
Procoodings of the 30th Confarmca 
on Docision and Control 
Brighton, England * Dscambar 1991 T I  -I - 1O:OO 

Reduced order dynamical modelling of reaction systems : 
a singular perturbation approach 

Vincent VAN BREUSEGEM' and Georges BASTIN 

Center for Systems Engineering and Applied Mechanics 
Universitd Catholique de Louvain 

Biit. Maxwell, Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium 

Abstract. Reaction systems constitute a class of non- 
linear dynamical systems relevant in many engineering 
fields such as chemical engineering, biotechnology and 
ecology. In this paper, we address the problem of the re- 
duction of the order of such systems under the assump- 
tion that some reaction rates are much faster than the 
others. This can be achieved through a change of coor- 
dinates which transforms the system in a two-time-scale 
standard form. 

Introduction. 

The concept of reaction system refers to a class of non- 
linear dynamical systems of interest in various fields such 
as chemical engineering, biotechnology and ecology. The 
dynamics of reaction systems are commonly described by 
a set of ordinary differential equations (under the form 
of a state-space model) arising from mass balance equa- 
tions. This is called the natural mass-balance model (in 
short : the natural model) in the sequel. 

The starting point for building the natural model of 
a reaction system is the reaction network which encodes 
the reactions that are supposed to  occur in the system. 

In many applications, the assumption is made that 
some of the reactions of the network proceed at much 
faster rate than the others. This often leads to the so- 
called quasi-steady-state appwzimation which allows a 
reduction of the dimension of the mathematical model 
of the system. From an engineering viewpoint, reduced 
order models may allow to solve problems ( e . g .  param- 
eter identification, control design, . . .)  which would be 
untractable otherwise. 

However, the derivation of a reduced order model from 
the principle of quasi-steady-state approximation is not 
straightforward. The reason is that the separation into 
slow and fast reactions does not induce directly a clear 
separation between small and large time constants in the 
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natural model. It is therefore necessary, by an appro- 
priate change of coordinates, to transform the natural 
model into the so-called two-time-scale standard form 
of the singular perturbation theory ([SI) in order to ex- 
plicit the model reduction. An additional difficulty lies 
in the fact that this change of coordinates depends on 
the structure of the reaction network. 

To our knowledge, a general convincing, theoretically 
funded, method for the derivation of this transformation 
has never been propoeed in the literature. Only empiri- 
cal and intuitive approaches have been followed to solve 
the problem in particular cases ( e . g .  [3],[7],[8]). An early 
and famous example is the justification of the approx- 
imate Michaiilis-Menten model for enzymatic catalysis 
by Briggs and Haldane (1925)([4]). 

Our purpose, in this paper, is to  propose a gen- 
eral method for the characterization of the two-time- 
scale properties of reaction systems. Our contribution is 
twofold. 
1) To present a systematic method for transforming the 
natural mass-balance model of reaction systems with 
slow and fast reactions into the two-time-scale standard 
form of singular perturbation theory. 
2) To explicit algebraic conditions on the structure of 
the underlying reaction network under which the trans- 
formation exists. 

1. Reaction networks. 

The reaction network (or the mechanism) of a reac- 
tion system describes the relations between components 
and reactions. Let XI , Xz, . . . , X, designate the com- 
ponents, numbered in an arbitrary order. The reaction 
network is basically a set of m reactions of the following 
form (e.g. [2],[5]). 

n " 
CYijXi - C 6 i j X i  j =  1, ..., m 
i=l i=l 

where the nonnegative real numbers ri,(L 0) and 6j,(L 
0) are the stoichiometric coefficients. They express the 
nominal quantity of component Xi which is consumed 
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( 6 i j )  or produced ( 7 i j )  by the j t h  reaction. Obviously, 
if a component is not involved in the jth reaction, the 
corresponding stoichiometric coefficient is zero. The re- 
actants of a reaction are the components which appear 
in the left hand side with non zero stoichiometric coef- 
ficients ( 7 i j  > 0) while the products of this reaction are 
the components which appear in the right hand side also 
with non zero stoichiometric coefficients (6,  > 0). 
Example. The classical example of the conversion of 
a substrate X1 into a product X4 by a two-step enzy- 
matic reaction ([l]) is described by the following reaction 
network : 

x1+ x2 - x3 (1.la) 
(1.lb) x3 - x1 + x2 

x3-x2+x4 (l.lc) 

where X2 is the enzyme and X3 the so-called substrate- 
enzyme complex. We thus have m = 3 reactions and 
n = 4 components. We note that reactions (l.la) and 
(l.lb) can be interpreted as a reversible reaction of the 
form 

x1+x2*x3 (1.2) 
Throughout the paper, we shall consider the reaction 

W network (1.1) as a prototype example 

2. Dynamics of reaction systems. 

The dynamics of the components involved in a reac- 
tion system are usually expressed through material bal- 
ances. The quantity of component Xi in the system at 
time t is denoted x i ( t ) .  The material balance combines 
two mechanisms : reaction kinetics and transport dy- 
namics. 

The reaction kinetics are characterized by reaction 
rates which express the rates of reactant consumption 
and product formation in the reactor, according to the 
reaction network. A reaction rate r j ( t )  is associated to 
each reaction of the network (j = 1, .  . . , m). 

The transport dynamics refer to the supply of reac- 
tants to  the system from the outside and the removal 
of components from the system. If the components are 
withdrawn at a specific volumetric rate D and if ui( t )  
denotes the supply feedrate of component i (0 if the com- 
ponent is not a reactant), it is easily shown that the mass 
balance of the components in the reactor is represented 
by the following state space model : 

where x is the n-vector of the component concentra- 
tions, C is the characteristic matrix of the system, i.e. 
the n x m matrix with entries 6i j  - yij , r is the m-vector 
of reaction rates and U is the n-vector of the feedrates 
of the supplied reactants. 

Example (continued). The state space model associ- 
ated with the reaction network (1.1) is then : ( f ) = (-; -1 -; 1 -;) 0 (L;) - ('") + (::) 

72 0 0 1  54 U4 -- 
(2.2) 

The only suplied reactants are the substrate X1 and the 
enzyme Xs. We have then u3 = 0 and u4 = 0 

3. Modelling of the reaction rates. 

3.1. Application of a mass-action principle. 
Each reaction rate r,(t) may be a highly complex non- 

linear function of the component quantities x i ( t )  and of 
physico-chemical environmental factors ( Temperature, 
pH, . . .). In this paper, we assume further that the re- 
action rates can be expressed under the following form: 

(A.l) rj(.,t) = k j ~ j ( ~ , t ) n i _ j ( x i ) ' ~ J  V j  
where kj is the rate consiant of the reaction and niWi 
means that the product is taken over the components 
with index i which are reactants of reaction j .  Follow- 
ing a mass-action principle, each reaction rate r j ( 2 , t )  
is expressed as being proportional to the product of the 
reactant concentrations, each raised to a power equal to 
its stochiometric coefficient 7 i j  in the reaction j .  

We assume furthermore that pj  (2, t )  is positive what- 
ever the component quantities : 

This means that a reaction rate is identically zero only 
if a reactant is not present in the reactor and never oth- 
erwise. If we denote 

e 

(A.2) p j ( Z , t )  > 0 V j , V z  

K = diag{ kj , j = 1, . . . , m} the m x m diagonal ma- 
trix containing the rate constants 

the mass balance dynamics (2.1) can be rewritten as 

(3.1) 
dZ - = C K 6  - DZ + U dt 

For the sake of simplicity , the dependencies of the vari- 
ables w.r.t. t and z will be most often omitted in the 
sequel of the paper. 

3.2. Slow and fast reactions. 
Assume that p reactions are fast and (m-p) reactions 

are slow, irrespective of the component concentrations. 
This means that p rate constants are much greater than 
the remaining ones. We furthermore assume that the 
fast reactions have indices 1 to p while the (m - p) slow 
reactions have indices (p + 1) to m. The assumption is 
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then technically stated as follows. 

(A.3) ki and kj have the same order of magnitude if 
i and j E [l,p] or if i and j E [p+ 1,m] 

(A.4) 
Example (continued). We assume, as usual, that the 
reversible reaction (1.2) is in equilibrium or otherwise 
stated that reactions (l.la) and (l . lb) are much faster 
than reaction (1 .1~)  in which X4 is produced. We have 

ki>kj if i E [ l , ~ ]  and j E [p+ l ,m]  

then k3<<k1 and k3<k2 a 

4. Slow and fast kinetics in the natural 
model. 

Each column of the matrices C,K and GT is related 
to a given reaction. These matrices can be partitioned 
into "fast" (with index f )  and "slow" (with index s )  sub- 
matrices related to fast and slow reactions, respectively. 

0 C = [Cj ,Cs]  where Cj and C, are (n x p) and 
(n x (m - p ) )  matrices, respectively. 

K = [ E$-p g!-p where Kj  and K, are p x p 1 
and (m-p) x (m-p)  diagonal matrices, respectively. 

0 4jT = [4jj,4js] where Gj and Gs are (p x 1) and 
((m - p )  x 1) vectors. 

Using this partition, the general dynamical model be- 
comes 

dX - = C j K j 9 j  + C,K,O, - DZ + U 
dt (4.1) 

where the fast and the slow kinetics are now clearly sep- 
arated. 
Example (continued). Equation (2.2) becomes : 

-1 +1 

0 0  d t  

W 

5. Model order reduction. 

5.1. Two-time-scale standard form : definition. 
Our purpose, in the sequel, will be to transform the 
model (4.1) into the so-called two-time-scale standard 
form of singular perturbation theory which authorizes 
the order reduction. In this section, we give a formal 

definition of this concept. 

written in the following state-variable form 
We consider (v + w)-dimensional models which are 

ar E %", a r ( t 0 )  = g o  (5.1) dar - = f ( l l , Z , G t )  dt 

x E S'", % ( t o )  = X O  (5.2) 

in which the derivatives of some of the states are multi- 
plied by a small positive scalar c. f and g are assumed 
to be sufficiently many times differentiable functions of 
their arguments g, z ,  E. The scalar E represents all the 
small parameters to be neglected. 

The model (5.1)-(5.2) is a step towards reduced-order 
modelling. The order reduction from (v + w )  to v is con- 
verted into a parameter perturbation (called singular). 
When we set E = 0, the differential equation (5.2) degen- 
erates into the algebraic or transcendental equation 

where the bar is used to indicate that the variables be- 
long to a system with E = 0. 

Definition (Kokotovic et a1.,1986). A dynamical model 
is said to be in a two-time-scale standard form if and 
only if 
C.l. There exists a change of coordinates such that, in 

the new coordinates, the model can be written in 
the form (5.1)-(5.2). 

C.2. In a domain of interest, the associated algebraic 
equation (5.3) can explicitely be solved with respect 
to f ,  that is it has kLl distinct ("isolated") roots : 

Z(t )  = &(P(t),t) i =  1,2, . . . ,  k 

C.3. Define as 2 = x - f ,  the so-called "boundary- 
layer correction". The equilibrium ; (T )  = 0 of the 
" boundary-layer system" 

dz - dT = g(g0, 2 + F ( t o ) ,  0, t o )  (5.4) 

expressed in the fast time scale 7 = t / c  is asymptot- 
ically stable uniformly in yo and t o  and x o  -Z(to) 
belongs to its domain of attraction. +( to)  is given 
by 

= ( t o )  = 7(ar0, t o )  

i.e. { a g / a x }  < 0 a 

C.4. The eigenvalues of dg/dz evaluated, for E = 0, 
along j j ( t ) ,  Z( t )  have strictly negative real parts, 

Conditions C.l to C.4 ensure that the reduced-order 
model, sometimes called the quasi-steady-state model, 
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is a valid approximation of the dynamical model (5.1)- 
(5.2) for all t E [to,  TI. This result is most often referred 
as to as "Tikhonov's theorem". 

5.2. Definition of a small scalar parameter. 
We define the mean rate constant of the fast reactions, 

if , by 

Each of the large rate constants ki is related to k, by 

ki = ail/  V i  E [l,p] (5.7) 

where ai = k i / k j  is a known positive constant. We 
assume further that these rate constants are expressed 
in appropriate units such that 

(A.5) ki >> 1 V i  E [ l , ~ ]  

It follows that kj >> 1 and we can therefore define the 
small scalar parameter E as 

E = 1/k, (5.8) 

Remark. Later on, we shall set this coefficient e to 
zero in various equations to perform model reduction. It 
must be clearly understood that we shall suppose that 

w 6-0 while the a i 's  are kept constant 

Example (continued). We have 6 = &-, a1 = 2k 

and a 2  = w i + k a  

5.3. Model order reduction in natural coordi- 

We denote n, and p,  the number of zero rows and 
the rank of C,, respectively. The zero rows are related 
to those of the components which are not involved at 
all in the p fast reactions. These components form a 
n,-vector denoted z,, while we denote zf the (n - n,)- 
vector of the remaining components which are certainly 
involved in the fast reactions and possibly in the slow 
ones (U, and U, will denote the associated partition of 
U). According to  the partition of z, Cj and C, are 
partitioned as follows 

nates. 

where Cjf  ,C,j, have (n - n,) rows and p, (m - p) and 
q columns, respectively. C,, has n, rows and (m - p) 
columns. Using this partition, the natural model (4.1) 
is splitted into the following two equations : 

Equation (5.10) gives the dynamics of the components 
which are involved only in the (m - p) slow reactions 
while equation (5.9) gives the dynamics of the remaining 
components which are involved in the fast reactions but 
also in the slow ones. Using (5.7) and (5.8), equation 
(5.9) is easily rewritten as 

d z  
dt 

EL = CjjAOf + eC,jK,@, - EDzj + EUJ (5.11) 

where A =  d i a g { a i ,  V i  E [l,p]} is a matrix of positive 
constants. 

Equations (5.10) and (5.11) clearly show that the nat- 
ural model satisfies condition C.l. By setting E = 0 in 
equation (5.11), we obtain the following algebraic equa- 
tion 

C,,ATj = q-ns (5.12) 

where Oi-.,' denotes the n - n, x 1 null matrix. This 
equation should be solved with respect to the fast vari- 
ables Zj  i.e. the components which are involved in the 
fast reactions. 

We have the following result which shows that condi- 
tion C.2. is generally not satisfied in natural coordinates. 

Lemma 5. 1 
of distinct mots for equation (5.12) is that n - n, = p 

A necessary condition for the existence 

Proof. See ([9]) 
Example (continued). Rom equation (4.2), it is easily 
checked that n - n, = 3 and p = 1. It follows that con- 
dition C.2. is not satisfied in natural coordinates. W 

5.4. Model order reduction through a change of 

In this section, we shall show how to define a change 
of coordinates which lead to the two-time-scale standard 
form. Each column of C j  is related to a fast reaction. 
We separate further the set of fast reactions into depen- 
dent and indenpendent fast reactions. 

The ith reaction is independent of the others if c )  4 
span [ '  4 ,  j # i 1 where c$ denotes the ith column of C, 

or dependent of the others if c) E span [d;, j # i]  . For 
the sake of simplicity, let us assume that the p l  fast reac- 
tions indexed 1 to p1 are dependent while the p2 = p-p1  
remaining ones (indexed p1 + 1 to  p) are independent. 
Hence, Cj can be partitioned as Cj = (Cj ,  C f a )  where 
Cjl and C,. are related to dependent and independent 
fast reactions, repectively. Cjz and Cja are of rank pi 
and p2, respectively, with p1 + p2 = p. 
Example (continued). The fast reactions (l.la) and 
( l . lb)  are dependent since we have p1 = p = 2, p2 = 0, 

w p1 = p = 1 and pa = 0. 

coordinates. 
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Let C; denote a matrix obtained by permuting the 
rows of C j  and such that its p first rows form a subma- 
trix of rank p. CT is partitioned as follows 

where CflXiS(P1 x Pill Cf*,iS(Pl x PZ), Cj.,iS(P2 x Pl), 
C j , , i S ( ~ 2  x p2), c js l is((n - p )  x PI) and Cj,,is((n - 
p) x pz).  Similarly to C;, q, U* and 2* are obtained by 
permuting the rows of C a p  U and 2, repectively. More- 
over, C: partitioned accordingly to the partition of 

This matrix which has the following property : 

Property 5. 2 
There exists (at least) one n-dimensional non singular 
matrix T such that 

cj, 3 
TC; = 0;: - ~ f a F ~ z c j x z  + Cf 

o n - P  ( ;:P P. 

where CA, is a right pseudoinverse of 

Proof. See ([9]). 

We define now the following change of coordinates 

= Tz* (5.14) 

where T which verifies Property 5.2, is given by 

T31 T3a In--p 

IPS, IP2 and IneP are unit matrices of dimension p1, pz 
and n - p,  respectively and T a l ,  T31 and T3= are defined 
as follows (see [9]): 

Tg1 = -Cj.,,CAs (5.16) 

~ 3 =  = -(Cf31CLaCj%, - ~ j s ~ ) ( ~ ~ = ~ ~ ~ ~ ~ ~ ~ =  

T31 = (-c.fsi - T3acj,l IciZ 
- c,,, ) - (5.17) 

(5.18) 

This state transformation is a diffeomorphism since 
T is non singular. The new coordonates are obviously 
linear combinations of the natural coordinates and con- 
versely. The vector of the new state variables can be 

model (4.1). Using the property (5.2) and evidencing the 
small parameter E, we obtain : 

€2 d t  = 
dt Cj,,A1*jl + CjllAa*jp + E C a , K a * s  

- EDtj, + (5.20) 

(Talcjay + Cf..)Aa*j. + c(TaiCa, + Ca.) 

K,*a - €Deja + ~(Taiu;~ +U;,) 

-=  dt (T'i Ca, + T,aCs, + Ca3)Ka*a - D€a 

d€ja E -  = 
dt 

(5.21) 
d€s 

+ T312L;x + T3=ui2 + U: (5.22) 
where A, and A, are diagonal matrices of positive con- 
stants. U;. , U;, and U: are obtained by partitioning U* 
similarly to  e .  

The general dynamical model, expressed in the new 
coordinates by the equations (5.20) to (5.22) clearly sat- 
isfies condition C.l. of the two-time-scale form defini- 
tion. The change of coordinates (5.14) displays there- 
fore fast ( < j x , € j , )  and slow (&) variables. Recall that 
the corresponding diffeomorphism was mainly defined by 
the choice of a full rank submatrix in C j .  This choice is 
generally not unique and there can exist therefore several 
changes of coordinates which lead to equations (5.20), 
(5.21) and (5.22) (see [9] for further details). 

By setting E = 0 in equations (5.20) and (5.21), we 
obtain the following matrix relations : 

CfllAISjl + Cjl,AaSj, = 0;' (5.23) 

(TaiCjx, + Cj,,)Aazjl = Op (5.24) 
which are made up of p nonlinear equations with exactly 
p unknowns : the fast variables E,, and zj,.  This system 
is therefore much better conditioned than the similar one 
obtained in natural coordinates. 

With respect to the structure of this system, the ad- 
missible solutions to (5.23)-(5.24) generally depend on 
the kinetics of the fast reactions. That is most often the 
case when some reactions of the fast reaction subnetwork 
are dependent. That is not the case when the fast re- 
action subnetwork is made up of independent reactions 
only, as stated in the following lemma. 

Lemma 5.  3 If the fast reaction subnetwork is made 
up of independent reactions only and if an admissible 
solution exists, then this solution does not depend on the 
kinetics of the fast  reactions, that is on the structure of 
the functions 9,. 

partitioned as follows : Proof. See ([SI) 
Example (continued). A possible choice for C; is sim- 
ply C; = C j .  Since all the fast reactions are dependent, 
it follows that CT reduces to 

c = ( t j l  t j ,  € a ) *  (5.19) 

where (jl, < j2  and & are pl, p2 and (n - p)  vectors, 
respectively. T 

We apply now the changeofcoordinates (5.14) and the C?=( 2;;) with CjsX=(  ;:) 
partition (5.19) of the new state to the general dynamical 
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From (5.15), (5.17) and (5.18), we obtain the new coor- 
dinates < 

(i) = (-:!I) 0 0 0 1  (ij) 
The general dynamical model becomes: 

41 6- dt = -al(P1€l(<l + €2) + a 2 9 2 ( < 3  - €1) - f&l 

+ €U1 (5.25) 

(5.26) e2 -- dt - '393(<3 - €1) - + u2 - u1 

4 3  
= -k393(€3 - €1) - D€3 + U3 + U1 (5.27) 

(5.28) 

order models by substituting z 2  or 3?3 (which are also 
involved in the fast reactions) in place of z1 as it has 
been done to obtain the system (5.31) 

Conclusion. 

In this paper, we have adressed the problem of the re- 
duction of order of natural mass-balance models which 
commonly describe the dynamics of reaction systems. 
This reduction subordonated to the presence of slow and 
fast reactions. We have shown that, in natural coordi- 
nates, a convenient partition of the state leading to a 
two-time-scale standard form which allows the order re- 
duction by using the singular perturbation technique, 
does not generally exist. Moreover, we have proposed a 
convenient change of coordinates which is better suited 
to perform the order reduction. The theory has been 
illustrated by a prototype example. 
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