
CHAPTER 5

Frames

5.1 The Bernoulli-Euler model for beams

The kinematic behavior of a beam involves in-plane flexure. In its local coordinates,
the Bernoulli-Euler for a beam writes:

U1 =U1(X1)°X2
dU2

d X1

U2 =U2(X1) (5.1)

U3 = 0.

Here, U2 represents the displacement of the neutral axis of the beam along X2 (see
Figure 5.1).
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Figure 5.1: The Bernoulli-Euler model for a beam (pure bending).

This model can be seen as the sum of two model: (i) a bar model (3.1) that al-
lows energy to be stored in traction/compression and (ii) a pure flexure model that
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allows to store flexural energy only. Assume the bar to be of length L, with a bending
stiffness E I and a axial stiffness E A. The energy of deformation of the bar is written
as

U = 1
2

ZL

0
E A

µ
dU1

d X1

∂2

d X1 +
1
2

ZL

0
E I

√
d 2U2

d X 2
1

!2

d X1. (5.2)

The energy of deformation has to be finite. This means that U1 has to have its first
derivative square-integrable. It is possible to prove that this condition is verified
for every U1 2 C 0, the space of continuous functions. The flexure term involves the
square of the second derivative of U2. Functions that have their second derivative
square-integrable should not only be continuous. They should also have their first
derivative continuous. We have to choose U2 2C 1, the space of continuously deriv-
able functions.

5.2 Finite Elements for Beams

The extra difficulty that arises here comes from that fact that U2 should be C 1. The
most obvious fashion of ensuring that a discretization is C 0 is to use degrees of free-
dom that are displacements at nodes. For getting a C 1 discretization, one has simply
to add degrees of freedom that are the first derivatives of U2 at nodes. A beam ele-
ment has therefore 6 degrees of freedom:

• U 1
1 and U 2

1 , the two nodal displacements along X1.

• U 1
2 and U 2

2 , the two nodal displacements along X2.

• £1
3 and£2

3, the two nodal derivatives of U2 with respect to X1. Those are noted
£3 because theu correspond to rotations around X3.

Displacement U2(X1) depends on 4 parameters U 1
2 , U 2

2 , £1
3 and £2

3. Cubic polyno-
mials N j (X1), j = 1, . . . ,4 are used to discretize U2 as:

U2(X1) = N1(X1)U 1
2 +N2(X1)£1

3 +N3(X1)U 2
2 +N4(X1)£2

3

=
4X

i=1
Ũi Ni (X1) (5.3)

with Ũ = {U 1
2 ,£1

3,U 2
2 ,£2

3}. It is easy to computes functions N j . The sixteen constants
that are required to describe the 4 cubic polynomials are selected in order to satisfy
the following 16 relation

(U2)(0) =U 1
2 ! N1(0) = 1, N2(0) = 0, N3(0) = 0, N4(0) = 0,

(U 0
2)(0) =£1

3 ! N 0
1(0) = 0, N 0

2(0) = 1, N 0
3(L) = 0, N 0

4(L) = 0,

(U2)(L) =U 2
2 ! N1(L) = 0, N2(L) = 0, N3(L) = 1, N4(L) = 0,

(U 0
2)(L) =£2

3 ! N 0
1(L) = 0, N 0

2(L) = 0, N 0
3(L) = 0, N 0

4(L) = 1.

For example, we can assume

N1(X1) = A+B X1 +C X 2
1 +D X 3

1 .
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We have N 1(0) = 1 ! A = 1. Then, N 0
1(0) = 0 ! B = 0, N1(L) = 0 ! 1+C L2 +

DL3 = 0 and N 0
1(L) = 0 ! 2C L+3DL2 = 0. It is easy to determine B and C using

∑
L2 L3

2L 3L2

∏µ
C
D

∂
=

µ
°1
0

∂
.

We find C =°3/L2 and D = 2/L3. Then, posing t =
≥

X1
L

¥
, we find

N1(t ) = 1°3t 2 +2t 3.

After computations, we find

N1(t ) = 1°3t 2 +2t 3

N2(t ) = Lt (t °1)2

N3(t ) = t 2 (°2t +3) (5.4)

N4(t ) = °L (1° t ) t 2.

Polynomials Ni of (5.4) are called Hermite polynomials. They are represented in Fig-
ure 5.2 Let us now write the U (see (5.2)) using approximation (5.3) for the transver-
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Figure 5.2: Cubic Hermite polynomials.

sal displacement U2 and using (3.9) for U1:

U = 1
2

4X

i=1

4X

j=1
ŨiŨ j

ZL

0
E I

d 2Ni

d X 2
1

d 2N j

d X 2
1

d X1 +
1
2

2X

i=1

2X

j=1
U i

1U j
1

ZL

0
E A

d Mi

d X1

d M j

d X1
d X1

= 1
2

4X

i=1

4X

j=1
ŨiŨ j K f

i j +
1
2

2X

i=1

2X

j=1
U i

1U j
1 K a

i j . (5.5)
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Assuming E A and E I to be constant along the bar, we have the expressions

[K f ] = E I

L3

2

664

12 6L °12 6L
6L 4L2 °6L 2L2

°12 °6L 12 °6L
6L 2L2 °6L 4L2

3

775 (5.6)

and

[Ka] = E A

L

∑
1 °1
°1 1

∏
. (5.7)

Grouping the two terms, we get

U = 1
2

0

BBBBBBB@

U 1
1

U 1
2
£1

3
U 2

1
U 2

2
£2

3

1

CCCCCCCA

T
2

666666664

K a
11 0 0 K a

12 0 0

0 K f
11 K f

12 0 K f
13 K f

14

0 K f
21 K f

22 0 K f
23 K f

24
K a

21 0 0 K a
22 0 0

0 K f
31 K f

32 0 K f
33 K f

34

0 K f
41 K f

42 0 K f
43 K f

44

3
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U 1
1

U 1
2
£1
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U 2

1
U 2

2
£2

3

1

CCCCCCCA

= 1
2

(U)T [K](U). (5.8)

We have now to give an expression of the energy in global coordinates i.e. using
the 6 global degrees of freedom of the beam. Assume that the bar is inclined of an
angle Æ with respect to the X1 axis, we can write

(u) = [T](U)

with

[T] =

2

66666664

cosÆ sinÆ 0 0 0 0
°sinÆ cosÆ 0 0 0 0

0 0 1 0 0 0
0 0 0 cosÆ sinÆ 0
0 0 0 °sinÆ cosÆ 0
0 0 0 0 0 1

3

77777775

(5.9)

We have then

U = 1
2

(U)T [K](U) = 1
2

(u)T [T]T [K][T](u) = 1
2

(u)T [k](u).

The analytical computation of [k] = [T]T [K][T] is not given explicitely. This stiffness
matrix is usually computed numerically.

5.3 Solving planar trusses with finite elements

The resolution of a planar frame uses the same kind of process as the one we de-
scribed in Chapters 3 and 4. Here, three degrees of freedom u j = {u j

1,u j
2,µ j

3 } have
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to be defined for each node j of the frame. Each bar is associated to a 6£ 6 stiff-
ness matrix. Forces and moments can be applied to joints of the frame in the same
fashion as it was done for trusses. Yet, in the case of frames, continuous distribu-
tions of forces ø(X1)[N /m] can be applied, for taking into account proper weights of
elements or for taking into accound wind forces.

Let us try to solve the problem of a Cantilever beam as it is depicted on Figure
5.3.

X1

L

ø(x)

Figure 5.3: A Cantilever Beam.

Its exact solution can easily be found:

U2(X1) =°
øX 2

1 (6L2 °4LX1 +X 2
1 )

24E I
, M(X1) = E IU 00

2 =°
ø(L2 °2LX1 +X 2

1 )

2
, T (X1) = M 0(X1) = ø(X1°L).

Now let’s try to solve this problem using one single finite element. The frame has
two nodes as depicted in Figure 5.4.
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Figure 5.4: A Cantilever Beam with 6 degrees of freedom.

The work of load ø(X1) is computed as

Wext =
ZL

0
ø(X1)U2(X1)d X1 =

4X

i=1
Ũi

ZL

0
ø(X1)Ni (X1)d X1 =

4X

i=1
Ũi F̃i

with ˜(U) = {U 1
2 ,£1

3,U 2
2 ,£2

3} and ˜(F) = {T 1
2 , M 1

3 ,T 2
2 , M 2

3 } a nodal force vector that is a
projection of ø onto the shape functions Ni of the beam. This process can be seen
as replacing a continuous distribution of forces ø(X1) by nodal forces: two vertical
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loads T 1
2 and T 2

2 associated to nodes 1 and 2 and two moments of force M 1
3 and

M 2
3 associated to nodes 1 and 2 as well. Solving the Cantilever problem with one

finite element consist in solving a simplified problem where the continuous load
have been replaced by “equivalent” nodal forces and moments. In this case, the
finite element method will find the exact solution of the simplified problem, but not
to the initial problem with continuous loads. Assume ø to be constant. We have

˜(F) =
©
°øL/2,øL2/12,°øL/2,°øL2/12

™
.

The solution to the simplified problem is solved using finite elements. We have U 1
2 =

£1
3 = 0 and

E I

L3

∑
12 °6L
°6L 4L2

∏µ
U 2

2
£2

3

∂
=

µ
°øL/2
°øL2/12

∂

or ∑
12 °6L
°6L 4L2

∏µ
U 2

2
£2

3

∂
=° øL4

12E I

µ
6
L

∂
.

We find

U 2
2 =° 5øL4

24E I
and £2

3 =° øL3

3E I
.

The finite element solution finally writes

U2(t ) =° 5øL4

24E I
t 2 (°2t +3)+ øL4

3E I
(1° t ) t 2.

For X2 = L we of course get U2(1) = U 2
2 = ° 5øL4

24E I which is different from the exact

value ° 3øL4

24E I .
The best way of improving the results is to split the beam in multiple finite ele-

ments. Figure 5.5 shows the simplified finite element problem arising from a 2 ele-
ment discretization. Here, we see that moments at interior nodes fall down to zero
because both left and right beams provide the node opposite contributions. Here,
the problem has 6 degrees of freedom (degress of freedom for node 1 are all zero)
and it is not possible to solve it by hand.
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Figure 5.5: Discretization using 2 finite elements
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