
CHAPTER 1

Calculus of variations

In the context of calculus, the derivative f 0(x) = d f
dx of a function f (x) 2 C 2(R) is a

well defined concept. If f 0(x) = 0 for x = x0, then f attains either a maximum or
a minumum at that point. This means that, for a given neighborhood |x ° x0| < ±,
then either f (x) < f (x0) ( f is maximum, f 00(x0) < 0) or f (x) > f (x0) ( f is minimum,
f 00(x0) > 0).

We will see in forthcoming section that finding the static equilibrium of an elastic
structure can is a problem that can be written in the following fashion. Consider a
deformable structure≠ 2R3 and a displacement field

u(x) = {u1(x1, x2, x3),u2(x1, x2, x3),u3(x1, x2, x3)}

that is admissible. We will be more clear about what is an admissible displacement
in the next chapter but for now, we assume that a displacement field u is admissible
if it belongs to a vector valued function space U that contains all possible admissible
displacements.

The static equilibrium of a structure ≠ that is loaded by some volume forces
f(x), x 2 ≠ and by surface loads F(x), x 2 °F consist in finding the u 2 U that min-
imizes the potential energy

º(u) = 1
2

Z

≠
æi j ≤i j d v °

Z

≠
fi ui d v °

Z

°F

Fi ui d s. (1.1)
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with Lamé coefficients

∏= E∫

(1+∫)(1°2∫)
, µ= E

2(1+∫)
,

and with E and ∫ being the Young modulus and the Poisson ratio.
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The potential energy º that is defined in (1.1) is not a function in the classical
sense. A function f (x) transforms reals into reals: f : R!R. The argument u of
º(u) is not a real but a function. Such an object that takes a function as argument
and returns reals is called a functional. How could we possibly find the extremum of
a functional? We could try to mimic the definition of the derivative of a function:

d f

dx
= lim

d x!0

f (x +d x)° f (x)
d x

. (1.2)

Here is the problem: how could we possibly define du when u is a function?

1.1 The brachistochrone curve

At this point, it is instructive to present a very famous problem that has lead to the
development of the calculus of variations. Most of the theory that is developed here
is due to the king of mathematicians: Leonhard Euler (1707-1783). In 1696, Johann
Bernoulli (1667 - 1747) that was Euler’s Ph.D. advisor introduced the following prob-
lem1. Assume that we have to design the most exciting roller-coaster ever. The ride
starts at a point x1(x1, y1) where the car is launched with a zero speed. The car then
goes down following a planar curve y(x) and ends at point x2(x2, y2). For sake of
simplicity, and without loss of generality, we choose x1 = {0,0} and we assume the
acceleration of gravity to be oriented along the positive y ’s (see Figure 1.1).

We assume now that the most exciting ride will be the one that minimizes the
time for going from x1 to x2. The curve that minimizes the ride time is called the
brachistochrone curve.
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Figure 1.1: Brachistochrone curve.

Classical mechanics allow to write

v = @x

@t
.

1The statement has been rephrased
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The time T required to go from x1 to x2 is computed as follows:

T =
Zx2

x1

dl

V
=

Zx2

x1

p
d x2 +d y2

V
=

Zx2

0

p
1+ y 02

V
d x

where V is the velocity of the car. We have assumed that the car was initially at rest.
If m is the mass of the car and if g is the acceleration of gravity, we have

mg y = mV 2

2
! V =

p
2g y .

Time T is finally computed as:

T (y) =
Zx2

0

s
1+ y 02

2g y
d x. (1.3)

In (1.3), T is a functional: its argument is the shape of the curve y(x) i.e. a function
of x. qui est une fonctionnelle dont l’argument est la “forme” du rail, i.e. y(x). Now
comes the question of admissibility. Ca we choose any y(x)? Of course not: y(x)
must pass through x1 and x2. This is a the admissibility condition and we write y 2U
with

U = {y(x) | y(x1) = y1, y(x2) = y2}.

We now introduce the concept of variation. In order to find the minimum of
T among all y ’s, we have to define the equivalent of a d x in the definition of the
derivative (1.2). We have to define a perturbation ±y(x) that verifies

y +±y 2U .

In other words, the perturbed function y +±y should still be admissible in order to
be able to evaluate T (y +±y). The condition

±y(x1) = ±y(x2) = 0

allows to write

y(x1)+±y(x1) = y1 andy(x2)+±y(x2) = y2

which means that y+±y is admissible and we define ±u 2U0 with the function space
of variations

U0 = {±y(x) | ±y(x1) = ±y(x2) = 0}

There is indeed another admissibility condition. Functional T (y) should be “com-
putable” i.e. y(x) > 0. If y < 0 for any x 2 [0, x2], then the car would never finish the
ride. Here, we do not ask ±y to be positive because ±y is assumed to be an infinites-
imal variation of y , as it is the case for the standard derivative.
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1.2 A fundamental result

Proposition 1.2.1 If a continuous function f (x) in [a,b] and if

Zb

a
f (x) w(x)dx = 0

for every continuous function w(x) such that w(a) = w(b) = 0, then f (x) = 0 for all x
in [a,b].

Proof Suppose that f (x) is non zero, say positive at some point in [a,b]. Then f is
positive for some interval [x1, x2] contained in [a,b]. If we set

w(x) = (x °x1)(x2 °x)

for x 2 [x1, x2] and w(x) = 0 otherwise, then w(x) satisfies the conditions of the hy-
pothesis. However

Zb

a
f (x) w(x)dx =

Zx2

x1

f (x) (x °x1)(x2 °x)dx > 0

since the integrand is positive (except at x1 and x2 where it is null). This contradic-
tion proves the result.

Note here that the condition w(a) = w(b) = 0 is not necessary: what it is shown here
is that proposition 1.2.1 holds even for functions w(x) that vanish at the boundary.
Result 1.2.1 is called the fundemental lemma of the calculus of variations. This result
has many extensions. See [1], Chapter 1, §3 for more details.

1.3 Euler-Lagrange equations

Finding the extrema (minima or maxima) of a functional T (y) is similar to finding
the extrema of functions f (x). The first variation of a functional T is defined as

±T (x, y, y 0) = T (x, y +±y, y 0+±y 0)°T (x, y, y 0).

Any variation ±y can be written as the difference of two admissible functions ya and
yb . We have then

(±y)0 = (ya ° yb)0 = (y 0
a ° y 0

b) = ±y 0.

A development in Taylor series of T around y and y 0 gives

T (x, y +±y, y 0+±y 0) = T (x, y, y 0)+
µ
@T

@y
±y + @T

@y 0 ±y 0
∂
+O (±2)

where O (±2) refers to terms containing ±y2, ±y 02, ±y3... Neglecting those terms, we
have

±T (x, y, y 0) = @T

@y
±y + @T

@y 0 ±y 0.



1.3. EULER-LAGRANGE EQUATIONS 9

T is extremal if and only if its first variation ±T is equal to zero for all variations ±y .
There is a well known version of this result when T has the form

T =
Zx2

x1

F (x, y, y 0)d x

as it is for the Brachistochrone curve. Using integration by parts, we obtain

±T =
Zx2

x1

µ
@F

@y
±y + @F

@y 0 ±y 0
∂

d x

=
Zx2

x1

µ
@F

@y
° d

d x

µ
@F

@y 0

∂∂
±yd x + @F

@y 0 ±y

ØØØØ
x2

x1

=
Zx2

x1

µ
@F

@y
° d

d x

µ
@F

@y 0

∂∂
±yd x = 0 8±y 2U0.

According to the fundamental lemma of calculus of variations 1.2.1, the part of the
integrand in parentheses is zero, i.e.

@F

@y
° d

d x

@F

@y 0 = 0 (1.4)

Equation (1.4) is called the Euler-Lagrange equation. It is an ordinary differential
equation, generally non linear, which can be solved to obtain the extremal function
y(x).

If F does not depend on x explicitely, equation (1.4) can be simplified. We have

dF

dx
= @F

@y
y 0+ @F

@y 0 y 00+ @F

@x
,

where the last term drops out because F does not depend on x explicitely. Rearrang-
ing this yields

y 0 @F

@y
= dF

dx
° @F

@y 0 y 00.

We then substitue y 0 @F
@y into (1.4) to get

dF

dx
° @F

@y 0 y 00 ° y 0 d
dx

@F

@y 0 = 0.

The last term can be expanded as

y 0 d

d x

@F

@y 0 =
d

dx

µ
@F

@y 0 y 0
∂
° @F

@y 0 y 00 ,

and equation (1.4) can finally be written as

d
dx

µ
F ° y 0 @F

@y 0

∂
= 0.
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that can be integrated to find the so-called Beltrami formula

F ° y 0 @F

@y 0 =C . (1.5)

Let us come back to the Brachistochrone curve. In that case (see Equation (1.3)),

F =
s

1+ y 02

2g y

and Beltrami’s formula (1.5) can be used to find the ordinary differential equation of
the Brachistochrone curve:

£
1+ (y 0)2§ y = 1

2gC 2 = D (1.6)

with D > 0. The solution of (1.6) is not obvious. Let us do the following change of
variables:

y 0 = tan t .

We have

1+ y 02 = 1+ tan2 t = 1
cos2 t

.

Then

y = D cos2 t = D

2
(1+cos2t ).

Finding x is then rather simple. We have y 0 = tan t . We can also derive y explicitely
as

y 0 = dy

dx
= dy

dt

dt

dx
= 2D sin t cos t

dt

dx
.

We have finally

d x = 2D cos2 t d t ! x = D

µ
t + 1

2
sin2t

∂
+ c

with an integration constant c. Posing R = D/2 and u = 2t , we have finally the para-
metric equations of the Brachistochrone curve

x = R(u + sinu)+ c

y = R(1+cosu). (1.7)

Those equations correspond to a cycloid. A cycloid is the curve traced by a point on
the rim of a circular wheel as the wheel rolls along a straight line without slippage.
We still have 2 constants R and c to fix. Point y = 0 correspond to u = º. We need
x(º) = 0 which means that c = °Rº. Then, we want the point x = {x2, y2} to belong
to the curve, which allows to fix R.
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≠
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n

Figure 1.2: A domain≠ and its boundary °= °D [°N .

1.4 The Laplace problem

Consider a domain ≠ ΩR3 with its boundary ° = °D [°N of normal n (see Figure
1.2). The Laplace problem consist in finding u(x) 2 H 1(≠) solution of

r · (∑ru) = 0 on ≠

u = ū on °D

∑ru ·n = q̄ on °N (1.8)

with ∑ > 0 function of x. Problem (1.8) correspond to many practical situations:
steady state thermal equilibrium, incompressible and irrotational fluids or mem-
brane equilibrium. We now take the problem the other way around. Starting from
differential form (1.8), we’d like to build a variational formulation of the Laplace
problem.

First use the fundamental lemma of calculus of variations 1.2.1 to claim that
Z

≠
[r · (∑ru)] w d v = 0 8w

is equivalent to r2u = 0 in≠. Integration by parts inR3

Z

≠
r ·ab d v =°

Z

≠
a ·rb d v +

Z

°
a ·nb d s.

leads to

°
Z

≠
∑ru ·rw d v +

Z

°
∑ru ·n w d s = 0 8w

We then write

°
Z

≠
∑ru ·rw d v +

Z

°D

∑ru ·n w d s +
Z

°N

∑ru ·n w d s = 0 8w.

If we choose w = ±u i.e. if w is a variation, then w |°D = 0 and we obtain

°
Z

≠
∑ru ·r±u d v +

Z

°N

∑ru ·n ±u d s = 0 8±u.

Let us define the space of admissible u’s to be

U = {u 2 H 1(≠) ,u|°D = ū}
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and the space of variations

U0 = {±u 2 H 1(≠) ,u|°D = 0}.

The Laplace problem (1.8) is equivalent to find u 2U that verifies

Z

≠
∑ru ·r±u d v °

Z

°N

q ±u d s = 0 8±u 2U0. (1.9)

Here, the signs of the terms of the equation has been changed for clarity. Now, equa-
tion (1.9) is not written as ±T = 0 with T a functional. It is indeed possible to do so.
We define the following functional that is called the potential energy

¶(u) = 1
2

Z

≠
∑ (ru)2 d v °

Z

°N

q u d s. (1.10)

Obviously, ±¶= 0 is equivalent to (1.9).
Equation (1.9) is a variational or weak formulation of the Laplace problem. It

is called weak in opposition to the strong form (1.8) that have solutions for u’s that
are twice differentiable (u 2 C 2(≠)). Solutions of the weak form (1.9) only require
that

R
≠ (ru)2 d v <1. The space of functions that have their first derivatives square

integrable is called H 1(≠). This space is larger than C 2(≠) which means that even
though every strong solution is a weak solution, there may exist weak solutions that
do not correspond to strong solutions: this is the case when ∑ is discontinuous i.e.
when the domain is composed of two distinct “materials”. This is one of the reasons
why variational forms are prefered to strong forms for solving PDEs on computers.

A last interresting question is to know if u corresponds to a maximum or a min-
imum of ¶. For that, we use a very similar technique as the one we use in calculus:
we look at second order derivatives. We have

±(±¶(u)) = 1
2

Z

≠
∑ (r±u)2 d v ∏ 0 (1.11)

and the solution correspond to the minimum of the potential energy.

1.5 A different formulation of the Laplace problem

1.6 Problems

1.6.1 The Brachistochrone curve with friction

Write the problem of the brachistochrone curve taking into account coulombian
friction. First compute the velocity of the car. Then write the functional T (x, y, y 0).
Find the corresponding ODE and solve it.
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1.6.2 Geodesics

Another well known minimization problem is the construction of geodesics on a
curved surface, meaning the curves of minimal length. Given two points a and b ly-
ing on a surface S ΩR3, we seek the curve C Ω S that joins them and has the minimal
possible length.

Assume the surface to have the simple form

z = F (x, y) ! a = {a,Æ,F (a,Æ)} and b = {b,Ø,F (b,Ø}.

Assume that C is written in the (x, y) plane as y = u(x). We have of course z =
F (x,u(x)). Compute the length L(u) of C as a function of u.
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