
CHAPTER 3

Trusses

3.1 Kinematic model of a rod.
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Figure 3.1: A rod with its local frame.

We are going to develop structural elements starting from the simplest one. The
kinematic behavior of each element will be defined first using its local or natural
frame X = {X1, X2, X3} as U = {U1,U2,U3} with

U1 =U1(X1,Y1, Z1),

U2 =U2(X1,Y1, Z1),

U3 =U3(X1,Y1, Z1).

The rod is the simplest structural element (see Figure 3.1): we use X1 for its prin-
cipal axis. Rods only accomodate axis loads (traction or compression). A rod can
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24 CHAPTER 3. TRUSSES

only have displacements along its principal axis:

U1 =U1(X1)

U2 = 0

U3 = 0

Deformations can be written as

✏=

8
>>>>>>><

>>>>>>>:

dU1
dX1

0
0
0
0
0
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The energy of deformation of the bar is written as

U = 1
2

Z

≠
E

µ
dU1

dX1

∂2

dX. (3.1)

Assuming that the bar has a constant section A =
R

d X2d X3 and that Young modulus
does not depend on X, formula (3.1) simplifies to

U = E A

2

ZL

0

µ
dU1

dX1

∂2

d X1 =
E A

2

ZL

0

°
U 0

1
¢2 d X1. (3.2)

Let us now use results of §2 to establish solutions for simple configurations. As-
sume first that our rod is fixed at its origin X1 = 0 and that a force F [N ] is applied to
it at its end X1 = L. We have

º= E A

2

ZL

0

°
U 0

1
¢2 d X1 °FU1(L).

We have

±º= E A
ZL

0
U 0

1±U 0
1d X1 °F±U1(L) = 0 8±U1.

Integration by parts gives

°E A
ZL

0
U 00

1 ±U1d X1 + E AU 0
1±U1

ØØL
0 °F±U1(L) = 0 8±U1.

Regrouping terms and taking into account that ±U1(0) = 0, we have

E A
ZL

0
U 00

1 ±U1d X1 + (F °E AU 0
1)±U1(L) = 0 8±U1.

First, we choose a family of ±U1 that are zero at both ends. This means that

ZL

0
U 00

1 ±U1d X1 = 0 8±U1.
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The fundamental lemma of the calculus of variation ensure us that

U 00
1 = 0 ! U1 =Æ+ØX1

with Æ and Ø two constants. We have first to choose Æ = 0 because U1 is kinemati-
cally admissible so that U1(0) = 0.

Now, let us consider the other variations that are non zero on X1 = L. We have
E AU 0

1 = F for X1 = L. This means that E AØ= F . The solution is then

U1 =
F

E A
X1.

Let’s now assume that the rod is submitted to its own weight. Assume that the
gravity acts on the positive X1 direction and that the rod is made of a material of
density Ω. Gravity is a volume force of amplitude Ωg . We have

º(U1) = E A

2

ZL

0

°
U 0

1
¢2 d X1 ° A

ZL

0
ΩgU1d X1.

We then find

±º= A

µZL

0

£
EU 0

1±U 0
1 °Ωg±U1

§
d X1

∂
= 0 8±U1.

Integration by parts give

ZL

0
(°EU 00

1 °Ωg )±U1d X1 +EU 0
1±U1(L) = 0 8±U1.

We finally get

U1(X1) =°Ωg

2E
X 2

1 +ÆX1 +Ø.

Condition U1(0) = 0 leads to Ø= 0. Condition U 0
1(L) = 0 leads to

°Ωg L

E
+Æ= 0.

Finally, we get

U1(X1) = Ωg

2E

°
2LX1 °X 2

1
¢

. (3.3)

It is indeed possible to compute the normal effort in every section X1 of the rod as

N = Aæ11 = E A≤11 = E A
dU1

dX1
= Ωg A(L°X1).

3.2 The Ritz method

The Ritz method is a direct method to find an approximate solution for boundary
value problems. Let’s come back to the problem of a rod submitted to its own weight.
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Exact solution of the problem is given in (3.3). Assume that we look for an approxi-
mate solution of the following form

U r
1 (X1) =Æ+ØX1. (3.4)

We’d like to use the principle of total potential energy. For that, we need U r
1 to be

compatible: constant Æ has then to be equal to zero for having U r
1 (0) = 0. This last

form U r
1 = ØX1 is of course an approximation of the exact solution. Taking into ac-

count the approximation, the total potential energy of the system can be written as

º(U r
1 ) = E A

2

ZL

0
Ø2d X1 ° A

ZL

0
ΩgØX1d X1 =

E ALØ2

2
+Ωg AØ

L2

2
.

In this case, º is a function of one parameter Ø: it is not a functional anymore. Its
minimum can be computed by zeroing the derivative of º with respect to Ø. After
simple calculations, we find

dº
dØ

= 0 ! Ø= Ωg L

2E

and

U r
1 (X1) = Ωg L

2E
X1. (3.5)

Now let’s look at the difference between the exact solution (3.3) and its linear ap-
proximation (3.5). It is interresting to see that (3.5) is exact at both end of the rod.
This fact is not a stroke of luck.

Let us come back to the problem of elasticity. Assume ur to be an approximate
solution that has been found by the method of Ritz among a family of parametrized
solutions u§ 2U § ΩU . We have

º(ur ) ∑º(u§) , 8u§

or, if we assume no volume forces,

1
2

Z

≠
✏(ur ) : C : ✏(ur ) d v °

Z

°N

F ·ur d s ° 1
2

Z

≠
✏(u§) : C : ✏(u§) d v +

Z

°N

F ·u§ d s ∑ 0.

This can be re-written as

1
2

Z

≠
✏(ur ) : C : ✏(ur ) d v ° 1

2

Z

≠
✏(u§) : C : ✏(u§) d v °

Z

°N

F · (ur °u§) d s ∑ 0. (3.6)

Assume that u 2U is the exact solution: it verifies the principle of virtual work
Z

≠
✏(u) : C : ✏(±u) d v °

Z

°N

F · (±u)d s = 0 8±u 2U0.

It should be clear at that point that ±u = ur °u§ 2U0 in (3.6) is a variation. Then,
Z

°N

F · (ur °u§) d s =
Z

≠
✏(u) : C : ✏(ur °u§) d v.
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We have then

1
2

Z

≠
✏(ur ) : C : ✏(ur ) d v ° 1

2

Z

≠
✏(u§) : C : ✏(u§) d v °

Z

≠
✏(u) : C : ✏(ur °u§) d v ∑ 0.

(3.7)
Strains ≤ are linear operators. Equation (3.7) can be re-written as

1
2

Z

≠
✏(ur °u) : C : ✏(ur °u) d v

| {z }
U (ur °u)

° 1
2

Z

≠
✏(u§ °u) : C : ✏(u§ °u) d v

| {z }
U (u§°u)

∑ 0. (3.8)

Equation (3.7) has a very interresting and useful interpretation. It says

U (ur °u) ∑U (u§ °u)

which means that the difference in term of energy between the exact solution u and
its Ritz approximation ur is smaller than the difference between u and any other
approximation u§. This means that the solution obtained by Ritz method is the best
in terms of energy. It is an orthogonal projection of the exact solution onto the space
of approximation where distances are measured in terms of energy (see Figure 3.2).
It actually also means that, whenever the space of approximation contains the exact
solution, Ritz method will find it.

u§

u§

U §
U

u

Figure 3.2: Illustration of the orthogonality property (3.8).

3.3 Elastic energy of a truss structure

Equation (3.2) allows to compute the elastic energy of one single rod. In (3.4), we
have then assumed that the axial displacement U1(X1) of the rod was linear. This
is indeed a very common assumption: if the rod is loaded on its two ends, this is
indeed the exact solution. When volume forces are involved such as gravity, then this
is an approximate solution. The form (3.4) is not the most convenient: coefficients
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Æ and Ø do not have a clear significations. One more interresting way of expressing
the displacement along the rod is to use

U1(X1) =U 1
1

µ
1° X1

L

∂
+U 2

1
X1

L
. (3.9)

Here, coefficients U 1
1 and U 2

1 have a clear meaning. For X1 = 0, we get U1(0) = U 1
1

which means that U 1
1 is the displacement of the left end of the rod. Similarly, for X1 =

L, we get U1(L) =U 2
1 which means that U 2

1 is the displacement of the right end of the
rod. In the finite element method, the unknowns are usually the displacements of
the nodes of the structure. This allows in fact to compute the elastic energy of a
whole truss structure.

Consider (3.9). The elastic energy (3.2) of this rod can be expressed as

U = E A

2

ZL

0

°
U 0

1
¢2 d X1 =

E A

2L
(U 2

1 °U 1
1 )2 = 1

2

µ
U 1

1
U 2

1

∂T ∑ E A
L °E A

L
°E A

L
E A
L

∏µ
U 1

1
U 2

1

∂

Writing the elastic energy in matrix form will be very useful in what follows.
A truss consists of straight rods connected at joints or nodes. In a truss, loads are

applied to nodes only. A planar truss is a truss for which all members are in a given
plane and where all the loads are applied in the same plane. We consider planar
trusses first.

The kinematic behavior of a planar truss can be described by its nodal displace-
ments. Assume a truss with N nodes and B bars (or rods). Node i has coordinates
xi = {xi

1, xi
2} and its displacement is noted ui = {ui

1,ui
2}. Note here that positions and

displacements of the nodes are given using the same system of coordinates (we use
lower case letters for coordinates in the common euclidian frame). Bar j connects
node b j

1 and b j
2. It has a length L j , a section A j and it is made of a material of Young

modulus E j We want now to compute the elastic energy U j of bar j as a function of

global displacements ub
j
1 and ub

j
2 . Assume a bar that has its local axis X1 inclined

with an angle µ with the global x1 axis (see Figure 3.3). Any vector has two sets of co-
ordinates, one expressed in the global frame v = {v1, v2} and one in the local frame
V = {V1,V2}. We have

V =
µ

V1
V2

∂
=

∑
cosµ sinµ

°sinµ cosµ

∏µ
v1
v2

∂
= [T]v.

and

v =
µ

v1
v2

∂
=

∑
cosµ °sinµ
sinµ cosµ

∏µ
V1
V2

∂
= [T]T V.

The elastic energy of rod j can be expressed as

U j = 1
2

0

BBBBBB@
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E j A j

L j 0 °E j A j

L j 0
0 0 0 0

°E j A j

L j 0 E j A j

L j 0
0 0 0 0

3
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= 1

2
(U j )T [K j ](U j )
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Figure 3.3: Local and global frames

where [K j ] is the local stiffness matrix of bar j and (U j ) its local displacement vector.
The zeros in the local stifness matrix indicate that no energy is stored for any dis-
placement along the local X2 axis. We use then the transformation formula (U j ) =
[T j ](u j ) to express the energy as a function of global displacements (u j )

U j = 1
2

(U j )T [K j ](U j ) = 1
2

(u j )T [T j ]T [K j ][T j ](u j ) = 1
2

(u j )T [k j ](u j ).

Here,
[k j ] = [T j ]T [K j ][T j ] (3.10)

is the global stifness matrix of bar j . Energy is an extensive quantity and the energy
of a given truss is computed as

U =
BX

j=1
U j .

3.4 Global equilibrium of a truss

3.4.1 Stiffness Matrix

Let’s now define the global displacement vector

(u) =

0

BBBBBBBBBB@

u1
1

u1
2

u2
1

u2
2
...

uN
1

uN
2

1

CCCCCCCCCCA
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as a vector of size 2N that contains all nodal displacements of the truss. Node i
of the truss correspond to entries 2i ° 1 and 2i , entry 2i ° 1 corresponding to the
displacement along x1 and entry 2i corresponding to the displacement along x2.

Our aim now is to express the elastic energy of the truss as the quadratic form

U = 1
2

(u)T [k](u)

where [k] is the global stifness matrix of the truss of size 2N £2N . The energy of bar

j

i

fi

k

Figure 3.4: A truss with loads and fixations.

j can also be written as the quadratic form

U j = 1
2

(u)T [k j
e ](u)

with [k j
e ] the extended stiffness matrix i.e. a 2N £2N matrix that is essentially filled

up with zeros and where the only 16 non zero entries are the ones of [k j ]. The indices
of the 4 degrees of freedom of bar j are

◆= {∂1, ∂2, ∂3, ∂4} = {2b j
1 °1,2b j

1,2b j
2 °1,2b j

2}

and the 16 non zero entries are

[k j
e ]∂i ,∂ j = [k j ]i , j , i , j = 1, . . . ,4.

The elastic energy of a truss is therefore

U =
BX

j=1
U j = 1

2

BX

j=1
(u)T [k j

e ](u) = 1
2

(u)T

"
BX

j=1
[k j

e ]

#

(u) = 1
2

(u)T [k](u)

with [k] = PB
j=1[k j

e ] i.e. the global stiffness matrix [k] is simply “assembled” as the

sum of extended stiffness matrices [k j
e ].
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3.4.2 Force Vector

A truss is loaded at its vertices. If fi = { f i
1 , f i

2 } (see Figure 3.4) is the external load at
vertex i , we define the global force vector as

(f) =

0

BBBBBBBBBB@

f 1
1

f 1
2

f 2
1

f 2
2
...

f N
1

f N
2

1

CCCCCCCCCCA

.

The work of external loads can the be expressed as

Wext = (u)T (f)

and the total potential energy of the truss is

º= 1
2

(u)T [k](u)° (u)T (f). (3.11)

3.4.3 Supports

The natural thing to do now could be to minimize º with respect to (u). Yet, the
princple of the minimum of total potential energy only applies to displacements
that are admissible i.e. that verify a priori the essential boundary conditions i.e. the
displacements that are compatible with the supports. On the truss of Figure 3.4,
displacement of node j along x2 should be equal to zero: (u)2 j = 0. Similarly, the
displacement vector of node k should be equal to zero: (u)2k°1 = (u)2k = 0.

Lagrange multipliers

The most elegant way of dealing with supports is to use constrained optimization.
Assume that the supports of the truss consist in M linear constraints

[c](u) = (ū) (3.12)

where [c] is a M £2N matrix of full rank and where (ū) is the right hand side i.e. a
vector of size M .

In mathematical optimization, the method of Lagrange multipliers is a strategy
for finding the local maxima and minima of a function subject to equality constraints.

For instance, consider the optimization problem maximize f (x, y) subject to
g (x, y) = 0. We introduce a new variable ∏ called a Lagrange multiplier and study
the Lagrangian defined by

L (x, y,∏) = f (x, y)+∏g (x, y).
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We then solve
rx,y,∏L (x, y,∏) = 0.

This is the method of Lagrange multipliers. Note that r∏L (x, y,∏) = 0 of course
implies g (x, y) = 0.

We apply the method of Lagrange multipliers to our truss problem. Let us de-
fine (�) to be a M-vector that contains the Lagrange multipliers. We define the La-
grangian

L ((u), (�)) = 1
2

(u)T [k](u)° (u)T (f)+ [[c](u)° (ū)]T (�). (3.13)

We then look for a stationary point of L :

@L

@(u)
= (0) ! [k](u)° (f)+ [c]T (�) = (0),

@L

@(�)
= (0) ! [c](u)° (ū) = (0).

The following system of 2N + M equations allows to find (u) and (�) in one linear
system solve:

∑
[k] [c]T

[c] [0]

∏µ
(u)
(�)

∂
=

µ
(f)
(ū)

∂
. (3.14)

Lagrange multipliers usually have an interresting interpretation. Here [c]T (�) are
reaction forces that are associated to the constraints. In the simplest case of the sim-
ply supported node j of Figure 3.4, the Lagrange multiplier relative to constraint
u2 j = 0 is the vertical reaction force at node j . The formulation (3.14) has the great
advantage to provide both displacements and reaction forces!

3.5 Example

Finite elements are not meant to be solved on paper: they should be programmed
and solved on a computer. Nevertheless, let’s solve one simple truss unsing finite
elements and Lagrange multipliers in order to illustrate the method.

It is indeed easy to compute analytically the stiffness matrix (3.10) of bar j with
its characteristics A j , E j and L j :

[k j ] = [T j ]T [K j ][T j ] =

E j A j

L j

2

664

cos2(µ) sin(µ)cos(µ) °cos2(µ) °sin(µ)cos(µ)
sin(µ)cos(µ) sin2(µ) °sin(µ)cos(µ) °sin2(µ)

°cos2(µ) °sin(µ)cos(µ) cos2(µ) sin(µ)cos(µ)
°sin(µ)cos(µ) °sin2(µ) sin(µ)cos(µ) sin2(µ)

3

775 .

Consider the truss depicted on Figure 3.5. Assume A and E constant for both bars.
The truss has 2 bars and 3 nodes. The stiffness matrix of bar 1 (b1

1 = 2, b1
2 = 3, µ =
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3

1
L

x2

x1

1

2

3

F

L

2

Figure 3.5: A simple truss.

°º/4) is

[k1] = E A

2
p

2L

2

664

1 °1 °1 1
°1 1 1 °1
°1 1 1 °1

1 °1 °1 1

3

775 .

The stiffness matrix of bar 2 (b2
1 = 1, b2

2 = 3, µ = 0) is

[k2] = E A

L

2

664

1 0 °1 0
0 0 0 0

°1 0 1 0
0 0 0 0

3

775 .

The stiffness matrix of the truss is assembled as

[k] = E A

L

2

66666664

1 0 0 0 °1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

°1 0 0 0 1 0
0 0 0 0 0 0

3

77777775

| {z }
[k1

e ]

+ E A

2
p

2L

2

66666664

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 °1 °1 1
0 0 °1 1 1 °1
0 0 °1 1 1 °1
0 0 1 °1 °1 1

3

77777775

| {z }
[k2

e ]

.

We see here that it is mandatory to impose the value of (u)2 because this degree of
freedom is not associated to any stiffness: all elements of row 2 of [k] are identically
equal to 0. In fact, at least 3 constraints have to be imposed to a truss in order to
avoid global translation (2 kinematic modes) and rotation (1 kinematic mode). In
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the case of the truss of Figure 3.5, we find

[c] =

2

664

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

3

775 .

and (ū) = [0]. The force vector is then computed as

(f)T =
£

0 0 0 0 0 °F
§

.

At that point, solving the problem on paper is cumbersome: we have here a system
of 10 equations with 10 unknowns!

In the case of simple constraints such as zeroing a displacement, one way to sim-
plify the resolution on paper is to remove lines and columns of the stiffness matrix
that correspond to the displacements that are null. We have then:

[k] = E A

2
p

2L

∑
1+2

p
2 °1

°1 1

∏
.

Here, the constraints have been implicitely taken into account and finding the static
equilibrium of the truss consist in solving

(u) = [k]°1(f).

We have

[k]°1 = L

E A

∑
1 1
1 1+2

p
2

∏
.

and the solution is

u3
1 =° F L

E A
, u3

2 =° F L

E A
(1+2

p
2).


