CHAPTER 1

Calculus of variations

In the context of calculus, the derivative $f^{\prime}(x)=\frac{\mathrm{d} f}{\mathrm{~d} x}$ of a function $f(x) \in C^{2}(\mathbb{R})$ is a well defined concept. If $f^{\prime}(x)=0$ for $x=x_{0}$, then f attains either a maximum or a minumum at that point. This means that, for a given neighborhood $\left|x-x_{0}\right|<\delta$, then either $f(x)<f\left(x_{0}\right)$ (f is maximum, $f^{\prime \prime}\left(x_{0}\right)<0$) or $f(x)>f\left(x_{0}\right)(f$ is minimum, $\left.f^{\prime \prime}\left(x_{0}\right)>0\right)$.

We will see in forthcoming section that finding the static equilibrium of an elastic structure can is a problem that can be written in the following fashion. Consider a deformable structure $\Omega \in \mathbb{R}^{3}$ and a displacement field

$$
\mathbf{u}(\mathbf{x})=\left\{u_{1}\left(x_{1}, x_{2}, x_{3}\right), u_{2}\left(x_{1}, x_{2}, x_{3}\right), u_{3}\left(x_{1}, x_{2}, x_{3}\right)\right\}
$$

that is admissible. We will be more clear about what is an admissible displacement in the next chapter but for now, we assume that a displacement field \mathbf{u} is admissible if it belongs to a vector valued function space U that contains all possible admissible displacements.

The static equilibrium of a structure Ω that is loaded by some volume forces $\mathbf{f}(\mathbf{x}), \mathbf{x} \in \Omega$ and by surface loads $\mathbf{F}(\mathbf{x}), \mathbf{x} \in \Gamma_{F}$ consist in finding the $\mathbf{u} \in U$ that minimizes the potential energy

$$
\begin{equation*}
\pi(\mathbf{u})=\frac{1}{2} \int_{\Omega} \sigma_{i j} \epsilon_{i j} d v-\int_{\Omega} f_{i} u_{i} d v-\int_{\Gamma_{F}} F_{i} u_{i} d s \tag{1.1}
\end{equation*}
$$

where

$$
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)=u_{(i, j)} \quad, \quad \sigma_{i j}=\lambda \epsilon_{m m} \delta_{i j}+2 \mu \epsilon_{i j}
$$

with Lamé coefficients

$$
\lambda=\frac{E v}{(1+v)(1-2 v)}, \quad \mu=\frac{E}{2(1+v)},
$$

and with E and v being the Young modulus and the Poisson ratio.

The potential energy π that is defined in (1.1) is not a function in the classical sense. A function $f(x)$ transforms reals into reals: $f: \mathbb{R} \rightarrow \mathbb{R}$. The argument \mathbf{u} of $\pi(\mathbf{u})$ is not a real but a function. Such an object that takes a function as argument and returns reals is called a functional. How could we possibly find the extremum of a functional? We could try to mimic the definition of the derivative of a function:

$$
\begin{equation*}
\frac{\mathrm{d} f}{\mathrm{~d} x}=\lim _{d x \rightarrow 0} \frac{f(x+d x)-f(x)}{d x} \tag{1.2}
\end{equation*}
$$

Here is the problem: how could we possibly define $d \mathbf{u}$ when \mathbf{u} is a function?

1.1 The brachistochrone curve

At this point, it is instructive to present a very famous problem that has lead to the development of the calculus of variations. Most of the theory that is developed here is due to the king of mathematicians: Leonhard Euler (1707-1783). In 1696, Johann Bernoulli (1667-1747) that was Euler's Ph.D. advisor introduced the following problem ${ }^{1}$. Assume that we have to design the most exciting roller-coaster ever. The ride starts at a point $\mathbf{x}^{1}\left(x_{1}, y_{1}\right)$ where the car is launched with a zero speed. The car then goes down following a planar curve $y(x)$ and ends at point $\mathbf{x}^{2}\left(x_{2}, y_{2}\right)$. For sake of simplicity, and without loss of generality, we choose $\mathbf{x}^{1}=\{0,0\}$ and we assume the acceleration of gravity to be oriented along the positive y 's (see Figure 1.1).

We assume now that the most exciting ride will be the one that minimizes the time for going from \mathbf{x}^{1} to \mathbf{x}^{2}. The curve that minimizes the ride time is called the brachistochrone curve.

Figure 1.1: Brachistochrone curve.
Classical mechanics allow to write

$$
\mathbf{v}=\frac{\partial \mathbf{x}}{\partial t}
$$

[^0]The time T required to go from \mathbf{x}^{1} to \mathbf{x}^{2} is computed as follows:

$$
T=\int_{\mathbf{x}^{1}}^{\mathbf{x}^{2}} \frac{d l}{V}=\int_{\mathbf{x}^{1}}^{\mathbf{x}^{2}} \frac{\sqrt{d x^{2}+d y^{2}}}{V}=\int_{0}^{x_{2}} \frac{\sqrt{1+y^{\prime 2}}}{V} d x
$$

where V is the velocity of the car. We have assumed that the car was initially at rest. If m is the mass of the car and if g is the acceleration of gravity, we have

$$
m g y=\frac{m V^{2}}{2} \rightarrow V=\sqrt{2 g y}
$$

Time T is finally computed as:

$$
\begin{equation*}
T(y)=\int_{0}^{x_{2}} \sqrt{\frac{1+y^{\prime 2}}{2 g y}} d x \tag{1.3}
\end{equation*}
$$

In (1.3), T is a functional: its argument is the shape of the curve $y(x)$ i.e. a function of x. qui est une fonctionnelle dont l'argument est la "forme" du rail, i.e. $y(x)$. Now comes the question of admissibility. Ca we choose any $y(x)$? Of course not: $y(x)$ must pass through \mathbf{x}^{1} and \mathbf{x}^{2}. This is a the admissibility condition and we write $y \in U$ with

$$
U=\left\{y(x) \mid y\left(x_{1}\right)=y_{1}, \quad y\left(x_{2}\right)=y_{2}\right\} .
$$

We now introduce the concept of variation. In order to find the minimum of T among all y 's, we have to define the equivalent of a $d x$ in the definition of the derivative (1.2). We have to define a perturbation $\delta y(x)$ that verifies

$$
y+\delta y \in U
$$

In other words, the perturbed function $y+\delta y$ should still be admissible in order to be able to evaluate $T(y+\delta y)$. The condition

$$
\delta y\left(x_{1}\right)=\delta y\left(x_{2}\right)=0
$$

allows to write

$$
y\left(x_{1}\right)+\delta y\left(x_{1}\right)=y_{1} \quad \text { and } y\left(x_{2}\right)+\delta y\left(x_{2}\right)=y_{2}
$$

which means that $y+\delta y$ is admissible and we define $\delta u \in U_{0}$ with the function space of variations

$$
U_{0}=\left\{\delta y(x) \mid \delta y\left(x_{1}\right)=\delta y\left(x_{2}\right)=0\right\}
$$

There is indeed another admissibility condition. Functional $T(y)$ should be "computable" i.e. $y(x)>0$. If $y<0$ for any $x \in\left[0, x_{2}\right]$, then the car would never finish the ride. Here, we do not ask δy to be positive because δy is assumed to be an infinitesimal variation of y, as it is the case for the standard derivative.

1.2 A fundamental result

Proposition 1.2.1 If a continuous function $f(x)$ in $[a, b]$ and if

$$
\int_{a}^{b} f(x) w(x) \mathrm{d} x=0
$$

for every continuous function $w(x)$ such that $w(a)=w(b)=0$, then $f(x)=0$ for all x in $[a, b]$.

Proof Suppose that $f(x)$ is non zero, say positive at some point in $[a, b]$. Then f is positive for some interval $\left[x_{1}, x_{2}\right]$ contained in $[a, b]$. If we set

$$
w(x)=\left(x-x_{1}\right)\left(x_{2}-x\right)
$$

for $x \in\left[x_{1}, x_{2}\right]$ and $w(x)=0$ otherwise, then $w(x)$ satisfies the conditions of the hypothesis. However

$$
\int_{a}^{b} f(x) w(x) \mathrm{d} x=\int_{x_{1}}^{x_{2}} f(x)\left(x-x_{1}\right)\left(x_{2}-x\right) \mathrm{d} x>0
$$

since the integrand is positive (except at x_{1} and x_{2} where it is null). This contradiction proves the result.

Note here that the condition $w(a)=w(b)=0$ is not necessary: what it is shown here is that proposition 1.2.1 holds even for functions $w(x)$ that vanish at the boundary. Result 1.2.1 is called the fundemental lemma of the calculus of variations. This result has many extensions. See [1], Chapter 1, §3 for more details.

1.3 Euler-Lagrange equations

Finding the extrema (minima or maxima) of a functional $T(y)$ is similar to finding the extrema of functions $f(x)$. The first variation of a functional T is defined as

$$
\delta T\left(x, y, y^{\prime}\right)=T\left(x, y+\delta y, y^{\prime}+\delta y^{\prime}\right)-T\left(x, y, y^{\prime}\right) .
$$

Any variation δy can be written as the difference of two admissible functions y_{a} and y_{b}. We have then

$$
(\delta y)^{\prime}=\left(y_{a}-y_{b}\right)^{\prime}=\left(y_{a}^{\prime}-y_{b}^{\prime}\right)=\delta y^{\prime} .
$$

A development in Taylor series of T around y and y^{\prime} gives

$$
T\left(x, y+\delta y, y^{\prime}+\delta y^{\prime}\right)=T\left(x, y, y^{\prime}\right)+\left(\frac{\partial T}{\partial y} \delta y+\frac{\partial T}{\partial y^{\prime}} \delta y^{\prime}\right)+\mathscr{O}\left(\delta^{2}\right)
$$

where $\mathscr{O}\left(\delta^{2}\right)$ refers to terms containing $\delta y^{2}, \delta y^{\prime 2}, \delta y^{3} \ldots$ Neglecting those terms, we have

$$
\delta T\left(x, y, y^{\prime}\right)=\frac{\partial T}{\partial y} \delta y+\frac{\partial T}{\partial y^{\prime}} \delta y^{\prime}
$$

T is extremal if and only if its first variation δT is equal to zero for all variations δy. There is a well known version of this result when T has the form

$$
T=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x
$$

as it is for the Brachistochrone curve. Using integration by parts, we obtain

$$
\begin{aligned}
\delta T & =\int_{x_{1}}^{x_{2}}\left(\frac{\partial F}{\partial y} \delta y+\frac{\partial F}{\partial y^{\prime}} \delta y^{\prime}\right) d x \\
& =\int_{x_{1}}^{x_{2}}\left(\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right) \delta y d x+\left.\frac{\partial F}{\partial y^{\prime}} \delta y\right|_{x_{1}} ^{x_{2}} \\
& =\int_{x_{1}}^{x_{2}}\left(\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)\right) \delta y d x=0 \quad \forall \delta y \in U_{0}
\end{aligned}
$$

According to the fundamental lemma of calculus of variations 1.2.1, the part of the integrand in parentheses is zero, i.e.

$$
\begin{equation*}
\frac{\partial F}{\partial y}-\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=0 \tag{1.4}
\end{equation*}
$$

Equation (1.4) is called the Euler-Lagrange equation. It is an ordinary differential equation, generally non linear, which can be solved to obtain the extremal function $y(x)$.

If F does not depend on x explicitely, equation (1.4) can be simplified. We have

$$
\frac{\mathrm{d} F}{\mathrm{~d} x}=\frac{\partial F}{\partial y} y^{\prime}+\frac{\partial F}{\partial y^{\prime}} y^{\prime \prime}+\frac{\partial F}{\partial x}
$$

where the last term drops out because F does not depend on x explicitely. Rearranging this yields

$$
y^{\prime} \frac{\partial F}{\partial y}=\frac{\mathrm{d} F}{\mathrm{~d} x}-\frac{\partial F}{\partial y^{\prime}} y^{\prime \prime}
$$

We then substitue $y^{\prime} \frac{\partial F}{\partial y}$ into (1.4) to get

$$
\frac{\mathrm{d} F}{\mathrm{~d} x}-\frac{\partial F}{\partial y^{\prime}} y^{\prime \prime}-y^{\prime} \frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial F}{\partial y^{\prime}}=0
$$

The last term can be expanded as

$$
y^{\prime} \frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\partial F}{\partial y^{\prime}} y^{\prime}\right)-\frac{\partial F}{\partial y^{\prime}} y^{\prime \prime}
$$

and equation (1.4) can finally be written as

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}\right)=0
$$

that can be integrated to find the so-called Beltrami formula

$$
\begin{equation*}
F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=C . \tag{1.5}
\end{equation*}
$$

Let us come back to the Brachistochrone curve. In that case (see Equation (1.3)),

$$
F=\sqrt{\frac{1+y^{\prime 2}}{2 g y}}
$$

and Beltrami's formula (1.5) can be used to find the ordinary differential equation of the Brachistochrone curve:

$$
\begin{equation*}
\left[1+\left(y^{\prime}\right)^{2}\right] y=\frac{1}{2 g C^{2}}=D \tag{1.6}
\end{equation*}
$$

with $D>0$. The solution of (1.6) is not obvious. Let us do the following change of variables:

$$
y^{\prime}=\tan t
$$

We have

$$
1+y^{\prime 2}=1+\tan ^{2} t=\frac{1}{\cos ^{2} t}
$$

Then

$$
y=D \cos ^{2} t=\frac{D}{2}(1+\cos 2 t)
$$

Finding x is then rather simple. We have $y^{\prime}=\tan t$. We can also derive y explicitely as

$$
y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x}=2 D \sin t \cos t \frac{\mathrm{~d} t}{\mathrm{~d} x}
$$

We have finally

$$
d x=2 D \cos ^{2} t d t \rightarrow x=D\left(t+\frac{1}{2} \sin 2 t\right)+c
$$

with an integration constant c. Posing $R=D / 2$ and $u=2 t$, we have finally the parametric equations of the Brachistochrone curve

$$
\begin{align*}
& x=R(u+\sin u)+c \\
& y=R(1+\cos u) . \tag{1.7}
\end{align*}
$$

Those equations correspond to a cycloid. A cycloid is the curve traced by a point on the rim of a circular wheel as the wheel rolls along a straight line without slippage. We still have 2 constants R and c to fix. Point $y=0$ correspond to $u=\pi$. We need $x(\pi)=0$ which means that $c=-R \pi$. Then, we want the point $\mathbf{x}=\left\{x_{2}, y_{2}\right\}$ to belong to the curve, which allows to fix R.

Figure 1.2: A domain Ω and its boundary $\Gamma=\Gamma_{D} \cup \Gamma_{N}$.

1.4 The Laplace problem

Consider a domain $\Omega \subset \mathbb{R}^{3}$ with its boundary $\Gamma=\Gamma_{D} \cup \Gamma_{N}$ of normal \mathbf{n} (see Figure 1.2). The Laplace problem consist in finding $u(\mathbf{x}) \in H^{1}(\Omega)$ solution of

$$
\begin{align*}
\nabla \cdot(\kappa \nabla u) & =0 \text { on } \Omega \\
u & =\bar{u} \text { on } \Gamma_{D} \\
\kappa \nabla u \cdot \mathbf{n} & =\bar{q} \text { on } \Gamma_{N} \tag{1.8}
\end{align*}
$$

with $\kappa>0$ function of \mathbf{x}. Problem (1.8) correspond to many practical situations: steady state thermal equilibrium, incompressible and irrotational fluids or membrane equilibrium. We now take the problem the other way around. Starting from differential form (1.8), we'd like to build a variational formulation of the Laplace problem.

First use the fundamental lemma of calculus of variations 1.2.1 to claim that

$$
\int_{\Omega}[\nabla \cdot(\kappa \nabla u)] w d v=0 \forall w
$$

is equivalent to $\nabla^{2} u=0$ in Ω. Integration by parts in \mathbb{R}^{3}

$$
\int_{\Omega} \nabla \cdot \mathbf{a} b d v=-\int_{\Omega} \mathbf{a} \cdot \nabla b d v+\int_{\Gamma} \mathbf{a} \cdot \mathbf{n} b d s .
$$

leads to

$$
-\int_{\Omega} \kappa \nabla u \cdot \nabla w d v+\int_{\Gamma} \kappa \nabla u \cdot \mathbf{n} w d s=0 \forall w
$$

We then write

$$
-\int_{\Omega} \kappa \nabla u \cdot \nabla w d v+\int_{\Gamma_{D}} \kappa \nabla u \cdot \mathbf{n} w d s+\int_{\Gamma_{N}} \kappa \nabla u \cdot \mathbf{n} w d s=0 \forall w .
$$

If we choose $w=\delta u$ i.e. if w is a variation, then $\left.w\right|_{\Gamma_{D}}=0$ and we obtain

$$
-\int_{\Omega} \kappa \nabla u \cdot \nabla \delta u d v+\int_{\Gamma_{N}} \kappa \nabla u \cdot \mathbf{n} \delta u d s=0 \forall \delta u .
$$

Let us define the space of admissible u 's to be

$$
U=\left\{u \in H^{1}(\Omega),\left.u\right|_{\Gamma_{D}}=\bar{u}\right\}
$$

and the space of variations

$$
U_{0}=\left\{\delta u \in H^{1}(\Omega),\left.u\right|_{\Gamma_{D}}=0\right\}
$$

The Laplace problem (1.8) is equivalent to find $u \in U$ that verifies

$$
\begin{equation*}
\int_{\Omega} \kappa \nabla u \cdot \nabla \delta u d v-\int_{\Gamma_{N}} q \delta u d s=0 \forall \delta u \in U_{0} \tag{1.9}
\end{equation*}
$$

Here, the signs of the terms of the equation has been changed for clarity. Now, equation (1.9) is not written as $\delta T=0$ with T a functional. It is indeed possible to do so. We define the following functional that is called the potential energy

$$
\begin{equation*}
\Pi(u)=\frac{1}{2} \int_{\Omega} \kappa(\nabla u)^{2} d v-\int_{\Gamma_{N}} q u d s \tag{1.10}
\end{equation*}
$$

Obviously, $\delta \Pi=0$ is equivalent to (1.9).
Equation (1.9) is a variational or weak formulation of the Laplace problem. It is called weak in opposition to the strong form (1.8) that have solutions for u 's that are twice differentiable ($u \in C^{2}(\Omega)$). Solutions of the weak form (1.9) only require that $\int_{\Omega}(\nabla u)^{2} d v<\infty$. The space of functions that have their first derivatives square integrable is called $H^{1}(\Omega)$. This space is larger than $C^{2}(\Omega)$ which means that even though every strong solution is a weak solution, there may exist weak solutions that do not correspond to strong solutions: this is the case when κ is discontinuous i.e. when the domain is composed of two distinct "materials". This is one of the reasons why variational forms are prefered to strong forms for solving PDEs on computers.

A last interresting question is to know if u corresponds to a maximum or a minimum of Π. For that, we use a very similar technique as the one we use in calculus: we look at second order derivatives. We have

$$
\begin{equation*}
\delta(\delta \Pi(u))=\frac{1}{2} \int_{\Omega} \kappa(\nabla \delta u)^{2} d v \geq 0 \tag{1.11}
\end{equation*}
$$

and the solution correspond to the minimum of the potential energy.

1.5 A different formulation of the Laplace problem

1.6 Problems

1.6.1 The Brachistochrone curve with friction

Write the problem of the brachistochrone curve taking into account coulombian friction. First compute the velocity of the car. Then write the functional $T\left(x, y, y^{\prime}\right)$. Find the corresponding ODE and solve it.

1.6.2 Geodesics

Another well known minimization problem is the construction of geodesics on a curved surface, meaning the curves of minimal length. Given two points \mathbf{a} and \mathbf{b} lying on a surface $S \subset \mathbb{R}^{3}$, we seek the curve $C \subset S$ that joins them and has the minimal possible length.

Assume the surface to have the simple form

$$
z=F(x, y) \rightarrow \mathbf{a}=\{a, \alpha, F(a, \alpha)\} \text { and } \mathbf{b}=\{b, \beta, F(b, \beta\} .
$$

Assume that C is written in the (x, y) plane as $y=u(x)$. We have of course $z=$ $F(x, u(x))$. Compute the length $L(u)$ of C as a function of u.
[1] Izrail Moiseevich Gelfand, Izrail Moiseevitch Gelfand, Sergei Vasilevich Fomin, and Richard A Silverman. Calculus of variations. Courier Corporation, 2000.

[^0]: ${ }^{1}$ The statement has been rephrased

