
for the various combination of MIP based heuristic methods in order to quicker
obtain good feasible solutions for larger size instances.

In Chapter 4, we study scheduling problems where the processes involved can be
modeled dynamically with differential equations in order to obtain a more flexible
model, and possibly to increase productivity. The differential equations express
the dynamics of the processes but, in general, explicit solutions of differential
equations are not available. Therefore, in this Chapter, four methods are pro-
posed and investigated in order to compute numerical solutions of the differential
equations within the resolution of the scheduling optimization problem, namely
two non linear methods (the collocation and the trapezoidal methods) and two
piecewise linear approximation methods (the first and the second piecewise linear
approximation methods).

The first problem studied is composed of one heating task that has to be
performed on one reactor. The behaviour of the system during the heating task
is represented by two differential equations, namely one for the concentration of
the reactant and one for the temperature. The objective of this simple scheduling
problem is to minimize the time needed for reaching the temperature 450.15 K,
given the initial temperature of 298.15 K. The two non linear methods, the
collocation and the trapezoidal methods, are non linear method that approximate
closely the dynamics of the system but that lead to non linear mixed integer
optimization problem for which at best a local optimal solution can be found.
The two other methods approximate the solution of the differential equations by
using piecewise linear approximations of the functions involved in the dynamics.
We show that the second piecewise linear approximation method, based on the
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discretization of the space of state and command variables into simplices and on
the discretization of time, gives a good feasible solution with the best compromise
between quality of the approximation of the solution of the differential equations
and CPU solution time. The trapezoidal method is the second best method and
approximates the dynamics of the system quite accurately but the CPU solution
time is larger.

The second problem studied is composed of one heating task that has to be
performed on two reactors. The resource that is shared among the two reactors is
the hot water. The objective is to minimize the time needed for both reactors for
reaching the temperature 400 K and the initial temperature is 298.15 K. We test
the quality and the efficiency of the trapezoidal and of the second piecewise linear
approximation methods on this test case. The results have shown that the second
piecewise linear approximation method provides quicker a better optimal objective
value with an approximation of the process dynamics comparable to the one given
by the trapezoidal method. The main difficulty for this second piecewise linear
approximation method is that an appropriate discretization of the space of the
state and command variables into simplices and of the time is essential in order to
quickly obtain an optimal solution with an accurate approximation of the process
dynamics.

A first future research direction concerns the discretization of the time for the
trapezoidal method and the discretization of the time and of the space for the state
and command variables for the second piecewise linear approximation method. A
systematic way for choosing an appropriate discretization should be found for the
two methods in order to have a good compromise between the CPU solution time
of the optimization problem and the approximation of the process dynamics.

Moreover, an efficient cutting plane strategy for the second piecewise linear
approximation method should be implemented in order to reduce furthermore the
CPU solution time.

A second future research direction concerns the resolution of more general
scheduling problems composed of a general hybrid system with states and transi-
tions. In each state, we have various differential and algebraic equations and the
transitions between two states occur when some logical conditions are satisfied.
The idea is to use the second piecewise linear approximation method in order to
solve such more general problems.

Finally a more general extension concerns the fact that the best cyclic sched-
ule calculated here is independent of the initial state of the production lines. In
order to be able to apply a good cyclic schedule for the plant processes, we need
a transient schedule that brings the system from some initial state (possibly bad
in terms of long term productivity) to a state from which a cyclic schedule with
good productivity can be applied. Our model formulation should be adapted to
contain a transient schedule before the cyclic one.
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