
CHAPTER 4

Programming a truss finite element solver in C

In this section, some C functions are developed that allow to compute displacements
and internal efforts of a two-dimensional truss structure.

4.1 Linear system solver

As it was explained in Chapter 3, computing the equilibrium of a truss structure
requires to solve a linear system of equations (see (3.14)). Here, we asssume the
existence of a linear solver Application Program Interface (API). In such an API, the
following functions should be availabe:

• matrix_t * create_matrix (int n, int m); This function allows to cre-
ate a n£m matrix. Sparse matrices are preferred in finite elements because of
the low bandwidth of finite element stifness matrices. Matrix that is returned
is initialized with zeros.

• void delete_matrix (matrix_t *K); This one removes the memory allo-
cated by create_matrix.

• void add_to_matrix (matrix_t *K, int n, int m, double val); This
one allows to add value val to row n and column m of matrix K.

• void solve_linear_system (matrix_t *K, double *f, double *x);

This one solves the linear system [K](x) = (F).

4.2 Input and output

A finite element solver of a truss takes as input the following datas:

• An array double *xy of size 2N that contains the coordinates of the N nodes
(or joints) of the truss. We assume that coordinates x j

1 and x j
2 of node j are

xy[2*j] and xy[2*j+1], j = 0, . . . , N °1.
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• An array int *ind of size 2B that contains the topology of the truss i.e. the
index of starting and ending nodes of each of the B rods (or bars) of the truss.
We assume that bar j ’s starting node b j

1 is ind[2*j] and that bar j ’s ending

node b j
2 is ind[2*j+1], j = 0, . . . ,B °1.

• An array double *f of size 2N that contains the nodal forces applied to each
of the nodes of the truss. The two components f j

1 and f j
2 of the force that acts

on node j are respectively f[2*j] and f[2*j+1].

• The way fixations (or supports) are defined is a little more tricky. Here, we
propose not to be 100% general. We could indeed ask the user to provide ma-
trix [c] and vector (ū) of (3.12) but this is not very intuitive. The truss solver
should build [c] and (ū) by itself using straightforward informations. We pro-
pose to use 2 arrays. Assume that M constraints have to be applied to the truss
and that each of the constraints is applied to one node of the truss (this is the
non general part). The first array int *nc of size M contains all nodes that
are associated with constraints. The second array double *vc of size 3M as-
signs one vector per constrained node. Vector with components vc[3*j] and
vc[3*j+1] is the direction of the prescribed displacement at that node nc[j]
and vc[3*j+2] is the value of that displacement.

• An array double *ea of size B that contains products E j A j for each bar.

The output (the results) of the solver are the displacements at all nodes as well as
reaction forces corresponding to the constraints:

• An array double *x of size 2N that contains the nodal displacements of each
node of the truss. Displacement u j

1 and u j
2 are respectively x[2*j] andx[2*j+1].

• An array double *r of size M that contains normal reaction forces.

4.3 Stiffness matrix

The function that computes the stiffness matrix of a bar is given in 4.1. This code is
a simple translation of formula (3.15).

4.4 The solver

The function computes the equilibrium of a truss is given in Listings 4.2. The stiff-
ness matrix of the truss is assembled between lines 8 and 16. The force vector is set
on line 17. The constraints are set between lines 18 and 27. Note that we consider
that the third component v[2] is the absolute value of the displacement that is pre-
scribed along direction v[0], v[1]. We then put a unit vector in the matrix (lines
22 to 25). If the system cannot be inverted (zero determinant), it actually means
that the truss is unstable (hypostatic). This can be due to external hypostaticity (not
enough constraints) or internal hypostaticity (frame modes).
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⌥
1 void s t i f f n e s s M a t r i x ( double x1 , double y1 ,
2 double x2 , double y2 , double ea , double k [ 4 ] [ 4 ] )
3 {
4 double t = atan2 ( y2°y1 , x2°x1 ) ;
5 double c = cos ( t ) ;
6 double s = sin ( t ) ;
7 double l = sqrt ( ( x2°x1 ) * ( x2°x1 ) +(y2°y1 ) * ( y2°y1 ) ) ;
8 double f = ea/ l ;
9 k [ 0 ] [ 0 ] = k [ 2 ] [ 2 ] = c * c * f ;

10 k [ 1 ] [ 1 ] = k [ 3 ] [ 3 ] = s * s * f ;
11 k [ 0 ] [ 2 ] = k [ 2 ] [ 0 ] = °c * c * f ;
12 k [ 3 ] [ 1 ] = k [ 1 ] [ 3 ] = °s * s * f ;
13 k [ 0 ] [ 1 ] = k [ 1 ] [ 0 ] = k [ 3 ] [ 2 ] = k [ 2 ] [ 3 ] = s * c * f ;
14 k [ 3 ] [ 0 ] = k [ 0 ] [ 3 ] = k [ 2 ] [ 1 ] = k [ 1 ] [ 2 ] = °s * c * f ;
15 }⌃ ⇧

Listing 4.1: Computation of the stiffness matrix of a bar

Let us now try our truss solver on the same simple truss as the one of §3.5. The
code given in 4.3 shows how to define input data for this simple truss. Note that this
way of defining data is clearly not the one that should be use to solve large trusses.
Computer Aided Design systems like AutoCAD, ArchiCAD, ProEngineer, CATIA or
SolidWorks allow to define complex structures in a WYSIWYG fashion. We should in
principle be able to connect such a system and get relevant informations that can
be automatically translated into our input format.

The computed displacement at node 2 is u2
1 = °4.7619e °05 which is in accor-

dance to what we found in §3.5 i.e.

° F L

E A
= 1000£1

210£10°5 =°4.7619£10°5.

Similarly, u2
2 =°0.000182306 which is also correct. The value of the 4 lagrangle mul-

tipliers is

(�) = {°1000,0,1000,°1000}

which is obviously the right value of reactions forces at nodes 0 and 1.

4.5 Post processing

It is indeed possible to compute normal efforts n j , j = 0, . . . , N ° 1 in each bar of
the truss in a post processing stage. For that, let us give the following interresting
interpretation of the local stiffness matrix [k j ] of bar j . Let us isolate bar j and let’s
apply to bar j the displacements

(u j ) = {u
bi

1
1 ,u

bi
1

2 ,u
bi

2
1 ,u

bi
2

2 }.
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⌥
1 int trussSolver ( int N, int B, int M, double * xy , int * ind ,
2 double * f , int *nc , double * vc , double *ea ,
3 double *x , double * r ) {
4 double s t i f f [ 4 ] [ 4 ] ;
5 matrix_t *K = create_matrix (2*N+M, 2*N+M) ;
6 double *F = ( double * ) malloc ( ( 2 *N+M) * s i z e o f ( double ) ) ;
7 double *X = ( double * ) malloc ( ( 2 *N+M) * s i z e o f ( double ) ) ;
8 for ( int i =0; i <B ; i ++) {
9 int n1 = ind [ 2* i ] ;

10 int n2 = ind [ 2* i + 1 ] ;
11 int indx [ 4 ] = {2*n1 , 2 * n1+1 ,2*n2 , 2 * n2 + 1 } ;
12 s t i f f n e s s M a t r i x ( xy [ indx [ 0 ] ] , xy [ indx [ 1 ] ] ,
13 xy [ indx [ 2 ] ] , xy [ indx [ 3 ] ] , ea [ i ] , s t i f f ) ;
14 for ( int j =0; j <4; j ++) for ( int k =0;k <4; k++)
15 add_to_matrix (K, indx [ j ] , indx [ k ] , s t i f f [ j ] [ k ] ) ;
16 }
17 for ( int i =0; i <2*N; i ++) F [ i ] = f [ i ] ;
18 for ( int i =0; i <M; i ++) {
19 int indx [ 2 ] = {2* nc [ i ] , 2*nc [ i ] + 1 } ;
20 double v [ 3 ] = { vc [3 * i ] , vc [ 3 * i +1] , vc [ 3 * i + 2 ] } ;
21 double norm = sqrt ( v [ 0 ] * v [ 0 ] + v [ 1 ] * v [ 1 ] ) ;
22 add_to_matrix (K, 2 *N+i , indx [ 0 ] , v [ 0 ] /norm) ;
23 add_to_matrix (K, 2 *N+i , indx [ 1 ] , v [ 1 ] /norm) ;
24 add_to_matrix (K, indx [ 0 ] , 2 *N+i , v [ 0 ] /norm) ;
25 add_to_matrix (K, indx [ 1 ] , 2 *N+i , v [ 1 ] /norm) ;
26 F[ 2 *N+ i ] = v [ 2 ] ;
27 }
28 bool r e s u l t = solve_linear_system (K, F , X) ;
29 i f ( r e s u l t == f a l s e ) p r i n t f ("ERROR : the truss is not stable\n" ) ;
30 for ( int i =0; i <2*N; i ++) x [ i ] = X[ i ] ;
31 for ( int i =0; i <M; i ++) r [ i ] = X[ 2 *N+ i ] ;
32 delete_matrix (K) ;
33 fre e (F) ;
34 fre e (X) ;
35 return r e s u l t ;
36 }⌃ ⇧

Listing 4.2: A truss solver
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⌥
1 int main( void ) {
2 const double L = 1 . 0 ;
3 const double F = 1000;
4 const double A = 1e°4;
5 const double E = 210e9 ;
6 const int N = 3 ;
7 double xy [ 2 *N] = { 0 , 0 , 0 , L , L , 0 } ;
8 const int B = 2 ;
9 int ind [ 2 *B] = { 1 , 2 , 0 , 2 } ;

10 double ea [B] = {E*A , E*A } ;
11 double f [ 2 *N] = {0 ,0 ,0 ,0 ,0 , °F } ;
12 const int M = 4 ;
13 int nc [M] = { 0 , 0 , 1 , 1 } ;
14 double vc [3 *M] = { 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 } ;
15 double x [ 2*N] ;
16 double r [M] ;
17 int r e s u l t = trussSolver (N, B,M, xy , ind , f , nc , vc , ea , x , r ) ;
18 return r e s u l t ;
19 }⌃ ⇧

Listing 4.3: Example of use of the truss solver

that were computed by the truss solver. The product

[f j ] = [k j ](u j )

allows to compute two force vectors

(f j ) = { f
bi

1
1 , f

bi
1

2| {z }
fbi

1

, f
bi

2
1 , f

bi
2

2| {z }
fbi

2

}

at both ends bi
1 and bi

2 of the bar. Matrix [k j ] of (3.15) is of rank 2: its rows 1 and 3
are the opposite of each other. This is also true for rows 2 and 4. This means actually

that f
bi

1
1 = ° f

bi
2

1 and f
bi

1
2 = ° f

bi
2

2 . Then, we have fbi
1 = °fbi

2 . This makes sense: the

bar is in equilibrium. Then it is easy to see that fbi
1 is aligned with the axis of the bar.

Consider a vector n = {sinµ,°cosµ} that is orthogonal to bar j . It is easy to see that
fbi

1 ·n = 0. This result again makes a lot of sense: the bar can only handle axial forces
along X1. The normal effort at both ends can then be computed as

n j = fbi
1 · t = 0

with t = {cosµ, sinµ}. We choose to use fbi
1 in order that a positive n j correspond to a

bar in traction. The code given in 4.4 allows to compute normal efforts in every bar
of the truss. In our simple example, we find

(n) = {1414.21,°1000}

which is obviously the right answer.
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⌥
1 void postPro ( int B, double * xy , int * ind ,
2 double *ea , double *x , double *n) {
3 double s t i f f [ 4 ] [ 4 ] ;
4 for ( int i =0; i <B ; i ++) {
5 int n1 = ind [ 2* i ] ;
6 int n2 = ind [ 2* i + 1 ] ;
7 int indx [ 4 ] = {2*n1 , 2 * n1+1 ,2*n2 , 2 * n2 + 1 } ;
8 s t i f f n e s s M a t r i x ( xy [ indx [ 0 ] ] , xy [ indx [ 1 ] ] ,
9 xy [ indx [ 2 ] ] , xy [ indx [ 3 ] ] , ea [ i ] , s t i f f ) ;

10 double f [ 4 ] = { 0 , 0 , 0 , 0 } ;
11 for ( int j =0; j <4; j ++) {
12 for ( int k =0;k <4; k++) {
13 f [ j ] += s t i f f [ j ] [ k ] * x [ indx [ k ] ] ;
14 }
15 }
16 double t = atan2 ( xy [ indx [1]]° xy [ indx [ 3 ] ] , xy [ indx [0]]°

xy [ indx [ 2 ] ] ) ;
17 n[ i ] = f [ 0 ] * cos ( t ) + f [ 1 ] * sin ( t ) ;
18 }
19 }⌃ ⇧

Listing 4.4: Computing normal efforts in all bars

4.6 Example

Figure 4.1: A Howe truss. The deformation of the truss is enhanced 100 times. The
color correspond to traction (red) and compression (blue)

We consider here a truss with a well known topology that is called a Howe truss
(see Figure 4.1. The Howe Truss was designed by William Howe in 1840. It used
mostly wood in construction and was suitable for longer spans than the Pratt truss.
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Therefore, it became very popular and was considered one of the best designs for
railroad bridges back in the day.


