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SUMMARY

We consider in this paper formations of autonomous agents moving in a 2-dimensional space. Each
agent tries to maintain its distances toward a pre-specified group of other agents constant and the
problem is to determine if one can guarantee that the distance between every pair of agents (even
those not explicitly maintained) remains constant, resulting in the persistence of the formation shape.
We provide here a theoretical framework for studying this problem. We describe the constraints on
the distance between agents by a directed graph and define persistent graphs. A graph is persistent if
the shapes of almost all corresponding agent formations persist. Although persistence is related to the
classical notion of rigidity, these are two distinct notions. We derive various properties of persistent
graphs, and give a combinatorial criterion to decide persistence. We also define minimal persistence
(persistence with the least possible number of edges), and we apply our results to the interesting
special case of cycle-free graphs. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

From the recent increasing development of autonomous agent systems arise new questions
in graph theory. Consider a formation of n agents able to move in a 2-dimensional space.
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Figure 1. Examples of autonomous agent systems; each arrow represents a distance constraint. In (a)
for example, agents 2, 3 and 4 try to maintain their respective distances toward agent 1 constant. We

will show that only (b) is persistent.

With each agent is associated a set of neighbors, and with each neighbor a distance constraint
which the agent must meet with respect to that neighbor. Thus if agent i has two neighbors j

and k, agent i has to maintain distances dij from agent j and simultaneously dik from agent
k. It is important to understand that this is a constraint for agent i but not for agent j of
agent k, which will a priori not be required to do anything in order to maintain their respective
distances from agent i constant. Moreover, as long as a particular agent satisfies all its distance
constraints, no other hypothesis is made about its movement. Agent 4 in Figure 1(a) can thus
move freely on a circle of radius d41 centered on agent 1. In relation to a particular formation,
we are interested in knowing if one can guarantee that, provided that each agent is trying to
satisfy all its distance constraints, the structure of the formation will be conserved. In other
words, we want to know if the distance between every pair of agents (whether or not there
is a distance constraint in either direction between the pair) will remain constant along any
continuous move. As shown in Figure 1, this kind of systems can be represented by a directed
graph: To each agent corresponds a vertex, and there is a directed edge from i to j if i has a
constraint on the distance it must maintain from j. Note that double edges are allowed and
represent a situation where both i and j have to maintain the distance between them constant.

This issue is evidently related to the notion of rigidity that has been used for decades in
various domains like civil or mechanical engineering. The first works were done on particular
concrete systems, but rigidity can actually be studied from a graph theory point of view. A
framework is represented by a graph G = (V,E), where V is the set of vertices representing
the articulations, and E is the set of undirected edges representing the beams or any other
type of links. Suppose now that we assign arbitrary positions in ℜ2 to all the vertices, and
consider all the continuous moves such that the distance between the positions of any two
vertices connected by an edge remains constant (This could be done in any other space, but
in the sequel we will always work in ℜ2). The graph is called rigid if for almost all position
assignments, every such move preserves the distance between the positions of any pair of
vertices, as shown in the examples in Figures 2(a) and 2(b). In contrast, Figure 1(a) illustrates
a non rigid graph.
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Figure 2. (a) is rigid, (b) is minimally rigid, and (c) is not rigid.

In 1970, Laman gave a necessary and sufficient condition (see Theorem 1) for a graph to be
rigid in 2D [1]. In his works, he used the motion based approach as above: each edge represents
a distance constraint between two vertices, and one wants to be sure that the structure cannot
be deformed by a continuous move for which all the distance constraints are satisfied all the
time. There is a dual equivalent approach, based on static equilibrium of forces [2]. The links
are viewed as “force transmitters”, and a structure is rigid if it can bear any equilibrium load,
i.e., a collection of applied loads on each vertex such that the sum of all these applied loads is
zero.

A graph is said to be minimally rigid if it is rigid and if there is no rigid graph having the
same vertices but fewer edges. For example the graph in Figure 2(b) is minimally rigid while the
one in Figure 2(a) is only rigid (we will discuss this notion more extensively in Section 4). This
class of graphs is interesting to study, not only because it provides the least possible number
of edges, but also because every rigid graph contains a minimally rigid graph. An extensive
review of the state of the art regarding rigid graphs was provided in 1985 by Tay and Whiteley
[3]. Among the main results, we will mention the following one about Henneberg sequences.
A Henneberg sequence is a sequence of graphs beginning with the complete undirected graph
on two vertices (i.e. a graph containing two vertices and a single edge joining them), and such
that each graph can be obtained from the previous one by either a vertex addition or an edge
splitting (see Figure 3) [4, 5]. One can show that, in a 2-dimensional space, every minimally
rigid graph can be obtained as the result of a Henneberg sequence.

However, the undirected notion of rigidity does not suffice to characterize autonomous agent
formations with directed distance constraints [4, 6]. Consider indeed the system represented in
Figure 1(c). Although the underlying undirected graph is rigid, the structure of the formation
may not be preserved: Agent 4 has an out-degree 1 and has thus only one distance constraint. If
it moves on a circle of radius d43 centered on the position of agent 3, this constraint will remain
satisfied. But, if agents 3 and 1 remain at the same position (and none of their constraints
forces them to move) there will then generally be no position for agent 2 where it could satisfy
its three distance constraints, which implies that the structure of the formation is in some way
ill-posed.

In the control literature, the characterization of formations in which the structure will persist
has started to be attempted using the notion of rigidity of a directed graph [4, 6]: a directed
graph is called rigid if the structure of the corresponding formation is conserved along any
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Figure 3. (a) Vertex addition: One adds a vertex and two incident edges. (b) Edge splitting : One
replaces an edge (j, k) by a vertex i and three edges (i, j), (i, k) and (i, l) where l is another vertex of

the original graph. Both operations preserve (minimal) rigidity [1, 3].

continuous move. Since this does not correspond to a simple transposition of the definition of
rigidity for undirected graphs to directed graphs, we prefer here to call this notion persistence
of a graph in order to avoid confusion. Some conjectures and results related to persistence
do already appear in the literature, especially about minimally persistent graphs which are
persistent graphs with a the least possible number of edges or sufficient conditions for a graph
to be (minimally) persistent [4, 6]. In this paper, we propose a formal definition of persistence
that provides a theoretical framework and allows us to prove the earlier partial results. We also
derive some new properties of persistent graphs and give an operational criterion to determine
if a graph is persistent.

The definition, which we provide in Section 2, has the following intuitive meaning: a graph
is persistent if, provided that all the agents are trying to satisfy their distance constraints,
the global structure of the agents formation is preserved. We will see that rigidity of the
underlying undirected graph is a necessary but not sufficient condition. This will lead us to the
notion of constraint consistence of graph, which is the additional condition for a rigid graph
to be persistent. Intuitively, a graph is constraint consistent if every agent is able to satisfy
all its distance constraints provided that all the others are trying to do so. We will then show
that a graph is persistent if and only if it is rigid and constraint consistent. So, in Figure 1,
as will subsequently become evident, (a) is not rigid and (c) is not constraint consistent. The
only persistent graph is thus (b). Note that, although these notions are intuitively related to

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 00:0–0
Prepared using rncauth.cls



4 HENDRICKX, ANDERSON, BLONDEL AND DELVENNE

motion which is often large scale, we prefer to use equivalent and more convenient definitions
based on relations between representations of the graph that are sufficiently close to each other.

In Section 3, we derive some of the main properties of persistent graphs and show the validity
of the following criterion: A graph is persistent if and only if all the subgraphs obtained by
removing edges leaving vertices with an out-degree larger than or equal to 3 so that their out-
degree is 2 are rigid. This again explains why only (b) is persistent in Figure 1. We define then
in Section 4 minimal persistence analogously to minimal rigidity. We discuss some differences
and similarities between the two notions, and give a characterization of minimally persistent
graphs. Finally, we turn our attention to cycle-free graphs in Section 5 and show some more
powerful results that exist in this special case, such as a polynomial time criterion to decide
persistence. No such polynomial criterion is indeed available in the generic case. A short version
of the results present in this paper is available in [7].

2. PERSISTENCE FOR DIRECTED GRAPHS

A representation of a graph G = (V,E) is a function p : V → ℜ2. We say that p(i) ∈ ℜ2 is the
position of the vertex i, and define the distance between two representations p1 and p2 of the
same graph by

d(p1, p2) = max
i∈V

||p1(i) − p2(i)|| .

Moreover, two representations p1 and p2 are congruent if the distance between the positions
of every pair of vertices (connected by an edge or not) is the same in both of them:
||p1(i) − p1(j)|| = ||p2(i) − p2(j)|| for all i, j ∈ V . Such representations can be obtained one
from the other by a rotation, a translation and/or a reflection.

A distance set d̄ for G is a set of distances dij ≥ 0, defined for all edges (i, j) ∈ E. A distance
set is realizable if there exists a representation p of the graph for which ||p(i) − p(j)|| = dij for
all (i, j) ∈ E. Such a representation is then called a realization. Intuitively, a distance set d̄ is
realizable if it is possible to draw the graph such that the distance between the positions of
any pair of vertices i, j connected by an edge is dij . Note that each representation p of a graph
induces a realizable distance set (defined by dij = ||p(i) − p(j)|| for all (i, j) ∈ E), of which it
is a realization.

Definition 1. A representation p is rigid if there exists ǫ > 0 such that for all realizations
p′ of the distance set induced by p and satisfying d(p, p′) < ǫ are congruent to p. A graph is
generically rigid if almost all its representations are rigid.

The reasons for which we only require almost all representations to be rigid instead of all of
them are detailed in Remark 1. As an example of the application of this definition, Figure 2(c)
shows a graph representation p and a realization p′ of the induced distance set - the lengths of
all edges are indeed the same in p and p′ - which is not congruent to p. Since such realizations
p′ can be found arbitrarily close to p, this latter is not rigid. On the other hand, it is possible
to prove that the representations in Figures 2(a) and (b) are rigid. Although this definition
is given here with the intention of applying it to directed graphs, rigidity is essentially an
undirected notion, or rather, the definition takes no account of whether edges are directed or
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not. We remark also that our definition of (generic) rigidity is slightly different from those
usually given in the literature, but the following equivalence can be proved.

Theorem 1. The following conditions are equivalent for a graph G = (V,E)

• G is generically rigid.
• There exists a representation p of G for which any continuous displacement of the positions

(such that at all time the positions of the vertices remain a realization of the distance set
induced by p) is a rigid motion, i.e., is such that all these realizations are congruent to each
other. (This is equivalent to the usual definition of generic rigidity [8]).

• Laman’s criterion [1, 8]: There is a subset E′ ⊆ E satisfying the following two conditions:
(1) |E′| = 2 |V | − 3.
(2) For all E′′ ⊆ E′, E′′ 6= ∅, |E′′| ≤ 2 |V (E′′)| − 3, where |V (E′′)| is the number of vertices
that are end-vertices of the edges in E′′.

As mentioned above, rigidity is an undirected notion, and is therefore insufficient to
characterize persistence. The rigidity of a representation implies that if an external observer
(or some physical properties) makes sure that the distance between the positions of any pair
of vertices connected by an edge remains constant, then all the sufficiently close realizations of
the induced distance set are congruent to each other. But, in our system of autonomous agents,
there is no such external observer. Each agent is only aware of its own distance constraints,
and can “move freely” as long as these particular constraints are satisfied. Agents that only
have one constraint can thus move along a circle centered on the position of the only other
agent of which they are aware. So, it could happen that because one agent is moving on such
a circle, it becomes impossible for another agent to satisfy all its constraints, especially if this
last one has 3 or more constraints. Consider for example the rigid graph representation in
Figure 1(c). Agent 4 can move freely as long as it remains a distance d43 of 3. But if it does
and if agents 1 and 4 remain stationary, there is no possible position or trajectory for agent 2
which will allow agent 2 to continuously satisfy its three constraints. In order to have a more
formal definition of persistence, we first need to characterize mathematically the fact that each
agent is trying to keep the distances from its neighbors constant.

Let us thus fix a directed graph G, desired distances dij > 0 for ∀(i, j) ∈ E , and a
representation p. We say that the edge (i, j) ∈ E is active if ||p(i) − p(j)|| = dij , i.e, if the
corresponding distance constraint is satisfied. We also say that the position of the vertex i ∈ V

is fitting for the distance set d̄ if it is not possible to increase the set of active edges leaving
i by modifying the position of i while keeping the positions of the other vertices unchanged.
More formally, given a representation p, the position of vertex i is fitting if there is no p∗ ∈ ℜ2

for which the following strict inclusion holds:

{(i, j) ∈ E : ||p(i) − p(j)|| = dij} ⊂ {(i, j) ∈ E : ||p∗ − p(j)|| = dij} (1)

This condition intuitively means that the agent i cannot move (other agents staying fixed) so
as to satisfy additional distance constraints without breaking some that it already satisfies,
as shown in the example in Figure 4. A representation of a graph is a fitting representation
for a certain distance set d̄ if all the vertices are at fitting positions for d̄. Note that any
realization is a fitting representation for its induced distance set. From an autonomous agent
point of view, a fitting representation is a state of a formation where no agent move, others
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Figure 4. Suppose that d41 = d42 = d43 = c. The position of 4 in (a) is not fitting because it only
makes (4, 1) active while there exists a position that would make both (4, 1) and (4, 3) active. On the
other hand, its position in (b) is fitting because no point can be at a distance d42 = c of 2 in addition

to being at a distance d41 = d43 = c of 1 and 3.

staying fixed, so as to can improve the set of constraints that it satisfies. This notion of fitting
representation is precisely what is needed to characterize “persistence”. We can indeed extend
the congruence requirement to all the (sufficiently close) representations fitting for a certain
distance set instead of only the realizations of this distance set. In term of autonomous agents,
instead of requiring the formation shape to be preserved only when all the distance constraints
are satisfied, we can require it to be preserved as soon as no agent can improve its set of
satisfied constraints, i.e., as soon as all agents are trying to satisfy all their constraints. We
can thus now give a formal definition of persistence:

Definition 2. A representation p is persistent if there exists ǫ > 0 such that every
representation p′ fitting for the distance set induced by p and satisfying d(p, p′) < ǫ is congruent
to p. A graph is generically persistent if almost all its representations are persistent.

This definition is similar to the one of rigidity, and it is thus natural to ask if there is a
relation between the two notions. We will show that a generically persistent graph is always
generically rigid, and give a necessary and sufficient condition for a generically rigid graph to
be generically persistent. This condition is called the generic constraint consistence of a graph.

Definition 3. A representation p is constraint consistent if there exists ǫ > 0 such that any
representation p′ fitting for the distance set d̄ induced by p and satisfying d(p, p′) < ǫ is a
realization of d̄. A graph is generically constraint consistent if almost all its representations
are constraint consistent.

Intuitively, the constraint consistence of a representation means this. Suppose that for some
representation, all constraints are fulfilled. Consider now a nearby representation that is fitting,
i.e. one where each agent is at a fitting position, or satisfying as many distance constraints

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 00:0–0
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as it can, then in actual fact, every agent will be satisfying all its constraints. Consider the
examples in Figure 5. Another example is provided in Figure 1, where (a) and (b) are constraint
consistent while (c) is not. For suppose that p is a representation of 1(c) where all constraints
are fulfilled, and p′ is a nearby representation in which agent 1 and 3 have the same position
and agent 4 has moved is such a way that it still satisfies its unique constraint; as already
commented, there will be no new position possible for 2 which results in satisfying all three
constraints; a fitting position for 2 is one in which only two constraints are satisfied. Therefore
the same distance set as realized by p cannot be realized by p′, and thus constraint consistence
is lacking.

We have the following useful equivalences.

Theorem 2. A representation is persistent if and only if it is rigid and constraint consistent.
A graph is generically persistent if and only if it is generically rigid and generically constraint
consistent.

Proof: Observe first that we just have to prove this equivalence for a representation, since
it will trivially imply the same equivalence for the graphs.

Let p be a rigid and constraint consistent representation, and p′ a representation fitting for
the distance set induced by p and satisfying d(p, p′) < ǫ (where the ǫ is smaller than those
coming from the application of the definitions of rigidity and constraint consistence to p). By
the constraint consistence property, this fitting representation p′ is necessarily a realization of
the distance set induced by p. By rigidity, this implies that the representations p and p′ are
congruent. By Definition 2, p is therefore persistent.

Let us now consider a persistent representation of a graph G, the induced distance set d̄, and
the ǫ given by the definition of persistence. We are going to show that this ǫ is also appropriate
for constraint consistence and rigidity. Because of the persistence of p, any representation p′

fitting for d̄ and satisfying d(p, p′) < ǫ is congruent to p. It is thus by definition a realization of
d̄, and p is therefore constraint consistent. Now, if we consider a realization p′ of d̄ such that
d(p, p′) < ǫ, it is by definition also a fitting representation for d̄. The persistence of p implies
then that it is congruent to p, which is therefore also rigid.

Remark 1. In our definitions of generic rigidity, persistence and constraint consistence, a
graph has a generic property if almost all its representations have the property. This “almost
all” is loose phraseology meaning for all but members of a proper algebraic variety, i.e. for
all but those points satisfying a set of nontrivial algebraic equalities. It indeed does not only
excludes representations with several vertices having collinear or superposed positions, but
also more delicate situations such as the one presented in Figure 6. One can see, using for
example Laman’s criterion (Theorem 1) that this graph is generically rigid. However, some
of its representations are not rigid. Suppose indeed that in a certain representation p, the
two triangles are congruent and the three transversal edges (1, 4), (2, 5) and (3, 6) are parallel
and have the same length d14 = d25 = d36. A representation p′ obtained by translating one
of the triangles in a way such that the distances along the transversal edges are preserved
exists and will always be a realization of the distance set induced by p, but not congruent
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Figure 5. The graph represented in (a) is generically constraint consistent. Each of 1, 3 and 4 can
indeed always satisfy its unique distance constraint. On the other hand, the one represented in (b) is
not constraint consistent because there always exists a configuration of positions of 1, 2 and 3 such

that 4 is unable to satisfy its three distance constraints.

p(1)

p(3)

p(4)

p(6)

p(2) p(5)

p’(5)

p’(2)

p’(6)

p’(4)

p’(3)

p’(1)

(a) (b)

Figure 6. p is a representation of a generically rigid graph. However, (b) shows a representation p′ of
the same graph, fitting for the distance set induced by p, but which is not congruent to p.

to p. Such a representation is thus not rigid. For this reason, the properties of the graphs
have to be considered as “generic”. In the sequel, we however prefer to avoid further use
of the words “generic”, “generically”, etc. Generically rigid (resp. generically persistent or
generically constraint consistent) graphs will thus be called rigid (resp. persistent or constraint
consistent) graphs.
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3. CHARACTERIZATION OF PERSISTENT GRAPHS

In this section, we derive properties of persistent graphs and give a combinatorial criterion to
decide persistence. We begin by giving a lower bound on the number of active edges, and a
first sufficient condition for a graph to be constraint consistent. In the sequel, d−(i, G) and
d+(i, G) designate respectively the in- and out-degree of the vertex i in the graph G. When
no confusion is possible about the graph, we will use d−(i) and d+(i).

Lemma 1. Let p be a representation of graph G = (V,E), and i a vertex of this graph. If the
position p(i) is not collinear with two or more of its neighbors, then there exists ǫ > 0 such
that in every representation p′ ∈ B(p, ǫ) (i.e., such that d(p, p′) < ǫ) fitting for the distance set
induced by p, the number of active edges leaving i is at least min (2, d+(i)). Consequently, a
graph in which all the vertices have an out-degree smaller than or equal to 2 is always constraint
consistent.

Proof: The proof of this lower bound is rather technical, and the reader may wish to skip
the details at a first reading.

Let us consider a representation p′ fitting for the distance set d̄ induced by p. If the out-
degree of i is 0 or 1, the set of possible positions that could make all the edges leaving i active
is always non-empty (it is respectively ℜ2 or a circle). The position p′(i) will then be fitting if
and only if all the d+(i) = min (2, d+(i)) edges are active.

If the out-degree of i is 2, we need the following result, which can be shown using simple
geometric and continuity arguments:

Suppose there are given three non-collinear point a, b, c ∈ ℜ2 and dab, dac, dbc the distances
between each pair of points. There exists an ǫ(a, b, c) > 0 such that for all a′, b′ ∈ ℜ2 satisfying
||a − a′|| , ||b − b′|| < ǫ(a, b, c), there exists c′ ∈ ℜ2 such that ||b′ − c′|| = dbc, ||a

′ − c′|| = dac.
(Roughly speaking, if a, b and c are the agents meeting certain distance constraints, and if
a and b move a small amount, then c can also be moved to ensure that again the distance
constraints involving c are fulfilled.)

We can now show that
ǫi = min

(i,j),(i,k)∈E
ǫ(p(j), p(k), p(i)), (2)

satisfies the required condition in the statement of Lemma 1. Let us indeed suppose that there
is a representation p′ ∈ B(p, ǫ) such that less than 2 active edges are leaving i, and take a
set of two edges (i, j), (i, k), containing the active edge leaving i if there is one. Observe that
by hypothesis, p(i), p(j) and p(k) are not collinear. By (2), there exists thus a point p∗ such
that ||p∗ − p′(j)|| = dij and ||p∗ − p′(k)|| = dik, or equivalently a point p∗ such that the strict
inclusion (1) holds. The position p′(i) and the representation p′ are thus not fitting for d̄, which
contradicts our hypothesis. Hence we have proved the first part of the Lemma, that under the
hypothesis given, the number of active edges leaving i as at least min(2, d+(i))

We now show the second part (about the constraint consistence) of the result. Observe first
that in almost all representation, no vertex has a position collinear with two or more of its
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10 HENDRICKX, ANDERSON, BLONDEL AND DELVENNE

neighbors. Let us consider such a representation p of a graph G for which every vertex i has
an out-degree d+(i) ≤ 2, and the induced distance set d̄. If we take ǫ′ < ǫi,∀i ∈ V where
the ǫi comes from (2) for each vertex, then for any representation p′ ∈ B(p, ǫ′) fitting for d̄,
each vertex will be left by min (2, d+(i)) = d+(i) active edges, so that all the edges will be
active. Every such p′ is thus a realization of d̄, and the representation p is thus constraint
consistent. As we already mentioned, this can be done for almost all representations of G,
which is therefore also constraint consistent.

The next proposition allows us to delete edges in a persistence graph and maintain persistence.

Proposition 1. A persistent graph remains persistent after deletion of any edge (i, j) for
which d+(i) ≥ 3.

Proof: In the sequel, G∗ = (V,E∗) denotes the graph obtained by removing the edge
(i, j) of G = (V,E), which is persistent. Let us consider a realization p of G∗ and the induced
distance set d̄∗. Observe that p can also be viewed as a representation of G, and the induced
distance set is then d̄ = d̄∗ ∪ {dij}. We assume here that no vertex has a position collinear
with two or more of its neighbors (and thus that Lemma 1 can be applied), which is the case
for almost all realizations.

We will first prove that any fitting representation of G∗ for d̄∗ sufficiently close to p is also
a fitting representation of G for d̄ (A). This will allow us to prove the persistence of G∗ in a
direct way (B). Note that the proof of (A) is rather technical, and the reader may wish to skip
it at a first reading.

(A) There exists ǫt > 0 such that every representation p′ ∈ B(p, ǫt) fitting for d̄∗ is also
fitting for d̄.

Let us consider a representation p′ ∈ B(p, ǫt) (where ǫt remains to be determined) fitting for
d̄∗ and such that no vertex has a position collinear with two or more of its neighbors (which
is always the case if ǫt is sufficiently small). For each k ∈ V \ {i}, the result is trivial since the
conditions of fittingness are the same for d̄∗ and d̄. We have thus to show that (for a sufficiently
small ǫt), no possible position of i would make the same edges active (with respect to d̄) as
p′(i) does and some additional one(s). Let E∗

i denote the set of active edges in p′ with respect
to d̄∗ leaving i, i.e., the set of constraints of G∗ that are satisfied by i in the representation
p′, which is fitting for d̄∗. Obviously, these constraints are still satisfied if we consider p′ as a
representation of d̄. We can consider two separate cases:

If |E∗
i | ≥ 3. Because of the non-collinearity condition, only one possible position can make

all the edges of E∗
i active, i.e.,

{x∗ ∈ ℜ2 s.t. ||p∗ − p′(k)|| = dik,∀(i, k) ∈ E∗
i } = {p′(i)}.

There is thus a fortiori no possible position that would make active (with respect to d̄) all the
edges that p′(i) does (including those of E∗

i ) and some additional one(s). The position p′(i) is
thus fitting for d̄.
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Now, if |E∗
i | < 3, the out-degree of i and Lemma 1 implies that |E∗

i | = 2. Let us denote by l

and m the two vertices such that (i, l), (i,m) ∈ E∗
i . There are only two points that can make

both edges of E∗
i active and thereby assure fittingness of vertex i for d̄∗:

{x ∈ ℜ2 s.t. ||x − p′(l)|| = dik, k = l,m} = {p′(i), s (p′(i), p′(l), p′(m))},

where s : ℜ2 × ℜ2 × ℜ2 → ℜ2 : (a, b, c) → s(a, b, c) is a function which maps the point a into
its reflection to the line bc. So, if there exists a position for i that would make active (with
respect to d̄) some other edge in addition to those of E∗

i , it can only be s (p′(i), p′(l), p′(m)).
Moreover, this additional edge cannot belong to E∗ for otherwise p′(i) would not be fitting
with respect to d∗. It must therefore be (i, j), only edge of E \ E∗. To achieve this proof, we
use the following geometrical result:

Let a, b, c, d be four non-collinear points of ℜ2. There exists an ǫ (a, b, c, d) such that
for all a′, b′, c′, d′ located at a distance smaller than ǫ(a, b, c, d) from respectively a, b, c, d,
||s(a′, b′, c′) − d′||2 6= ||a − d||2.

So, since by hypothesis p(j) is not collinear with p(l) and p(m), if ǫt <

ǫ (p(i), p(l), p(m), p(j)), s (p′(i), p′(l), p′(m)) cannot make (i, j) or any other edge active in
addition to those of E∗

i , which implies that p′(i) is fitting for d̄.

(B) G∗ is persistent

Observe first that the set of representations of G is identically equal to the set of
representation of G∗. By hypothesis, almost all representations of G are persistent. Moreover,
almost all of them do not have a vertex with a position collinear with two or more of its
neighbors. Let us thus take a realization p satisfying these two last conditions, and show that
it is also persistent as a representation of G∗:

Consider a representation p′ ∈ B(p, ǫp) ∩ B(p, ǫt) fitting for the distance set d̄∗ (induced
by p as a representation of G∗), where ǫt is given by (A), and ǫp comes from the definition
of persistence applied to p as a realization of G. By (A), it is also a fitting representation of
G for the distance set d̄ (induced by p as a representation of G). Since p is persistent as a
representation of G and d(p, p′) < ǫp, we know that p′ is congruent to p. And since this can
be done for any p′ ∈ B(p, ǫp) ∩ B(p, ǫt), p is persistent as a representation of G∗. Moreover,
as explained above, this result can be applied to almost all representations of G∗, which is
therefore persistent.

One can see that the reasoning of this last proof can also be applied to graphs that are only
constraint consistent, which leads to the following result:

Proposition 2. A constraint consistent graph remains constraint consistent after deletion of
any edge (i, j) for which d+(i) ≥ 3.

An interesting corollary of Proposition 1 concerns the total number of degrees of freedom
in the graph. The number of degrees of freedom of a vertex is the maximal dimension, over
all generic representations of the graph, of the set of possible fitting positions for this vertex.
In a 2-dimensional space, the vertices with zero out-degrees have two degrees of freedom, the

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 00:0–0
Prepared using rncauth.cls



12 HENDRICKX, ANDERSON, BLONDEL AND DELVENNE

Figure 7. All the vertices of this rigid graph have an out-degree 2. By Lemma 1 it is thus constraint
consistent and therefore persistent, but the number of degrees of freedom of each vertex is 0.

vertices with out-degrees 1 have one degree of freedom, and the others have none. Note that
a vertex with no degree of freedom can have more than one possible fitting position. Observe
indeed that there are in almost all situations two possible fitting positions for a vertex with
out-degree 2. However, since this set contains a finite number of points, its dimension is still
0. The following result provides a natural bound on the sum of the degrees of freedom of
individual vertices for a persistent graph.

Corollary 1. The sum of the degrees of freedom of all the vertices of a persistent graph cannot
exceed 3.

Proof: Observe first that removing an edge leaving a vertex with an out-degree larger
to or equal to 3 does not affect the number of degrees of freedom of this vertex. Let us now
imagine that there exists a persistent graph G = (V,E) for which this sum is larger than 3.
Using recursively Proposition 1, we could obtain a persistent subgraph G∗ = (V,E∗) with the
same number of degrees of freedom but without any vertex having an out-degree exceeding 2.
In G∗, the number of degrees of freedom of a vertex i is thus 2− d+(i, G∗). So, if F is the sum
of the degrees of freedom of all the vertices of the graph, we have F = 2 |V | − |E∗|. F > 3
would then mean that |E∗| < 2 |V |−3, which by Theorem 1 is impossible for a persistent (and
thus rigid) graph.

Note that the total of three degrees of freedom is an upper bound. There are persistent
graphs which vertices do not have any degree of freedom, as shown in Figure 7.

We have shown in Proposition 1 that a persistent graph remains persistent after deletion of
any edge (i, j) for which d+(i) ≥ 3. After successive deletions, we can thus reach in this way a
persistent graph whose vertices all have an outgoing degree that is smaller than or equal to 2.
In the next theorem we prove that a graph is persistent if and only if all the graphs obtained
in this way are rigid.

Theorem 3. A graph is persistent if and only if all those subgraphs are rigid which are
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RIGIDITY AND PERSISTENCE OF DIRECTED GRAPHS 13

obtained by removing outgoing edges from vertices with out-degree larger than 2 until all the
vertices have an out-degree smaller than or equal to 2.

Proof: Let us consider a graph G = (V,E) and Σ the set of all the subgraphs S of
G satisfying for every vertex i ∈ V , d+(i, S) = min (d+(i, G), 2). We prove separately the
following two implications:

• If G is persistent, any S ∈ Σ is rigid.
Since it is possible to obtain S from G only by removing edges leaving vertices with an
out-degree larger or equal to 3, Proposition 1 guarantees the persistence of G∗ and thus
its rigidity.

• If every S ∈ Σ is rigid, G is persistent.
Let us suppose that G is not persistent, and prove (to obtain a contradiction) that this
implies that at least one graph of Σ is not rigid. We begin by showing this result for a
particular representation of the graph, and then we generalize to the graph.

Consider a representation p of G which is not persistent and to which Lemma 1 can
be applied. We are going to show that p is not rigid for at least one S ∈ Σ. By the
definition of persistence, for all ǫ > 0, there exists a representation p′ of G, fitting for
the distance set d̄ induced by p, and not congruent to p. Let us consider such a p′ and
build a subgraph G∗ = (V,E∗) of all the active edges in p′. Lemma 1 implies that
d+(i, G∗) ≥ min(2, d+(i, G)) for all i ∈ V . Therefore, by removing some additional edges
leaving vertices with an out-degree larger than 2, we can obtain a subgraph S = (V,Es),
with Es ⊆ E∗ ⊂ E, and such that, for all i ∈ V , d+(i, G∗) = min(2, d+(i, G)). Notice
that we can regard S as being obtained by deletion of edges from G∗, or by deletion of
edges from G.

We denote now by d̄s the subset of d̄ corresponding to S. By construction, p and p′ are
realizations of d̄s, but p′ is not congruent to p. So, for any value of ǫ, there is always a
subgraph S ∈ Σ such that there exists a realization (of the distance set induced by p as
a representation of S) not congruent to p. The finite number of elements of Σ implies
then that p is non-rigid for at least one S ∈ Σ.

We now generalize this result to the graph G. By definition, G is persistent if almost
all its representations are persistent. Since here G is not persistent, more than almost
none of its representations are not persistent. Moreover, Lemma 1 can be applied to
almost all the representations of a graph. It follows thus that more than almost none
of the representations of G are at the same time not persistent and such that Lemma
1 can be applied. It is proved above that any such representation p fails to be rigid
as a representation of at least one graph belonging to Σ. The finite number of such
graphs implies then the existence of a graph S ∈ Σ having more than almost none of its
representations that are not rigid, i.e., a graph S ∈ Σ which is not rigid.

This last result provides a non-polynomial time algorithm to check the persistence of a graph:
it suffices to check the rigidity of all subgraphs obtained by deleting edges leaving vertices with
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14 HENDRICKX, ANDERSON, BLONDEL AND DELVENNE

p(6)

p(2) p(5)

p(4)

p(3)

p(1)

Figure 8. Example of non persistent representation of a persistent graph. Removing (6, 2) (that leaves
a vertex with out-degree 3) yields indeed the non-rigid representation of Figure 6.

out-degree larger or equal to 3 until all vertices have an out-degree smaller or equal to 2. An
algorithm with a smaller complexity would be useful in the case of large graphs, especially if
there is a high number of vertices with a high out-degree, but no such algorithm has been found
yet and at the time of writing it is still unclear if the problem of determining if a directed graph
is persistent can be solved in a polynomial time. However, polynomial time complexity results
exist in some particular cases. In Section 5, we show that for cycle-free graphs, persistence
can be checked in polynomial time, and in the next section we introduce the related notion of
minimal persistence and prove a decision criterion that can also be checked in a polynomial
time.

Remark 2. The results of Proposition 1 and Theorem 3 concern the persistence of graphs.
In the proofs of both of them, we use the fact that Lemma 1 can be applied to almost all
representations. Actually, it is possible to prove similar results concerning the persistence of a
representation, if one assumes that it satisfies the conditions of Lemma 1:

(a) A persistent (resp. constraint consistent) representation of a graph G such that no vertex
has a position collinear with two or more of its neighbors is also a persistent (resp. constraint
consistent) representation of any graph G∗ obtained by deletion of any edge (i, j) for which
d+(i) ≥ 3.

(b) A representation such that no vertex has a position collinear with two or more of its
neighbors is persistent for a graph if and only if it is rigid for all those subgraphs which are
obtained by removing outgoing edges from vertices with out-degree larger than 2 until all the
vertices have an out-degree smaller than or equal to 2.

Note that the proofs are almost identical to those of respectively Proposition 1 and Theorem
3. An example of application of this last result to a representation is shown in Figure 8. One
can see that p is a representation of a persistent graph. However, if both triangles are congruent
and if the three transversal edges (4, 1), (5, 2) and (6, 3) are parallel and have the same length
d14 = d25 = d36, p is not persistent. One can indeed see that 6 has an out-degree 3 and that
the representation obtained after deletion of (6, 2) is not rigid, as shown in Figure 6.
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4. MINIMAL PERSISTENCE

In this section we define the notion of minimal persistence, analogously to minimal rigidity. We
then discuss the main properties of minimally persistent graphs, and show some similarities
and difference between minimal persistence and minimal rigidity.

But first, we recall a few facts about minimal rigidity. One way to define the concept is to
say that a graph is minimally rigid if it is rigid and if there exists no rigid graph with the
same number of vertices and a smaller number of edges. Another way is to say that a graph is
minimally rigid if it is rigid and if no single edge can be removed without losing rigidity. These
two definitions are provably equivalent and lead to the following criterion: A graph G = (V,E)
is minimally rigid if it is rigid and if |E| = 2 |V | − 3 (with an exception if |V | = 1). Moreover,
a necessary and sufficient condition for a graph to be rigid is the presence of a minimally rigid
(edge) subgraph. This can be seen using for example Laman’s criterion (Theorem 1).

A Henneberg sequence is a sequence of graphs G2, G3, . . . , G|V | such that G2 is the complete
(undirected) graph with two vertices, and Gi+1 (i ≥ 2) can be obtained from Gi by performing
either a vertex addition or an edge splitting (see [4, 5]). These operations are defined in Figure
3, and one can show that they preserve minimal rigidity. Moreover, every minimally rigid graph
can be obtained as the result of a Henneberg sequence [3].

We now define minimal persistence as follows:

Definition 4. A persistent graph is minimally persistent if it is persistent and if no edge can
be removed without losing persistence.

A first important and surprising difference with the concept of minimal rigidity is that a
graph having a minimally persistent (edge) subgraph is not necessarily persistent, as shown
in the example in Figure 9. More generally, unlike the case of rigidity, it is possible to obtain
a non-persistent graph by adding edges to a persistent graph. From this observation arises
the question: does there exist a minimally persistent graph from which one could obtain a
persistent graph after deletion of more than just one edge? We will see that Proposition 3
provides a negative answer since it states that the number of edges of a minimally persistent
graph is uniquely determined by the number of its vertices. A first necessary condition for a
persistent graph to be minimally persistent is immediate from Proposition 1: the absence of
vertex with an out-degree exceeding 2. On the other hand, a sufficient condition is minimal
rigidity: suppose indeed that one removes an edge of a persistent minimally rigid graph; then
the obtained graph would by definition not be rigid and therefore not persistent. We will see
in the sequel that this condition is also necessary, i.e. that any minimally persistent graph is
minimally rigid.

As explained above, every minimally rigid graph can be obtained from an initial seed of two
vertices and one edge by a sequence of vertex additions and edge splittings. We define here
the directed version of these operations as in [4] by giving a direction to the added arrows in a
way such that the out-degrees of the already existing vertices are not affected, as represented
in Figure 10. To perform a (directed) vertex addition on a graph G = (V,E), one adds a vertex
and two edges from this vertex to different vertices of V . The (directed) edge splitting consists
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16 HENDRICKX, ANDERSON, BLONDEL AND DELVENNE

(a) (b) (c)

Figure 9. The graph represented in (a) has a minimally persistent subgraph (b). However, by Theorem
3, it is not persistent because the subgraph represented in (c) is not rigid. In the corresponding multi-
agent system, this could be seen as arising from a combination of unfortunate selections among the

various possible information architectures available to the three agents of the cycle.

in removing one edge (j, k) ∈ E and adding a vertex i and three edges (j, i), (i, k) and (i, l) for
some l ∈ V, l 6= j, k. In the sequel, these operations will always be considered with the directed
meaning. A Henneberg sequence (directed case) is then a sequence of graphs G2, G3, ..., G|V |,

such that each graph Gi+1 (i ≥ 2) can be obtained by performing a vertex addition or an edge
splitting on Gi, and G2 is a graph of two vertices connected by one directed edge. As in the
undirected case, all the graphs of such a sequence are minimally rigid. Moreover, since the out-
degree of each of their vertices is always smaller or equal to two, Lemma 1 guarantees that they
are also constraint consistent and thus minimally persistent. This implies that one can always
assign a direction to all the edges of a minimally rigid undirected graph such that the resulting
graph is minimally persistent. It is indeed possible to obtain every minimally rigid undirected
graph by performing a sequence of (undirected) vertex additions and edge splitting on an initial
seed of two vertices and one edge. [In order to obtain a minimally persistent graph, one can
then simply perform the same sequence of the directed version of these operations]. However,
it is still an open question as to whether, given an undirected rigid (but not minimally rigid)
graph, there exists an assignment of directions to the edges such that the resulting directed
graph is persistent.

Since every undirected minimally rigid graph can be obtained as the result of a Henneberg
sequence, and since there always exists a minimally persistent graph resulting from the same
sequence, it is natural to ask if every minimally persistent graph can be obtained in that way.
Unfortunately, the existence of counterexamples force us to answer negatively to this question.
Consider indeed the cycle of length 3 or any minimally persistent graph for which all the
vertices have a positive out-degree. Since both vertex addition and edge splitting conserve the
out-degree of all the already existing vertices, and since the first graph (G2) of a Henneberg
sequence contains a vertex with a zero out-degree, they cannot be obtained as a result of a
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Figure 10. Representation of the directed version of the vertex addition (a) and the edge splitting (b).

Henneberg sequence. Actually, not all counterexamples have this property. Figure 11 shows
indeed another counterexample with a vertex that has a zero out-degree, as we shall now argue
(We were not able to find a smaller graph with the same properties). Let us indeed consider
each of the possible graphs from which this graph could be obtained by the last of the directed
Henneberg sequential operations. Because of their in- and out-degrees, the only vertices that
could have been added are 7 and 2, and one would have used edge splitting in either case. But,
if 7 is removed by the reverse operation, one must introduce the edge (4, 6) since the edge (4, 3)
is already present in the graph. This will create a double edge, i.e. a cycle of length 2. Call the
resulting graph G′. By Laman’s criterion, a graph G′ = (V ′, E′) satisfying |E′| = 2 |V ′| − 3
and having a subgraph G′′ for which |E′′| > 2 |V ′′|−3 is not rigid. Identify G′′ with the double
edge and the vertices joining by the double edge. Then we see that G′ cannot be rigid and thus
persistent. On the other hand, if 2 is removed, the graph obtained G′, which includes a new
edge (3, 6), has a subgraph G′′ = (V ′′, E′′) with V ′′ = {3, 4, 6, 7} and |E′′| = 6 > 2 |V ′′| − 3;
this again prevents the graph G′ from being rigid and therefore minimally persistent. Note
that in both cases, the absence of persistence comes from the absence of rigidity.

A more comprehensive examination of Hennberg sequences for directed graphs is undertaken
in [9]; by expanding the set of allowed operations beyond directed versions of vertex addition
and edge splitting, one can construct all minimally persistent graphs through a sequence of
standard operations. We now show that minimal rigidity is not just a sufficient condition but
also a necessary condition for a persistent graph to be minimally persistent.
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6

7 3
1

4

5

2

Figure 11. One can verify that this graph is minimally persistent. However, it cannot be obtained from
a smaller minimally persistent graph by either vertex addition or edge splitting (depicted in Figure

10).

Proposition 3. A graph G = (V,E) is minimally persistent if and only if it is persistent and
satisfies |E| = 2 |V | − 3.

Proof: First, observe that a persistent graph G = (V,E) satisfying |E| = 2 |V | − 3 is
minimally persistent; for by Laman’s criterion (Theorem 1), removing one edge would indeed
mean losing rigidity and thus persistence.

Conversely, let us now suppose, to obtain a contradiction, that there exists a minimally
persistent graph G = (V,E) for which |E| > 2 |V | − 3 (The case of the reverse inequality is
trivial since G could then not be rigid and therefore persistent). We are going to show that
there always exists a persistent edge subgraph, which contradicts our minimality hypothesis.

If there is a vertex with an out-degree larger than 2, one can use Proposition 1 to build
this subgraph. But, if no such vertex exists, we know by Lemma 1 that every subgraph of
G is constraint consistent. Moreover, because G is rigid, Laman’s criterion provides a rigid
subgraph G′ = (V ′, E′) for which |E′| = 2 |V ′| − 3. Since G′ is also constraint consistent, it is
persistent.

It is actually possible to give a more specific characterization of minimal persistence that relies
on the vertex out-degrees.

Theorem 4. A rigid graph (with more than one vertex) is minimally persistent if and only if
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one of the following two conditions is satisfied.

• Three vertices have an out-degree 1 and all the others have an out-degree 2.
• One vertex has an out-degree 0, one vertex has an out-degree 1, and all the others have an

out-degree 2.

Proof:

• Sufficient condition: By Lemma 1, a rigid graph satisfying either of the two above
conditions is constraint consistent and therefore persistent. Moreover, each of these two
conditions implies that the number of edges is |E| = 2 |V | − 3.[Observe that the number
of edges is precisely the sum of the out degrees of all the vertices]. It follows then from
Proposition 3 that G is minimally persistent.

• Necessary condition: Let us take G = (V,E), minimally persistent. By Proposition 1,
there is no vertex i ∈ V with an out-degree larger than 2. [If the contrary were the case,
one could indeed remove one edge and obtain a persistent graph with less edges]. Since
by Proposition 3 the sum of the out-degrees is |E| = 2 |V |−3, G satisfies necessarily one
of the two conditions of the present theorem.

The use of Laman’s criterion in the proof of Proposition 3 and in the comments about
the counterexample of Figure 9 can introduce some confusion about the cycles of length
2, i.e., the “double edges”. It has to be indeed clearly understood that although they are
equivalent from an undirected point of view (and thus for any undirected notion such as
rigidity) they are considered as two different edges. However, such a cycle could never belong
to the minimally rigid subgraph required by Laman’s criterion (Theorem 1) and therefore
appear in any minimally rigid graph. Taking two such edges as an edge subset E′′ would
indeed yield |E′′| = 2 > 1 = 2 |V (E′′)| − 3. If an undirected graph contains two edges between
the same vertices, one can thus always remove one of them without affecting the rigidity of
this graph. There is an analogous result for persistent graphs.

Proposition 4. If a persistent graph contains two edges incident to the same pair of vertices
(and having opposite directions), then at least one of the two graphs obtained by removing one
of the edges is also persistent. A minimally persistent graph never contains two such edges.

Proof: Let G = (V,E) be a persistent graph and i, j ∈ V two vertices such that
(i, j), (j, i) ∈ E. If d+(i) ≥ 3 or d+(j) ≥ 3, the result is trivial by Proposition 1. If
it is not the case, then (i, j) and (j, i) are edges of every edge subgraph S satisfying
d+(k, S) = min(2, d+(k, S)) for all k ∈ V , and the rigidity of such a subgraph will thus
not be affected if one of the two edges is removed. Theorem 3 guarantees then that one can
remove either one of these two edges an obtain a persistent graph.

However, unlike in the case of rigidity, adding an edge to two already connected vertices in a
directed graph does not necessarily preserve persistence, as shown in Figure 9 (a) and (b).
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1
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Figure 12. Example of cycle-free persistent graph. The numbers correspond to an order in which the

vertices can be added according to Theorem 5.

5. CYCLE-FREE GRAPHS

In this section, we derive a simple criterion to decide the persistence of cycle-free graphs. We
also show an explicit way to build all the persistent cycle-free graphs.

Proposition 5. A graph obtained by adding one vertex to a graph G = (V,E) and at least
two edges leaving this vertex is persistent if and only if G is persistent.

Proof: Let G∗ = (V ∗, E∗) be the graph obtained by adding a vertex i and at least
two edges leaving i to G. We call Σ the set of subgraphs S of G satisfying d+(k, S) =
min(2, d+(k,G)) for all k ∈ V , and Σ∗ the corresponding set of subgraphs S∗ of G∗. By
the criterion of Theorem 3, it is sufficient to prove the equivalence between the existence of a
non-rigid S∗ ∈ Σ∗ and the existence of a non-rigid S ∈ Σ. In this purpose, we use the following
result already mentioned in the introduction:

A graph obtained by adding one vertex to a graph G = (V,E) and two edges from this vertex
to other vertices is rigid if and only if G is rigid [1].

Suppose that there exists a non-rigid S ∈ Σ as described above. The graph S∗ obtained by
adding i and two of the edges of E∗ \ E is not rigid. Moreover, it belongs to Σ∗ since it is a
subgraph of G∗ and each one of its vertices has an out-degree min (2, d+(k,G∗)). Conversely if
there exists a non-rigid S∗ ∈ Σ∗, the subgraph S of G obtained by removing i from S∗ is also
not rigid, and belongs to Σ since each one of its vertices has an out-degree min (2, d+(k,G)).
There is thus a non rigid graph in Σ if and only if there is a non rigid graph in Σ∗.

We thus know that a cycle-free graph obtained by successively adding vertices all with out-
degree 2 to an initial seed of one directed edge connecting two vertices is persistent. We will
now show that every persistent cycle-free graph can be obtained in such a way, as shown in
the example in Figure 12, and derive from that fact a simple criterion for persistence in the
particular case of cycle-free graphs.

Theorem 5. A cycle-free graph having more than one vertex is persistent if and only if

• One vertex (called the leader) has an out-degree 0;
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• One vertex (called the first follower) has an out-degree 1 and the corresponding edge is incident
to the leader;

• Every other vertex has an out-degree larger or equal to 2.

Moreover, every such graph can be obtained from an initial seed composed by the leader and
first follower by adding vertices one by one in the way described in Proposition 5, i.e., each
vertex is added with all its incident edges that are outgoing.

Proof: Let us consider a cycle-free graph G = (V,E). Its vertices can be numbered in
such a way that the numbering of the origin of an edge is always larger than the numbering of
its destination (usual topological sort for cycle-free directed graphs [10, 11]). We relabel the
vertices such that n(i) = i,∀i ∈ V (where n : V → 1.. |V | is such a numbering), and have then

d+(i) < i and (i, j) ∈ E ⇒ i > j. (3)

If the graph is persistent, it is rigid. Corollary 1 and (3) imply then that d+(1) = 0, d+(2) = 1,
(2, 1) ∈ E and for all others i ∈ V , d+(i) ≥ 2. The condition about the out-degrees is thus
satisfied.

Conversely, if the graph satisfies the out-degrees condition described above, (3) implies that
the vertices 1 and 2 are respectively the leader and the first follower and that (2, 1) ∈ E.
Moreover, the vertex labelled |V | has d+(|V |) ≥ 2 and d−(|V |) = 0 (if |V | > 2). Removing
it does thus not modify the out-degree of the other vertices, and leads to a smaller cycle-free
graph that still satisfies the out-degree condition. Doing this recursively, one finally obtains a
graph on only two vertices: ({1, 2}, {(2, 1)}). G can thus be built by adding, one by one, |V |−2
vertices with (two or more) outgoing edges to this initial seed on two vertices. And since this
seed is persistent, it follows from Proposition 5 that G also is.

This result provides an algorithm with a low complexity to decide the persistence of a cycle-free
graph. Moreover, if we apply it to a minimally persistent graph, we get the following corollary:

Corollary 2. A cycle-free minimally persistent graph with more than one vertex always has
a leader-follower structure (see Theorem 5) and can always be obtained as the result of a
Henneberg sequence containing only vertex additions.

6. CONCLUSIONS AND FURTHER WORKS

As mentioned in the previous sections, several questions remain open the main ones being the
existence of a polynomial time criterion to decide if a graph is persistent, and an algorithm to
assign directions to the edges of a rigid graph in order to obtain a persistent graph. We intend
to examine the possible application to these issues of a pebble game approach, which can be
used to determine in a polynomial time if an undirected graph is rigid [12].
Among the possible extensions of this work, one can remark that we always assumed that
the graph representations lie in ℜ2. From a practical point of view, it would be desirable to
extend the results to ℜ3. However, this does give rise to new difficulties. For undirected graphs,
there is no known equivalent of Laman’s theorem in three dimensions, and not all minimally
rigid graphs can be obtained by Henneberg sequences. Moroever, other issues appearing in
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higher dimensions such as the possible presence of two leaders would also have to be treated
[13, 14, 15]. Besides, we showed that a minimally persistent graph cannot always be built by
performing a sequence of the two operations depicted in Figure 10 on an initial seed of two
vertices. It is interesting to study if it is possible to obtain all minimally persistent graphs in
such a way using other types of minimal persistence preserving operations. A partial answer
to this problem is provided in [9]. Since we showed in Figure 9 that one cannot generally
add edges indefinitely to a persistent graph without losing persistence, we may also be able
to define and characterize maximally persistent graphs. Finally, another issue would be to
consider the robustness of a persistent graph. One could assign to each edge a probability of
breakdown and to each unconnected pair of vertices a probability of parasite edge appearance.
There might be in this case a maximally robust persistent graph, i.e., a graph for which the
probability of losing persistence is minimal. It is evident that if there is a finite probability
of losing an edge, it would be desirable to have persistence both with and without it. This
observation emphasizes the need to understand better the circumstances under which edges
can be added to a persistent graph without losing the persistence property.
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