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Abstract—We rigorously derive the main results of thermo-  unable to provide any heat to the environment or any other
dynamics, including Carnot's theorem, in the framework of  gystem, then we may fix its temperature to zero. This defines
time-varying linear systems. an absolute scale of temperature.

The First Law states that heat is merely a form of energy,

) ) . like mechanical energy. Those two forms of energies can be
Classical thermodynamics, since the work of Carnot angynyerted into each other. The First Law also states that we
his followers, has been very successful to describe thg associate to any system a state variable called the internal
relations between heat, energy and mechanical work, tR@ergy, and another called mechanical energy, whose sum,
quantity of work that can be extracted from heat sourcege total energy, changes only through exchange of heat and
and to quantify the irreversibility observed in Nature. Th&york with the environment. Definitions of mechanical energy
discoveries of classical thermodynamics are summarised Byq work are borrowed from classical physics. This is written

four Laws, whose validity is based upon the fact that theiFnathematicaIIy by the following:
consequences have been successfully verified experimentally. . . .
We now quickly review the basics of classical thermody- E =U + E,,.cr, = heat+ work,

namics. For a more detailed discussion see for instance [1 £ denotes the total f tithe int |
The Universe is partitioned into one or several systems a erek denotes the total energy of a systeimthe interna

the environment. A physical system is supposed to be at al Ve:gy’E”?éda tge tr;:echar!lcal enetrgy, dh(?at I'(S j[heihflow OL
moment completely characterized by a small list of ‘relevan reat provided by the environment, and ‘work™ IS the wor

state variables, such as internal energy, temperature, entro ?rtei _byﬂghe enwronrptznt) p(far unit Off time. An texar:nple
volume, pressure, etc. The first three are in fact defined Work 1S the oné exerted by forces of pressure to change

the laws themselves. These state variables are not necessa{ volume of the system. To clarify conventions, we say

independent. The systems are supposed to be always Tk is be".‘g supplied (by the gnvirpnment o the system)
when work is positive and work is being extracted (from the

equilibrium’, meaning that if isolated from the environment, . 4 . -
neither the system nor any of its subsystems would under gstem to the environment) when work is negative. Similarly
I heat.

any change of state variables. If we are to deal with syste %Th First L i h ih th
‘out of equilibrium’, then we must seek a decomposition of e First Law provides a way to measure heat with the

the system into subsystems that are constantly at equilibriu ime unit as mechanical energy, rather than in calories

The four laws give some constraints on the type of evolutio ne calorie is the amount of heat needed to increase the

of the state variables that any physical systems must respet&mperature of one litre of water by one Celsius degree).

We quickly review those laws. Another consequence is that a system isolated from the

The Zeroth Law states that if two physical systems ar8n¥';0ngent gaLs a rc]onstanrt] totalhene_rgrg]y. q
in thermal equilibrium (i.e., exchange no heat when put into e Second Law has perhaps the richest consequences an

contact) with a third, they are also in thermal equilibriumadmits several formulations. The Kelvin-Planck statement

between them; hence ‘being in thermal equilibrium’ is ar,Elsserts that a system that exchanges heat with one single heat
equivalence relation. It is argued that this allows the indath is unable to provide a positive work to the environment

troduction of temperature: To every system is associated"cr:l't undergoes a cyclic transformation. A heat bath is a

real number called temperature such that two systems @g}stem purely characterized by its _temperature, that iS’. S0
in thermal equilibrium if and only if they have the same uge that any exchange of heat in reasonable quantities

temperature. We can now legitimately include temperatuP@ith another system will not affect its temperature. A cyclic

as a state variable. If a system is in a state such that it ti%ansformanon is one in which the state variables of the
system assume the same values at the end and at the

J.-C. Delvenne is with Imperial College, Institute for Mathematicaldeginning of the process.
Sciences, 53 Prince's Gate, South Kensington, London, SW7 2PG, UK. The Clausius formulation of the Second Law states that

jc.delvenne@imperial.ac.uk . - .
H. Sandberg and J.C. Doyle are with California Institute of Technolog;ﬁ,o any system can be associated with a state variable called

Control and Dynamical Systems, M/C 107-81, Pasadena, CA 91125, usgntropy and denoted, whose evolution is given by:
{henriks,doyle }@cds.caltech.edu
H. Sandberg is supported by the Hans WentHoundation and a post- S — 4q
doctoral grant from the Swedish Research Council. T’
Part of this work was developed while J.-C. Delvenne was with California .
Institute of Technology and Universitatholique de Louvain, and supported whereT is the temperature of the system. It also states that

by FNRS (Belgian Fund for Scientific Research). the total entropy of Universe never decreases. From this, it

I. INTRODUCTION



can be proven that heat never flows from a cold system toaae many ways to formalize this idea, depending on the

hot system spontaneously, and that choice of models for physical microscopic reality. We will
_ q assume that microscopic physics are the same as macroscopic
S > T electro-mechanics, but energy conserving, that is, without
€

. . dissipation, and with continuous time and state space.
whereT: is the temperature of the system that supplies heat For an isolated system at equilibrium, this microscopic
(for instance a heat bath). The Kelvin-Planck statement easfl¢opapility distribution is generally assumed to be uniform
follows from there. We also see that there is no negatiVémong all microscopic states that are compatible with the
temperature on an absolute scale. value of macroscopic variables. This fundamental assump-
The Third Law, or Nernst principle, states that the entropyon can be used to derive other distributions for non isolated
of any crystalline body at zero temperature can be taken &fstems, such as the Boltzmann distribution for systems in
zero. As a consequence, it is impossible for such a systegBntact with a heat bath.
to reach a zero temperature in finite time. _ _In this context, internal energy/ is interpreted as the
An important consequence of the Second Law is Camoti§netic and potential energy of the many degrees of freedom
theorem. It states that the conversion of heat into work lSomposing the system, around their mean positions, and is
possible if and only if we are able to exchange energy Wit gifferent in nature from the (macroscopic) mechanical
two baths of different temperaturgs. More prec[sely, if ON@nergy E,neen. This allows us to derive the First Law as
or several systems undergo a cyclic transformation, then theconsequence of the fact that all fundamental interactions
total work exerted by these systems on the environmepkiween particles are conservative.

1 i 7TCO . -y . . .
QUr|ng the cycle is at mosQjq (1 N Th(ij)' where Qo For isolated systems at equilibrium, entropy is interpreted
is the total amount of heat supplied by the hot bath. Theg e |ogarithm of the volume of the microscopic state

heat not converted into work has been transferred to they,ce compatible with the value of macroscopic variables

cold bath. This optimal quantity is attained for a Carnoy,, 15 5 physical constant). For non isolated systems, entropy
cycle, in which the entropy of the Universe is preserve

. Y an be generalised as Shannon differential entropy of the
Preservation of entropy implies that all heat transfers algsyipytion of probability (although Shannon defined his

m.ade between systems with same temperature. As SyStegPﬁropy long after Boltzmann). Sometimes the state space is
with same temperature do not exchange heat, we have jQcretised into small cells, and the entropy is then defined
suppose that all transfers of heat are ‘infinitely slow’. Ayq the sShannon discrete entropy of the discretised state. If
typical Carnot cycle goes through the following phases: jnternal energy is chosen as a macroscopic state variable,

1) A system is connected to a hot bath of temperatufye concept of temperature is then defined as the inverse

Thot, from which it receives infinitely slowlfsor;  of the rate of increase of entropy when the internal energy
2) the system is connected to the environment, to whiGpcreases:

it supplies work without exchange of heat, and its
temperature drops frory,,: t0 T,o14; 71 — 4g /dU
3) the system is connected to a cold bath of temperature ’
Teo1a, to Which it gives some heat infinitely slowly; up to Boltzmann’s constant. From this relation, we can
4) the system is connected to the environment withoutcover Clausius formula. However the statement that en-
exchange of heat, from which it receives work, and itsropy always increases remains a deep issue. Statistical
temperature rises frofficoiq t0 Thot; mechanics also allows to discover new facts, such as the
Here ends our review of classical thermodynamics. Thiso-called equipartition of energy: Every degree of freedom
theory, although consistent with experiments and of gre#itat contributes quadratically to the total energy carries on
convenience for engineers, suffers from the fact that its firstverage the same eneréﬁf (up to Boltzmann’s constant).
principles are postulated independently from other funda- Several of the many possible formulations of statistical
mental laws of physics: namely, Newton’s laws or quanturmechanics can be used to derive a rigorous mathematical
mechanics. formulation of the Second Law. However most of them
Statistical mechanics attempts to derive all four Laware based on assumptions that are not known to hold for
of thermodynamics from the fundamental laws of physicgphysical systems. For instance, the fact that the equilibrium
For a detailed account, see for instance [2]. This approaclistribution of an isolated system is uniform should be
was pioneered by Daniel Bernoulli in the 18th centunjustified. The notion of heat bath is equally difficult to model
and developed by Clausius, Maxwell, Boltzmann and therigorously. Moreover, the very notion of probability distribu-
followers in the 19th century. The basic idea is to considdion is problematic. If probabilities are given a frequentist
thermodynamics as a theory of large systems, whose futieaning, then the uniqueness of a distribution given the
state is described by a number of state variables of the ordeacroscopic variables cannot be proved. If we understand
at least102?3. Since it is in general not feasible to measurghem in a bayesian meaning, then we are left with the
and handle this many variables, we settle for a handful afmpression, displeasing to many, that thermodynamics is a
macroscopic variables. The values of the other variables ateeory of human observation rather than physical systems.
unknown and endowed with a probability distribution. Therdt is fair to say that there is at this time no derivation of



the laws of thermodynamics from the fundamental laws afatural. We believe however that the results are not essen-

physics, that would be perfectly rigorous and embrace thelly affected by this choice. Note that the environment is

generality claimed by classical thermodynamics. not here explicitly modelled as itself another strictly causal,
Linear systems theory has been used in statistical mechdgssless system but as an abstract entity able to interact with

ics, for instance to derive the so-called fluctuation-dissipatiotfie system in any manner compatible with the causality and

theorem [3]. Conversely, several concepts of thermodynamitgsslessness of the system.

have been fruitfully implemented in systems theory. Let Hence we consider systems of the kind:

us cite a few examples — we apologize to the reader )
for the probable lack of exhaustivity. Dissipative systems (1) = A(t)z(t) + B(t)u(t), B
by Willems [4], [5] are now classical. More recently, the y(t) = C(t)x(t),

exchange of heat and entropy in interconnected dynamica "

systems has been thoroughly analysed by Haddad et al. | berex(t) € R Is the state. The total energy of the system
from a classical thermodynamics point of view. Mitter an
Newton [7] have analysed the balance of entropy and energy 1

_ T
in Kalman-Bucy filters. Finally, Brockett and Willems [8] E(t) = §x(t) B(t)a(t).

have provided a stochastic formulation of the problem of The matrices A(t), B(¢), C(t),S(t) are thought of as

extraction of work from heat baths in linear systems W'thcontrolled through a vector of inputs(t). The inputs may

Eotr:rtr;i:[varylng capacitor, proving Carmot's theorem in th'%_e the values of capacitan_ces, i_nductanc_es, resistan_ces in a
' cjrcuit. It may also be a discontinuous signal modeling an

It nevertheless seems that no attempt has been mﬁﬁ?errupter. To keep the notation simple, however, we write
to unify and synthesise the principal arguments of statis (t) instead ofA(u(t)), etc. We assume any time evolution
tical thermodynamics in the well-understood framework o these matrices to be possible, as long as conservation of
stochastic linear systems and recover as much as possi rgy is respected, as detailed,below.
of classical thermodynamics. This is precisely our goal. The The system is cor,1trolled in open-loop by the signals)
first motivation is to clarify how different physical conceptsandv(t)_ In the following, we call ‘linear control’ the control

interrelate in a WeII-def|_ned framev_vo_rk. The _second IS 1 erted byu(t), and ‘nonlinear control’ the control exerted
show how thermodynamics and statistical physics can enri Y u(t)

the theory of stochastic linear systems with new problems; Note. that several evolutionsi(t), B(t), C(t), S(t) de-

emphasizing in particular physical realizability in the design ... ihe same time-varying sysztem L71p to’ a change of

of controllers. The third is the hope that new results, bot oordinates. Indeed, if we consider the variablg) —

in linear systems and in thermodynamics might stem fror%(t)x(t) then Equat'ion (1) becomes

this framework. In this paper, we meet some of this goals '

through a generalisation of [8] combined with the results in i(t) = (RAR™' + RR™1)2(t) + RBu(t),

[9], that provide a microscopic lossless model of heat bath 1

and dissipative systems. y(t) = CR™2(1),
The paper is organised as follows. First we describe thaith energy

class of time-varying lossless, strictly causal linear systems, 1

which we argue to be the natural class of models to consider. E(t) = §Z(t)TR_T2R_1Z(t)7

yr\:leer? exgeigg?éuizegyhggér :fni eea?trt()):t)rll Ignt(;"?jig;gzﬁghere the dependency on time is dropped to simplify the

system, introducing heat, dissipation and fluctuation; thQOtSat'on' ‘ ¢ dinat cainl wural
First Law is then stated. We then prove the Kelvin-Planc ome Systems of coordinates are certainly more natura

statement and a restricted version of Clausius formula, aloﬁ an qthers. Fo_r examplg, the (_equatlon of a time-varying
with Carnot's theorem. capacitorC(t), with currenti(t) as input and voltag¥ (¢) as

output, can be written in the three following ways, according
to whether the charge(t) = ¢(t), the voltageV(t) or

)

[l. LOSSLESS STRICTLY CAUSAL TIMEVARYING =(t) = q(t)/+/C(D) is chosen as state variable
SYSTEMS
. 1
We consider that all open physical systems, as predicted ~ © = °* 7% V=2/C with B=gze%

by classical physics, are lossless (energy-conserving) and V= _QVJFL.’ Vv with B — lcvg; 3)
strictly causal (the effect of an input cannot be felt immedi- c c 2
ately in the output). As classical thermodynamics considers 5= ,QZJF Li’ V= % with BE= 12
systems changing in time, e.g., via a moving wall, piston, ¢ Ve Ve 2

connection/disconnection to a heat bath, etc., we use timéhe first equation has a zero matdx and the third equation
varying systems in our study. We model the interaction dfias a constant matriX. The second equation has none of
the system with the environment in an input-output fashiorthese advantages. The coordinateand z are both used in
A behavioural approach [10] would probably be the mosthe following. Note that while we can take the nonlinear



input v(t) = C(t) using thez-coordinates, we need to probability distribution should have a bayesian or frequentist

take, for instancey(t) = (C(t), C(t)) when using the other meaning; see [9] and references within for a short discussion.
coordinates. Hence if we fix the set of nonlinear inputs, then If the distribution of the state:(¢) is random, then we

this restricts the possible changes of coordinates. call X(t) = E(x(t) — Ex(t))(z(t) — Ez(¢))T the covariance
In general, let us write the variation of energy: matrix of the state, and it is supposed to be invertible. We
define the entropy of the system to be
: d1 , .r 1
BE(t) = ail’(t) Ya(t) S(t) = 3 log det X (¢).
1 .
= gm(t)T(ATE + XA+ N)x(t) +u' (t)B"Sx(t).  In the case where the distribution is Gaussian, this is

. ) dprecisely the Shannon entropy, up to the additive constant
The last term involves, and represents the power providedr log(2e). In any other case, the entropy is higher than the
by the linear input. In many physical systems, this poweghannon entropy.

takes the formu” ()y(t), e.g., the product of current and  jac0nis formula for an invertible matrix< (t) yields

voltage. The first term is the power provided to the sys- det X (¢) = det X (t)Tr(X~1(t)X (t)), leading to:
tem due to the nonlinear control. For instance, changintf '

a capacitance, e.g., by changing the distance between two
parallel charged plates, in an electrical circuit, will change
the energy stored in the capacitor through an exchange ofas discussed earlier, we can choose coordinates
mechanical work with the environment. Similarly, modifyingz(t) = R(t)z(t) such that the new energy matrix
the shape of a mechanical system may provide work throug’?—T(t)E(t)R—l(t) is the identity, see the last line in (3).

pressure forces (but we do not have a precise linear systgfie will also use this system of coordinates, in which some
to exemplify this case). .  computations are easier.
~ Let us now assume that we fix a vector of nonlinear The equation of evolution in-coordinates is written:
inputsv(t), such that at any moment, we can instantaneously
freeze their values. For instance, if the inpus the distance 2(t) = (J + M)z(t) + RBu(t)
between two plates_, we consider that we can at any mpment y(t) = BTRT 2(t).
suddenly stop moving the plates. If we choose coordinates _ .
in which only v(t) appears, not its derivatives for instanceWhereJ(t) and M (t) are the skew-symmetric and symmetric
then freezingy means freezingd(t), £(t), B(t) and C(t) Parts of R(t)A(t)R™'(t) + R(t)R™'(t). Then the energy is
to their current value, in which case we have a linear timewritten E(t) = 3z(t)" 2(t) and its variation is
invariant system. Then, from dissipativity theory for linear SN T T
time-invariant systems, we know that the system is lossless E(t) = 27 ()M (®)2(t) + u” ()y(®)- )
if and only if Now, the work provided through the nonlinear control
T _ v(t) is represented byM. Comparing (5) with (6), we
ATOE(D) + ZOAR) =0 . (4) find that % = RTMR. The entropy can be writtes' =
L(t)B(t) =C (1) Llogdet R1ZR™T = Llogdet ZE ™!, where Z(t) is the
for every timet. Since we could freeze the parameters ggovariance matrix of:(¢). The variation of entropy ire-
any time, (4) must hold instantaneously. We will take sucRoordinates becomes:
coordinates as our coordinates of reference and denote the 1 IR 1 EENE
. t)y=-TeZ " (t)Z(t) — - TrX ™ (t)X(¢
by z(t), although another set of coordinates, denoted iy, m ) 27" H2(®) 27" B=@)

S(t) = %Tr(X*IX).

will prove useful in the following. Compare this with the _ lTrZ*(t)Z'(t) — Te(RTR)"()RT (1) M (£) R(t)
time-varying capacitor example (3). Using (4), the variation 2
of energy inz-coordinates is written: — %Terl(t)Z'(t) — TrM(t).
E(t) = %%fc(t)TEx(t) Note that the uncertainty in the state can come from a random
1 ) initial condition and/or from a random linear inpuft). If
= gx(t)T(ATE + SA+ 2)2(t) + u’ ()BT Sz(t) the linear input is deterministic, then it is easy to see that
1 e r S(t) = 0. Hence the notion of entropy becomes interesting
= 52(t)" Ba(t) +u” ()y(t). - for randomu(t), as we shall see in the next section.
5
The second term is the power supplied by the linear input I1l. D ISSIPATIVE TIME-VARYING SYSTEMS
u(t), while the first is the power supplied through the As our goal is to understand how heat is transformed
nonlinear controb(t). into work, we will suppose that some input/output pairs

If the system has many degrees of freedom or is leftu;,y;) are connected to heat baths of temperatfire A
unmeasured, then it is reasonable to attribute a probabilibeat bath is intuitively a very large system whose temperature
distribution onz(t). Here we do not have to decide if theremains constant for a very long period of time if exchanges



of energies with other systems are moderate. It is showextracting the corresponding quantity of work. This can be
in [9] how to construct a lossless strictly causal SISQlone for instance by applying an appropriate linear input
linear time-invariant system with many degrees of freedom(t). If we wait longer, then the mean will converge to
whose behaviour approximates arbitrarily well the followingzero by the effect of the dissipation term, which means the
equation loss of valuable energy to the heat bath. This phenomenon
1 is explored quantitatively in [11], both in open-loop and
y(t) = =k2u(t) + kvVTn(t) feedback schemes. Note that while the linear input drives
2 the mean and has no effect on the covariance matrix, the
over an arbitrarily long time horizon, wherg(t) is white  white noise fluctuation acts on the covariance but not on the
noise of unit intensity, and:,y are the input/output of the mean. That is why linear control is unable to extract any
bath. A typical example is a resistor affected by Nyquistwork from a supply of heat, and this justifies a posteriori
Johnson thermal noise of temperat(re the introduction of a nonlinear control. From now on, we
Now a system is connected to such a heat bath, sajuppose that the mean has been driven to zero by dissipation
through the connection; = y andy; = —u. The minus sign  or extraction of work, and the mechanical energy is zero. We
comes from the fact that a lossless connection must satisfyerefore focus on the sole internal energy.
uy = —u;y;: all the power leaving the system is entering the The variation of covariance matriZ(t) is written as:
heat bath.
If one or several input/output pairs;,y; are related to ) 1 1
such a heat bath, the system is governed by the equation ofZ = (J+M—§ ZFiFiT)Z+Z(J+M—§ > RFENT
the form: i i
+Y _TEFL. (8)
)= (J+M— % S RFD)2(t) + RBu(t) + S VT Fina(t), i
i i Hence the variation of internal energy is written:
y(t) = B"R" (1),
) _ 1 1
where then; are independent Gaussian white noise pro- U(t) = Tr(M — §ZFiFiT)Z+ §ZTrTiFiFiT. 9)
cesses[F; describe the interconnection with the heat baths i i
andu, y are the input/output pairs not connected to any heat The term
bath; see [9]. Such a system is called ‘dissipative’.
We now have to choose in open-loop the evolution of w=TeMZ
J(t), M(t), F;(t), B(t),u(t). The case of closed-loop control

is discussed in Section VILI. is interpreted as the rate of work supplied to the system

by the environment through the nonlinear control. The term
IV. HEAT, WORK, AND CLAUSIUS FORMULA 13, TrF,FT Z is the amount of power given by the system
Several forms of energies are to be distinguished next. Ttie the heat baths, i.e., it is the amount of heat flowing out of
expected total energy of the system is also dendfét), the system. The terih >, T, TrF; F is the power provided
with a slight abuse of notation. We can then wrifét) = by the heat baths to the system, i.e., it is the heat flowing
iTrZ(t) + LE2T(t)Ez(t). The first termU = 1TrZ(t) into the system. The net heat flow supplied by bath
can be called internal energy, because it is related to the 1
random deviation of variables around their mean, while the q; = —TiTrF,»FiT — TrFiFiTZ.
second term can be interpreted as (macroscopic) mechanical _2 _ )
energyE,...,. For instance, a spring-mass system can have Now we can write the First Law for internal energy:
a mechanical potential energy proportional to the square of .
the average length of the spring, and an internal energy due U=w+ Zqi’
to small random movements of the mass around its average. g

The variation of mechanical energy can be expanded toand prove the following version of the Second Law:
Theorem 1 (Clausius formulay-or a dissipative system

Erech = lgIE;;TIE,Z in contact with several heat baths of temperatiife the
2 dt . variation of entropyS is related to the heat flows; as
=E"(M - = F,F/")Ez + Ey"Eu. follows:
2 %
. . : ai
Hence the mechanical energy can be increased or de- Sz Zf' (10)
. K3

creased by a supply or extraction of work through both the

nonlinear and linear inputs; it can also be dissipated under The equality is obtained if and only if at every time, the
the form of heat. As far as as the extraction of work isystem is connected to only one temperature (i.e., such that
concerned, the best way to manage mechanical energyail$ bathsi for which F; # 0 have the same temperature),
to drive the mearEz(¢) to zero as soon as possible, thusand the covariance matri%(¢) is T;1.



Proof: We have that It appears that it takes a small (slow exchange of work)

. ¢ 1 1. 4 to have a smalD. Thus in the limit of smallD, the terms
S-> T = iﬂ(Z Z)-TeM = ok MD + DM are even smaller compared to the others. If we
it i " neglect them, we observe the equation is lineat/irand D.

= EZTiTrFZ-FiTZ’l — EZTrFiFiT If we rgplaceM by kM, for any k > 0, then D becomes
2= 24 approximatelykD.
_ Z 'a In conclusion, if we speed up the extraction or nonlinear
- T, supply of work by a factok, the excess production rate of

1 . | r entropy due to irreversibilities is multiplied by?. As the
=3 > Tw(T.z7' - FF] - izTrFiFi total time needed to exchange a given amount of work is
@ i divided by k, the total excess of entropy is multiplied by

+1 IR ETZ k. This means that by slowing down the transformation of
2" ' a time-varying system, we can reduce arbitrarily the excess
= EZTr(TiZ*I + Ti‘lZ —2I)F,FF amount of entropy. Ift is the time of the transformation
24 needed to exchange a given amount of energy, then the

excessive entropy generated scaleslas in the limit of
large t. This is to be compared to results in finite-time
thermodynamics; see, e.g., [12].

Now the quantityZ;Z~! +T,"*Z — 2I has an eigenvalue
A+ X1 — 2 for every eigenvalue\ of T[lZ. As A\ > 0,
we have\ + A\~! — 2 > 0, with equality if and only if
A =1. HenceT; Z 7' + T;'Z — 2I is nonnegative definite,
andS—>_; # > 0. We have equality if and only if at every  syppose now that only one heat bath, of temperafire
moment only one temperature is accessible to the syste, available (or equivalently, all heat baths have the same
sayT;, andZ = T;1. B temperaturel’). Then, from Clausius formula, we have that

This a generalisation of the corresponding theorem in [8}or any evolution from time0 to time ¢, the increase of
To maintain equality in the Clausius inequality, we need @ntropy is

constant equipartitio = T'I, which means that the internal
energyU is constant and the heat floyvis zero. Hence the t g gt
work extracted must be zero as well, afdl must be zero AS = / S > T/ q.
(unlessT' = 0). Any attempt to exchange non-zero work by 0 0
nonlmgar control on a system cqnnected toa heat.bath m lSt the right-hand side is equal tﬁot U—w = AU —
result in an entropy production in excess to the right-ha ork, Hence
side of 10. In a somewhat flexible way, physicists attribute -t '
such an excess of entropy to ‘irreversibilities’.

However, if M is nonzero but small compared to all Worky_,; > A(U — T'S),
nonzero%FiFiT, this allows a slow exchange of work with
the environment, while the deviatio — 7'I from the which is independent of the path taken by the system.

1 _ _
=3 ZTrFZ-T(T,»Z Ly 17tz - 2D)F,.
3

V. ONE TEMPERATURE BATH KELVIN-PLANCK
STATEMENT OF THESECOND LAW

equilibrium remains negligible. If we suppose that only one heat bath is available, then
If we write Z = T'(I + D), whereD is a small deviation the drop ofU —T'S (called Helmholtz free energy) gives the
from equipartition, then maximum amount of work extractable during a transforma-

tion. The system is said to describe a cycledift) = A(0),
B(t) = B(0), C(t) = C(0), X(t) = 2(0), X(¢t) = X(0).
As a result, no work can ever be extracted from a single
1 temperature source by a system describing a cycle, since the
=5 > TFf(D+(I+D)"'—I)F;, (11) change of Helmholtz free energy is zero. This is the Kelvin-

i Planck’s statement of the Second Law.

S

1
- % = 3 Y LE(TZ7 +T7'Z - 2D)F,

1
=~ Z —TrFI'D?F;.
i 2 VI. TWO TEMPERATURE BATHS CARNOT'S THEOREM
On the other handpD and M are related through the

. . When two heat baths or more are available, we expect to
following equation:

prove Carnot’s theorem, namely that if the system describes
a cycle, the work extracted divided by the heat entering the

D=9M+JD—DJ+MD+ DM system is at most — T.,;4/Thot- The difficulty is to define
1 1 ‘heat entering the system’. We will discuss two definitions,
-3 ZFiFiTD —3 ZDFiFiT. and Carnot’s theorem is true for both. For one of them, this
i i bound is attained by the ‘Carnot cycle'.



A. Hot bath vs. cold bath

Following closely classical thermodynamics, we can sep- [* T T
arate the heafotq as the sum of heat exchanged with the /0 Te(Fhot Fhot + FeotaFeoa) <
hot bath and heat exchanged with the cold bath (if only two /t

Tr(
0

baths are available). Every heat bataxchanges heat TyyoiFrot Fior Z + ToolyFeotaFrmiaZ).  (12)

hot
¢ 1t On the other handloiq < Thot, ¢+ < 3TrThor Y, FiFF
/ gi = 5/ ~-TvF,FFZ + v, F;FY . and —¢_ = iTr}", F;F/Z. Plugging those inequalities
0 0 t
into Clausius inequality leads té}% > % Hence the
If the system, connected to two baths, describes a Cyc'@fficiency is bounded by — Zeaia ot

then from Clausius formulaﬁ Qhot + ﬁf_qﬂ’ld < However, we easily see tr}fétt, unless trivial case, the in-
AS = 0. From elementary algebraic manipulation, we caRqaiity can never be reached. In particular, it is clear that a
show that the total quantity of work gxtracted is equal Qery slow cycle when connected to a bath cannot be optimal,
J @hot + [ geora @nd not larger thaiil — =) [ guor- TUS,  gince if we act slowly a lot of the energy brought in by the
if 1the work extlracted is positive, thelfi gnoe > 0. Since  fyctyations will be immediately given back to the bath by
T J Ghot + 7 [ deota < 0, we see thayf geoia < 0. dissipation without producing work, thus deteriorating the

Hence, if work is extracted during the cycle, the hot batlfficiency. This notion of efficiency therefore seems more
is globally a source of heat, while the cold source is globallxha”engmg to study.

a sink of heat. The efficiency can hence be defined as the
work extracted divided by the hedtgy.:. The efficiency is  VII. CLOSED-LOOP CONTROL ANDMAXWELL’S DEMON
at mostl — Teo1a/Thot- So far we have only considered open-loop control. We

This efficiency can be attained with equality if Clausiusare allowed to know the initial value of macroscopic state
formula is true with equality at all times. This is the case ifvariables such as energy, and we never measure the output.
at every moment, the system is either connected to the Hbhis follows the setting of classical thermodynamics, but
bath only, with covariance matri¥},,.I, or it is connected does not use the full power of control theory. Can we
to the cold bath only, with covariance matri.,;4I, or it break the Second Law with feedback control? It seems
is connected to neither. A cycle respecting those conditioikat by measuring the output, we reduce the uncertainty,
is called a ‘Carnot cycle’. As explained in Section 1V, it isthus decreasing the covariance matrix and increasing the
not strictly possible to achieve a Carnot cycle, except in thexpected value. In other terms, measurement reduces entropy
limit of large times. The simplest example of ideal Carnond converts internal energy into mechanical energy. This
cycle is the following: energy can then be easily retrieved as work by linear control,
apparently for free. This is essentially what physicists call
Maxwell's demon paradox.

The generic solution to the paradox is to explain why
such a controller, if physically implemented, should dissipate
3) Fhy: = 0 and M has small constant nonpositiveenough energy :?md generate enough entropy to keep_ the

eigenvalues. Work is supplied, = T,..4I is constant. Second Law unviolated; see [13]: In our case, the solution
4) Foyq =0 and Fy,r = 0. M has nonnegative eigenval- 90€S as follqws: .Whatever Ilnear'tlme—varylng feedbac'k con-
troller (possibly itself controlled in open-loop by nonlinear
) o inputs) we choose, the closed-loop system must take the form
If more than two baths are available, then it is best t?7) again, thus breaks neither the Second Law nor Carnot's

1) F.o;qg = 0 and M has small constant nonnegative
eigenvalues. Work is extracted, = Ty I is constant.

2) F.,;q =0 andFy,; = 0. M has nonpositive eigenval-
ues (possibly large)7 is decreased t@,,;41.

ues (possibly large)? is increased td}, ;1.

connect the system to the hottest and coldest baths. theorem, as proved above.
To illustrate this general result, we can for instance think
B. In-coming vs. out-going heat of a controller composed of a measuring device, a Kalman

£ heat bath id ¢ heat flow to th ‘ filter, and an actuator, where every of these elements must be
very heat bath provides a net heat flow 10 he Systey,jejeq by an equation of the form (7). It seems obvious
equal tog; = —iTvE,FFZ + LTYT, F; FF. The first term : : e U
L P A N ' that an estimator like the Kalman filter is to converge to
accounting for d|s§|pat|on, is alwa}ys n.onposmve and the seg- good estimate of the state, hence any physical linear
f_’lnd terT,' accctJuntll rlg for flgc(j:tua;tr;o?,ﬂl]s a}[lvxt/a?/s norlme%a:‘w?ealization must dissipate energy and be disturbed by thermal
¢ etr;]ce ! '? hatura ;01C0n3$ ;rF ;T eh'? athsutppt)){ IO eaHoise, leading to imperfections. The impossibility of perfect
(; h € tSYS em E‘]J{FE 2 Zﬁi ;Tzz ot while the total 10SS - easurement is discussed quantitatively in [9], and is used in
orhea 'S_q*_f 2 rZi it A N [11] to analyse in depth the performance of heat engines with
Now the efficiency is the tottal work extractgfgw divided  imperfect measurement, over finite and infinite time intervals.
by the total supply of heal ¢,. This is essentially the  The following general question remains open: Given a
definition used in [11]. linear system of the form (7), what is the optimal feedback
Clausius inequality can then be written controller of the same form? Here optimal is understood in



relation to the extraction of work. We can optimise, e.g., the
power extracted or the efficiency in the one of the meanings
of Section VI.

VIII. CONCLUSION

We recovered the main results of thermodynamics, espe-
cially concerning a system connected to one or several heat
baths. Future work can be devoted to generalising this to
any interconnection between any kind of physical systems,
and to explore more precisely the impact of finite-time
transformation.
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