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Abstract

A computer is classically formalised as a universal Turing machine or a similar de-
vice. However over the years a lot of research has focused on the computational prop-
erties of dynamical systems other than Turing machines, such cellular automata,
artificial neural networks, mirrors systems, etc.

In this paper we propose a unifying formalism derived from a generalisation of
Turing’s arguments. Then we review some of universal systems proposed in the lit-
erature and show that are particular case of this formalism. Finally, we review some
of the attempts to understand the relation between dynamical and computational
properties of a system.
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1 Introduction

We are interested in computing machines, which we informally define as ma-
chines able to solve decision problems on integers (or finite objects that can be
encoded as integers), such as, for instance, primality. We are especially inter-
ested in universal computing machines, i.e., those who have the same power
as a universal Turing machine.

Note that in this article we are only interested in solving decision problems
on integers, while computable analysis deals with computable functions and
decision problems on the reals (e.g., checking invertibility of a real-valued
matrix). See for instance [29,3,25,22] on computable analysis.
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Also, we do not consider hypercomputation and systems with super-Turing
capabilities, as can be found for instance in [27,4,9].

Note that here we do not define universality as the ability to ‘simulate any
other system’. See for instance [24] for such a notion of universality in the case
of cellular automata.

We start by a quick review of computing machines, such as Turing machines,
counter machines, cellular automata. We then observe, with Davis’s definition
of universality, that a computing machine is always a dynamical system to-
gether with an r.e.-complete halting problem. We then ask which problems can
be considered as reasonable halting problems for a given dynamical system.

We then generalise Turing’s famous argument to the case where a dynamical
system, instead of pencil and paper, is available to a human operator. This
leads to a general definition of universal computing machine. Then several
definitions of universal systems are reviewed and found to be particular cases
of this framework.

We finally review some results about the interaction between the computa-
tional and dynamical properties of a computing machine.

2 Turing machines

In the beginning of the twentieth century, the question arose, as a consequence
of the search for foundations for mathematics, of a mechanical procedure to
solve a mathematical problem, or algorithm. Several answers, later proved
mathematically equivalent, were provided in the thirties and forties, by Post,
Church, Kleene, Turing. For the original papers, see [5].

Among those answers, Turing’s is perhaps the most thoroughly argued as a
model for computation. Here we sketch Turing’s argument to construct his
machine, as it will be a basis to our definition of computing machine.

In this article, we only consider decision problems, which was not the point of
view originally taken by Turing. This is not a loss of generality as computing
an integer can reduced to a sequence of decision problems.

The algorithm is performed by a human operator, who applies a series of
instructions on the initial data. Intermediate results are written on paper.

Turing essentially argues that the mind of the operator can only be in finitely
many states, can distinguish only finitely many symbols on paper, and can
write only finitely many different symbols. Hence the operator is essentially a
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finite-state automaton (as far as the execution of the algorithm is concerned).
The sheet of paper can be similarly considered as an unlimited linear tape
divided into cells. Every cell contains a symbol out of a finite alphabet. The
operator can read or write the symbol in a cell, and translate the tape one cell
to the left or right. The initial data is written on finitely many cells on the
tape, while the rest of the tape filled with the blank symbol. The computation
ends when the operator enters the state of mind ‘The computation is finished’,
which we call the halting state. As a result, a human operator executing an
algorithm is modeled by a one-tape Turing machine as we know them. For a
decision problem, we can also assume that the halting state of mind contains
the answer to the problem, e.g., ‘The computation is finished and the answer
is Yes.’ In this case there are two halting states. Note that a computation on
a Turing machine can result in three outcomes: ‘Yes’, ‘No’ or no answer at all
(i.e., the machine does not halt).

Turing confirms that his definition is sensible by showing that slightly different
models, such as two-tape Turing machines, have the same power as Turing ma-
chines. That means that for every two-tape Turing machine one can construct
in an effective way a one-tape Turing machine the solves the same problem,
and conversely. Here by ‘effective’ we mean ‘intuitively computable’.

He then finds that there exists a universal Turing machine, i.e., a Turing
machine such that every pair (Turing machine, initial data) can be converted
in an effective way into an initial data for the universal machine so as to
preserve the outcome ‘Yes’, ‘No’ or ‘Does not halt’.

He then proceeds to show that the halting problem is undecidable, more pre-
cisely r.e.-complete, as will be said later. The halting problem is the following:
Given an initial data for a fixed universal Turing machine, does the universal
Turing machine reach a halting state? Equivalently: Given a Turing machine
and an initial data for this Turing machine, does the Turing machine reach a
halting state?

3 Other universal machines

Other kinds of machines were subsequently devised to formalise computation,
such as, for instance, counter machines (or register machines, or Minsky ma-
chines); see, e.g., [19]. A k-counter machine is made of k cells, each of which
contains a natural integer. At every step, a finite automaton can test if the con-
tent of a counter is zero, increment a counter or decrement a counter. Again,
the initial data is encoded in the content of the counters, and the computation
is considered as finished when we reach a ‘halting state’.
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It has been proved that there exists a universal counter machine U .

‘Universal’ can be defined in terms of a reduction from the problem solved
by a universal Turing machine. This means there is an effective way to en-
code any initial data for a fixed universal Turing machine into an initial data
for the universal counter machine so as to preserve the outcome of the com-
putation (‘Yes’, ‘No’, ‘Does not halt’). Note once again that we avoid here
talking about universality as ‘dynamical simulation’ of other dynamical sys-
tems, which avoids the need to introduce definitions of simulation.

Hence the halting problem for a universal counter machine (i.e., determining
if a given initial content of the counters and an initial state of the head will
reach a halting state of the head) is r.e.-complete as well.

Other similar machines were defined: Post machines, tag machines (also in-
vented by Post) for instance; see [18]. For those again, a way to use it for
computation is defined, and a universal machine is found.

All the machines above are machines with countably many states: the state of
a Turing machine, for instance, is a finite sequence of symbols plus the state
of the head for a Turing machine. All those machines are dynamical systems.
For the moment, we loosely define a dynamical system as an object evolving
in time, and completely characterised at any time by its state.

But most dynamical systems studied in mathematics and physics have an un-
countable state space, e.g., cellular automata, differential equations, piecewise
linear maps, etc. Examples of those systems have been proved universal. Their
halting problem is imitated from the Turing machine in the following way. We
choose a particular countable family of initial states, and countable family of
final states, or final sets of states. Then the halting problem is given an initial
state and a final state/set of states, whether the trajectory starting from the
initial state will reach the final state/set of states. More specific examples are
given in Section 7.

In that case, finding the relevant halting problem becomes not obvious at
all, since there are many ways to select a countable family of initial states
out of uncountably many. For instance, the cellular automaton of rule 110 is
universal for the eventually periodic states (i.e., periodic sequences of symbols
up to finitely many) but not for periodic sequences or for finite states (i.e.,
where all but finitely many symbols are equal to zero).

As observed in [10], some trivial dynamical systems can be also considered
universal with an artificial halting problem. For instance, take the full shift
on {0, 1, 2}N is universal with the family of initial states 1n0ta∞, where t is
the halting time of a universal Turing machine on data n. If the machine
does not halt on n, then the initial state is 1n0∞. If the machine halts on
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‘Yes’, then a = 1, if it halts on ‘No’, then a = 2. Note that those states
are computable: we can compute the bit of any rank for any state. Then
the halting problem whether we reach the state 1∞ from the initial state
encodes the halting problem of the Turing machine. Therefore we are bound
to conclude that the full shift is a universal computing machine! But it is
only so with respect to a certain cooked up halting problem. It is also clear
that unreasonable choices of initial conditions (i.e., undecidable) will make
even simpler systems, such as the identity, even more powerful than Turing
machines and shows that choosing a relevant halting problem requires caution.

As a conclusion, to every universal computing machine, is associated a certain
r.e.-complete halting problem.

4 Davis universality

Davis [6], turning things around, proposed an astute definition of universality
for a counter machine, Turing machine or any similar kind of object. A machine
is said to be universal if and only if its halting problem is r.e.-complete. This
definition essentially coincides with the former, but it bypasses the the mention
of a universal Turing machine and the need for an effective encoding. Instead,
the coding is implicit in the r.e.-completeness of the halting problem. Indeed,
an r.e.-complete problem is one to which the halting problem of a universal
Turing machine, and any other r.e. problem, can be reduced.

Hence a particular dynamical system is said to be universal with respect to

a certain problem, called the halting problem, when this problem is r.e.-
complete. In other terms, a computing machine is composed of a dynami-
cal system together with a halting problem. As seen above, the choice of the
natural halting problem for a dynamical system is sometimes obvious, by im-
itation from known examples, and sometimes more delicate.

Davis’s definition makes the quest for universal computing machines a partic-
ular case of the quest for undecidable mathematical problems. It happens in
mathematics that a problem occurs, that one would like to solve, but turns out
to be undecidable. For instance, whether a given polynomial in several vari-
ables with integral coefficients has an integral zero is r.e.-complete (Hilbert’s
tenth problem, solved by Matyasevitch in 1970 [17]); whether a finitely pre-
sented group is the trivial group is r.e.-complete as well [26]. Those problems
have been raised for their mathematical interest, not in order to define a new
kind of computing machine. It seems difficult indeed to interpret them as the
halting problem of some dynamical system.

As a conclusion, we have to solve the double question:
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• Given a dynamical system, what is a relevant halting problem for it?
• What r.e.-complete problems can be considered as the halting problem of

some computing machine?

5 Turing’s argument revisited

In this section, we propose a recipe to address the two questions just above.
We adapt Turing’s argument to get a fine understanding of the interaction
between dynamics and computation, and select a relevant halting problem.

Like in Turing’s original argument, a human wants to solve decision prob-
lem. However, this time she has no paper or pencil, but a physical system.
She doesn’t necessarily know about the initial state of the system. During the
process of computation, she can observe and act on the system. Like Turing,
we assume that the human operator’s mind can be in finitely many differ-
ent states. Hence, we assume that the human can be modelled by a finite
automaton, with finitely many actions on the system and finitely many pos-
sible observations from the system. This finite automaton acts as a controller
on the system, in a feedback loop. Finite automaton accepting inputs (here,
observations) and producing outputs (here, actuation) are also called Mealy
automata, or transducers. See Fig. 1. We use the term ‘state’ for both the
dynamical system and the controller, which models the mind. This justified as
the controller is itself a dynamical system. By connecting the controller with
the dynamical system, we get a new closed-loop dynamical system.

Hence a computing machine is defined in the following way.

Metadefinition 1 A computing machine is defined by a dynamical system

along with a countable family of controllers. Every controller is a finite state

automaton with initial states and final states.

We define the halting problem as the following. Given a controller, the dynam-

ical system is initialised to an arbitrary state and the controller is initialised

to one of the initial states; is there a trajectory of the closed-loop system where

the controller starts from an initial state and eventually reaches a final state?

Some remarks must be made at this point.

The name ‘halting problem’ does not imply that the dynamical system stops
after we have reached a final (or ‘halting’) state of the automaton. It just
stops to be interesting, since we have answered the instance of the problem
we wanted to solve.
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Contrarily to most examples of universal systems found in the literature, there
is no explicit reference to an ‘initial state’. This is because a particular initial
state x can be encoded in the set of actions: ‘Set the state to x’. Or it can be
encoded in the set of observations, in which case the computation starts with
the following instruction: ‘Observe the state; if it is not x then enter an infinite
loop (i.e., never reach a final state)’, which ensures that only computations
starting by x will be processed.

We therefore see that the need for specifying an initial state is not as funda-
mental as it appears.

Since the controllers are finite state automata, it means that for a given con-
troller, finitely many observations can be made on the system, and finitely
many actions can be performed on it. As there are countably many controllers,
only countably many possible observations and actions are to be considered
for the system.

We speak of metadefinition rather than definition, because we still have to
specify what is a dynamical system, what kind of observations and actuations
are allowed on them, and how to interconnect the dynamical system with
the controller. The answer to all these questions depends on our ‘model of the
world’. For instance, if we want to model physics by deterministic discrete-time
systems, we’ll consider a system of this kind. If we believe physical quantities
cannot be observed with infinite precision, then we cannot allow the controller
to observe if the system is a state x. And so on. Let us review some possibilities.

6 Dynamical systems

A dynamical system is intuitively anything that evolves in time. Many classes
of dynamical systems exist, some of which we quickly describe in this section.

The most typical class is deterministic, discrete-time systems, given by an
evolution map f : X → X, where X is the state space. A state x is transformed
into f(x), then f(f(x)), and so on.

Examples include Turing machines, cellular automata, subshifts, piecewise
affine maps, piecewise polynomial maps and neural networks.

Open dynamical systems (or input/output dynamical systems) allow for ac-
tuation. For instance, x is sent to f(x, u), where u is the input (or actuation).

An observation on a dynamical system is most often a map y = g(x), where x is
the state of the system. As we want finitely many values for y, an observation
is a partition of the state space of the system into finitely many sets. In
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principle, we could also consider a nondeterministic relation between x and
y (for instance, to model an uncertain observation), but this seems to be
unexplored in the literature of computational universality.

We may also consider a nondeterministic system; for instance the state x is
sent into a ball of radius ǫ around f(x). This is used to model perturbations
that we know are bounded by ǫ.

Continuous-time systems are usually defined by a differential equation ẋ =
f(x) on (a part of) R

n, or ẋ = f(x, u), where u(t) is the input function. In
that case, the closed-loop system is a hybrid system: a mix of continuous and
discrete dynamics.

Here we do not consider quantum universal systems; see for instance [8].

7 Reachability problems

Most definitions of universality rely on a reachability problem. The reachability

problem for a discrete-time deterministic system f : X → X goes as follows:
we are given two points x and y (‘point-to-point reachability’) or a point x

and a set Y (‘point-to-set’), and the question is whether there is a t such that
f t(x) = y or f t(x) ∈ Y .

A reachability problem is modelled according to Metadefinition 1 as follows.
The controller first stets the inital condition to x; then it lets the system
evolves according to f ; when the state of the system is y or belongs to Y , the
controller jumps to its final state.

Of course, the halting problem for a universal Turing machine, counter ma-
chines and many others is a (point-to-set) reachability problem.

In cellular automata, point-to-point reachability with almost periodic configu-
rations (made of a same pattern indefinitely repeated except for finitely many
cells) is usually considered. For instance the automaton 110 and the Game of
Life are universal according to this definition. Why almost periodic configura-
tions and not a wider, or smaller, countable family of points? This is discussed
in [28].

For systems in R
n, points with rational coordinates and sets defined by polyno-

mial inequalities with rational coefficients (e.g., polyhedra or euclidian balls)
are usually considered. The choice of rational numbers seems to be guided by
simplicity only.

Let us give some examples of universal systems according to this definition.
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• A piecewise-affine continuous map in dimension 2 [13]. This map is defined
by a finite set of affine maps of rational coefficients, on domains delimited
by lines with rational coefficients.

• Artificial neural networks for several kinds of saturation functions [27].
• A closed-form analytic map in dimension 1 [14].

We can define in a very similar way universal systems in continuous time.
Examples of such systems are:

• A piecewise-constant derivative system in dimension 3 [2]. The state space
is partitioned on finitely domains delimited by hyperplanes with rational
coefficients, and the vector field is constant with a rational value on every
domain.

• A ray of light between a set of mirrors [21].
• Black hole computation, which is the interaction of signals in space-time

[11].

Despite its popularity and apparent simplicity, we believe that the reachability
problems as a basis to define universality suffer from several drawbacks.

First, it is possible to reach unpleasant conclusions, such as the full shift being
universal, by choosing artificial initial conditions for the system, as already
highlighted in Section 3.

Second, the possibility offered to the controller to set up or observe a state of
the system with infinite precision seems unphysical. The least uncertainty on
the initial condition can a priori completely destroy the computation; ensur-
ing that a physical system is, e.g., in a rational state is obviously an impossible
task in practice. It has been shown that many reachability problems become
decidable when perturbation is added to the dynamics, thus killing universal-
ity; see for instance [1,16,12].

Lastly, it is difficult to prove find interesting necessary or sufficient conditions
of universality base on the dynamical properties of the system, as emphasized
below in Section 10.

In next sections, we see two other halting problems that generalise the halting
problem of Turing machine, and avoid some of the pitfalls mentioned above.

8 Digital computing machines

Suppose we have an arbitrary symbolic dynamical system. A symbolic dynam-
ical system is one whose state is a sequence of symbols from a finite alphabet.
In other terms, the state space is AN or AZ, for a finite alphabet A, or a closed
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subset of it. Remember that such a set can be endowed with the product
topology. The dynamical system is given by a continuous map on the state
space.

Of course, the state space could also be AZ
d

, for instance, which can be recoded
into AN by reading content of the cells in arbitrary order.

Symbolic dynamical systems include Turing machines, cellular automata and
subshifts. No actuation is needed, the same map is applied at every step, the
controller here is only an observer.

What is the most natural halting problem for such a dynamical systems? In
other words, what is a universal digital computing machine?

A cylinder is a set of AN of the form wAN, for any word w ∈ A∗, or a set
of the form NAwAN in AZ. Boolean combinations of cylinders are exactly the
clopen (closed open sets) of the space.

We choose clopen sets as observation sets. This is a natural choice because it
means that finitely many symbols are observed at every steps, and it means
that a finite precision measurement is required. The only initial set is the full
space; in other terms, nothing is known about the initial state of the dynamical
system. Any deterministic finite automaton can be chosen as controller. This
halting problem was proposed in [7]. We therefore say that a symbolic system is
a universal digital computing machine if this halting problem is r.e.-complete.

It was shown [7] that a universal Turing machine is also universal for this defi-
nition, with some mild modifications. It also has the advantage to lead to non
trivial conditions on the dynamical properties of the system for universality
to emerge; see Section 10.

The digital computing machines show some robustness to perturbation, be-
cause a small enough perturbation on the initial condition of a successful
trajectory (i.e., leading the controller to a final state) will keep the trajectory
successful.

9 Actuation of dynamical systems

Turing machines are interpreted very simply as closed loop systems. Given
a finite set A of symbols (including a blank symbol), we consider the set
AZ (or its restriction to finite configurations if we want a countable state
space; finite configurations are those that are entirely blank except for finitely
many symbols). On this set we have the following possible actuations: shift
to the left, shift to the right or change the symbol in position zero to another
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Fig. 1. Turing’s argument revisited: How to compute with a dynamical system.

symbol. The only possible observation is the symbol in position zero. This is
a simple open (input/output) dynamical system. If we now control it with
an arbitrary finite automaton, what we get is exactly a Turing machine. This
open dynamical system is therefore universal.

Despite this fundamental example, most set-ups proposed in the literature
make no use of the actuation we let the dynamical system evolve by itself,
without influence, except possibly at the very step to set up the initial con-
dition. A slightly more elaborate system is proposed in [23], in which we can
act on the system with three maps: f0, f1, f . The dynamical system starts at
the origin (or any point fixed once for all), then we apply a sequence of f0 and
f1 to introduce a binary word encoding the data; for instance, the number
100111 is encoded by the state f1f1f1f0f0f1(0). Then we apply f repeatedly.
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10 Dynamical properties of universal systems

What is the link between the dynamics of a system and its computational
capabilities?

Wolfram proposed a loose classification of 1-D cellular automata based on
the patterns present in the space-time diagram of the automaton; see [30].
He then conjectured that the universal automata are in the so-called ‘fourth
class’, associated to the most complex patterns.

Langton [15] advocated the idea of the ‘edge of chaos’, according to which a
universal cellular automaton is likely to be neither globally stable (all points
converging to one single configuration) nor chaotic. See also [20] for a discus-
sion. Other authors argue that a universal system may be chaotic; see [27].

However it seems difficult to prove any non-trivial result of this kind with the
point-to-point or point-to-set reachability definition of universality. Moreover
a countable set of points can be ‘hidden’ in a very small part of the state space
(nowhere dense, with zero measure for instance), so the link between this set
and the global dynamics is unclear in general.

Digital computing machines are analysed in [7], where it is shown that a
universal system according to this definition has at least one proper closed
subsystem, must have a sensitive point and can be Devaney-chaotic.

11 Conclusions

A framework has been proposed to unify many of the definitions of computing
machines found in the literature. A universal computing machine is defined
as a dynamical system together with a suitable r.e.-complete problem; this
definition is flexible with respect to the kind of dynamical systems we consider.

In particular it appears that reachability problems, despite their mathemat-
ical interest, are not the only generalisation of the Turing machine’s halting
problem, and perhaps not the most natural.

In particular, it appears to us that universality for open dynamical systems is
an almost blank field waiting to be explored.
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