
CHAPTER 2

Variational principles in mechanics

2.1 Linear Elasticity
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Figure 2.1: A domain≠ and its boundary °= °D [°N .

Consider a domain≠ΩR3 with its boundary °= °D[°N of normal n (see Figure
2.1).

The problem of linear elasticity consist in finding the deformations ≤ and the
internal stressesæ (N /m2) on every x of≠when it is submitted to external loads. We
usually distinguish volume loads f (N /m3) and surface loads F (N /m2). The strong
form of the problem consist in finding ≤i j (x) and æi j (x) solution of the following
equations:

@ jæi j + fi = 0 on ≠ (2.1)

≤i j = 1
2

°
@i u j +@ j ui

¢
= u(i , j ) (2.2)

æi j = ci j kl ≤kl (2.3)

ui = Ui on °D (2.4)

æi j n j = Fi on °N (2.5)

The three equations (2.1) (one per direction) are expressing the equilibrium of inter-
nal stresses with the external volume loads. Equations (2.5) are expressing surface
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16 CHAPTER 2. VARIATIONAL PRINCIPLES IN MECHANICS

equilibrium on °N of normal stresses with the external surface loads F. Equations
(2.1) and (2.5) both express equilibrium of forces. Those are the equations of static.
When a stress field æ verifies (2.1) and (2.5), it is said statically admissible. We intro-
duce the space of statically admissible stresses S as:

S =
©
æ(x) | @ jæi j + fi = 0 8x 2≠, æi j n j = Fi 8x 2 °F

™
.

It is now possible to introduce the space variations of æ as

S0 =
©
±æ(x) | @ j±æi j = 0 8x 2≠, ±æi j n j = 0 8x 2 °F

™

Clearly, if æ 2S and ±æ 2S0, then æ+±æ 2S and ±æ is a variation.
In continium mecahnics, we imagine ≠ to be composed of a set of infinitesimal

volumes or material points. Each volume is assumed to be connected to its neigh-
bors without any gaps or overlaps. Certain mathematical conditions have to be sat-
isfied to ensure that gaps/overlaps do not develop when a continuum body is de-
formed. A body that deforms without developing any gaps/overlaps is called a com-
patible body. Equations (2.2) and (2.4) are compatibility equations. Equations (2.2)
say that, whenever ≤ is expressed as ≤i j = u(i , j ) where u is a displacement field, then
no gaps/overlaps can appear in the continuum. Then, u should also be compatible
with external kinematical constraints or supports. Equations (2.4) express external
compatibility conditions. The space kinematically admissible displacement fields is
defiend as

U = {u(x) | u 2U (≠), ui =Ui 8x 2 °D } .

Here, U (≠) a vector-valued function space that will be described in more details
later. For now, let’s assume that U is a space of functions that are sufficiently smooth
such that no gaps/overlaps can appear in the continuum. We then introduce the
space of variations:

U0 = {±u(x) | ±u 2U (≠), ±ui = 0 8x 2 °D } .

Clearly, if u 2U and ±u 2U0, then u+±u 2U0 and ±u is a variation.
Finally, equations (2.3) are the linear and elastic constitutive equations. In the

isotropic case, they simplify as

æi j =∏≤mm±i j +2µ≤i j (2.6)

with Lamé coefficients

∏= E∫

(1+∫)(1°2∫)
, µ= E

2(1+∫)
,

where E and ∫ are the Young modulus and the Poisson ratio. Constitutive law (2.17)
can be inverted as

≤i j =
1+∫

E
æi j °

∫

E
ækk±i j .

The elastic energy that is stored in≠ due to its deformation can be written as

U (u) = 1
2

Z

≠
æi j ≤i j d v = 1

2

Z

≠
≤i j ≤kl ci j kl d v.
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It is a functional, as defined in §1. The energy of a system has to be finite. This is
indeed the weakest physical principle that defines how smooth a displacement field
should be. Deformations ≤ being derivatives of u, then space U is defined as the
space of vector-valued fuctions that have their first derivative square integrable on
≠:

U =
Ω

u{u1,u2,u3} |
Z

≠
(@ j ui )2d v <1

æ

2.2 The Principle of Virtual Work

Assume u 2 U (≠) a compatible displacement. A variational form of (2.1) can be
written as Z

≠

°
@ jæi j + fi

¢
±ui d v = 0 8±ui 2U0. (2.7)

Equations (2.7) implies (2.1) thanks to the fundamental lemma of the calculus of
variations 1.2.1. Integration by parts formula

Z

≠
r · f g d v =°

Z

≠
f ·rg d v +

Z

°
f ·ng d s,

applied to (2.7) gives

Z

≠

°
°æi j @ j±ui + fi ±ui

¢
d v +

Z

°
æi j n j ±ui d s = 0 8±ui 2U0. (2.8)

Let us decompose the surface integral in two parts:

Z

°
æi j n j ±ui d s =

Z

°D

æi j n j ±ui d s

| {z }
±ui |°D =0

+
Z

°N

æi j n j ±ui d s

| {z }
æi j n j |°N =Fi

. (2.9)

We now take into account that

æi j @ j±ui =æi j ±u(i , j ),

to obtain the following variational form: find u 2U that verifies

Z

≠

°
°æi j ±≤i j + fi ±ui

¢
d v +

Z

°F

Fi ±ui d s = 0 8±ui 2U0. (2.10)

Form (2.10) is called the principle of virtual work. Every solution u that verifies the
string form (2.1)-(2.5) is a solution of (2.10). Yet, some weaker solutions do verify
(2.10) while not being sufficiently smooth to verify (2.1)-(2.5). Variational formula-
tion (2.10) is the most general form of the equations of elasticity.
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2.3 The Principle of Complementary Virtual Work

There exist another variational principle that is actually the dual of (2.10). Assume
æ 2S to be a statically admissible stress field and let’s write compatibility condition
(2.2) in the following variational form :

Z

≠
≤i j±æi j d v =

Z

≠

1
2

°
@i u j +@ j ui

¢
±æi j 8±æi j 2S0. (2.11)

We the use the symmetry of æ to write

@i u j±æi j = @i u j±æ j i = @ j ui±æi j

which, combined to (2.11) leads to
Z

≠
≤i j±æi j d v =

Z

≠
@ j ui±æi j 8±æi j 2S0. (2.12)

The right hand side of (2.12) can be integrated by parts to give
Z

≠
≤i j±æi j d v =

Z

°
ui±æi j n j d s °

Z

≠
ui@ j±æi j d v

| {z }
=0 car ±æ2S0

8±æi j 2S0. (2.13)

Let’s decompose the surface integral of (2.13) in two parts:
Z

°
ui±æi j n j d s =

Z

°U

±æi j n j ui d s

| {z }
ui |°U =Ui

+
Z

°F

±æi j n j ui d s

| {z }
±æi j n j |°F =0

. (2.14)

The following formulation is called the principle of complementary virtual work:
find æ 2S solution of

Z

≠
≤i j±æi j d v =

Z

°U

Ui±æi j n j d s 8±æi j 2S0. (2.15)

Formulation (2.15) is way less useful in practice than (2.10). It actually requires to
start with stresses that are statically admissible a priori. This requires to find a func-
tion space for æ that is in equilibrim with the external forces and this equilibrium
involves a partial differential equation that is to be verified a priori! Very few numer-
ical methods use (2.15) in practice.

2.4 The Principle of Total Potental Energy

There are cases when formulation (2.10) is equivalent to the minimization of a func-
tional. Assume a linear elastic material. The principle of virtual work can be written
as Z

≠

°
≤i j ci j klækl + fi

¢
±ui d v = 0 8±ui 2U0. (2.16)
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Let us recall the definition of the elastic energy.

U = 1
2

Z

≠
ci j kl ≤kl ≤i j d v

We define the functional of total potential energy as the difference between the elas-
tic energy U and the work of external loads f and F:

º=U °Wext =
1
2

Z

≠
ci j kl ≤kl ≤i j d v °

Z

≠
fi ui d v °

Z

°N

Fi ui d s,

We have:

±º=
Z

≠
ci j kl ≤kl±≤i j d v °

Z

≠
fi±ui d v °

Z

°N

Fi±ui d s

which is indeed formulation (2.10). We have that

±º= 0 , 8±ui 2U0

is equivalent to the principle of virtual work (2.10).
It is easy to see that static equilibrium correspond to the minimum ofº. For that,

we compute

±2º= ±(±º) =
Z

≠
ci j kl±≤i j±≤kl d v = 2U (±≤).

Elastic energy being positive, the equilibrium correspond to the minimum of the
total potential energy.

2.5 The Principle of Total Complementary Potental En-
ergy

Let’s again consider the linear elastic case. The total complementary potental energy
is the following functional:

º§(æ) =U °W §
ext =

1
2

Z

≠
di j klæklæi j d v °

Z

°D

æi j n jUi d s.

The variation of º§ is

±(1)º§ =
Z

≠
di j klækl±æi j d v °

Z

°U

±æi j n jUi d s.

We have then

±º§ = 0 , 8±si g ma 2S0

is equivalent to the principle of complementary virtual work. Again, this extremum
correspond to a minimum.
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2.6 Matrix notations

Strains ≤, stresses æ or Hooke’s law (2.3) can be written in index notations. Matrix
notations can also be used, especially if we restrict our interest to standard euclidian
coordinates. In this case, we can write Hooke’s law in the following form:

0

BBBBBBB@

æxx
æy y
æzz
æx y
æxz
æy z

1

CCCCCCCA

= E

(1+∫)(1°2∫)

2

66666664

1°∫ ∫ ∫ 0 0 0
∫ 1°∫ ∫ 0 0 0
∫ ∫ 1°∫ 0 0 0
0 0 0 1°∫

2 0 0
0 0 0 0 1°∫

2 0
0 0 0 0 0 1°∫

2

3

77777775

0

BBBBBBB@

≤xx
≤y y
≤zz

2≤x y
2≤xz
2≤y z

1

CCCCCCCA

(2.17)

or in compact form
� = C✏

with C that is called Hooke’s rigidity matrix. The inverse relation is written

0

BBBBBBB@

≤xx
≤y y
≤zz

2≤x y
2≤xz
2≤y z

1

CCCCCCCA

= 1
E

2

66666664

1 °∫ °∫ 0 0 0
°∫ 1 °∫ 0 0 0
°∫ °∫ 1 0 0 0
0 0 0 1+∫ 0 0
0 0 0 0 1+∫ 0
0 0 0 0 0 1+∫

3

77777775

0

BBBBBBB@

æxx
æy y
æzz
æx y
æxz
æy z

1

CCCCCCCA

(2.18)

or in compact form
✏= C°1� = D�

where D is called Hooke’s matrix of flexibility or complicance. The principle of vir-
tual work can be written as: find u 2U solution of

Z

≠
�T (u) ✏(±u) d v =

Z

≠
f ±u d v +

Z

°N

F ±u d s 8±u 2U0. (2.19)

The principle of complementary virtual work can be written as: find � 2 S so-
lution of Z

≠
✏T ±� d v =

Z

°D

(� ·n) ·u d s 8±� 2S0. (2.20)

2.7 The hypercircle of Prager and Synge

Assume ✏ex ,�ex to be the exact solution of a given problem of elasticity. Let � 2 S

be a statically admissible stress and u 2 U be a compatible displacement. We write
now the following functional

E 2(✏(u),�) = 1
2

Z

≠
(�°C✏)T D (�°C✏)d v. (2.21)
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which is called the error in constitutive relation. Functional E of (2.21) is non nega-
tive and is equal to zero only if � = C✏ i.e. if the constitutive law is fullfilled. We then
add �ex °C✏ex in (2.21) to obtain

E 2(✏(u),�) = 1
2

Z

≠
(�°C✏+�ex °C✏ex )T D (�°C✏+�ex °C✏ex )d v

= E 2(✏ex ,�)+E 2(✏,�ex )+
Z

≠
(�°�ex )T (✏°✏ex )d v (2.22)

Let us expand the last term of (2.22) as
Z

≠
(�°�ex )T (✏°✏ex )d v

u,uex2U=
Z

≠
(�°�ex )T 1/2(r+rT )(u°uex )d v =

°
Z

≠
r (�°�ex )T
| {z }

= 0 car �,�ex2S

(u°uex )d v +
Z

°
(�°�ex ) n (u°uex )d s =

Z

°F

(�°�ex ) n| {z }
= 0 car �,�ex2S

(u°uex )d s +
Z

°U

(�°�ex ) n (u°uex )| {z }
= 0 car u,uex2U

d s

= 0. (2.23)

We should regognize now that �°�ex 2 S0 and that u°uex 2 S0: relation (2.23)
expresses then the orthogonality of ±u’s and ±�’s. The hypercircle theorem of Prager
and Synge writes then

E 2(✏(u),�) = E 2(✏ex ,�)+E 2(✏,�ex ). (2.24)

It says that the square of the distance (measured in term of E) between two admis-
sible fields ✏(u) and � is equal to the sum of the square of the distances between ✏ex

and � and between ✏ and �ex ). This has a graphical interpretation (see Figure 2.2).

Figure 2.2: Hypercircle of Prager and Synge
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