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This text is based on two lectures delivered in January 2009 at the conference
“Quadratic forms, linear algebraic groups and Galois cohomology” held at the Uni-
versity of Hyderabad. The purpose was to survey the cohomological invariants that
have been defined for various types of involutions on central simple algebras on the
model of quadratic form invariants. I seized the occasion to make explicit some of
the classification or structure results that may be expected from future invariants,
and to compile a fairly extensive list of references. As this list makes clear, Pari-
mala’s contributions to the subject are all-pervasive.
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Throughout these notes, F denotes a field of characteristic different from 2 and
Fs a separable closure of F . We identify µ2 := {±1} with Z/2Z. For any integer
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n≥ 0, we let Hn(F) be the Galois cohomology group

Hn(F) := Hn(Gal(Fs/F),Z/2Z).

The Kummer exact sequence

1→ µ2 → F×s
2−→ F×s → 1

and Hilbert’s Theorem 90 yield identifications H1(F) = F×/F×2, and H2(F) =
2 Br(F), the 2-torsion subgroup of the Brauer group of F . For a ∈ F×, we let (a) ∈
H1(F) denote the cohomology class given by the square class aF×2. We use the
notation · for the cup-product in the cohomology ring H∗(F), so for a, b ∈ F× the
Brauer class of the quaternion algebra (a,b)F is (a) · (b).

1 Introduction: classification of quadratic forms

Various invariants are classically defined to determine whether quadratic forms over
an arbitrary field F are isometric. The first invariant is of course the dimension. In
order to obtain an invariant that vanishes on hyperbolic forms, one considers the
dimension modulo 2:

e0(q) = dimq (mod 2) ∈ Z/2Z.

The next invariant is the discriminant: for q a quadratic form of dimension n, we set

e1(q) = (−1)n(n−1)/2 detq ∈ F×/F×2.

Thus, e1 is well-defined on the Witt group WF ; but it is a group homomorphism
only when restricted to the ideal IF of even-dimensional forms, which is the kernel
of e0.

In his foundational paper, Witt defined as a further invariant the Brauer class of
the Clifford or even Clifford algebra (depending on which is central simple over F),

e2(q) =

�
[C(q)] ∈ 2 Br(F) if dimq is even,

[C0(q)] ∈ 2 Br(F) if dimq is odd.

The map e2 is well-defined on WF but it is a group homomorphism only on the
square1 I2F of IF , which is the kernel of e1.

Note that the “classical” invariants above take their values in cohomology groups:

Z/2Z = H0(F), F×/F×2 = H1(F), 2 Br(F) = H2(F).

1 For any integer n≥ 2 we let InF = (IF)n.
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They were vastly generalized during the last quarter of the twentieth century: see
Pfister’s survey [40] for an account of the historical development of the subject.
After Voevodsky’s proof of the Milnor conjecture and additional work of Orlov–
Vishik–Voevodsky, we have surjective homomorphisms

en : InF → Hn(F) for all n≥ 0

defined on n-fold Pfister forms ��a1, . . . ,an�� := �1,−a1�⊗ · · ·⊗�1,−an� by

en
�
��a1, . . . ,an��

�
= (a1) · · · · · (an).

These homomorphisms satisfy

keren = In+1F for all n≥ 0.

On the other hand, the Arason–Pfister Hauptsatz [13, Th. 23.7] states that the di-
mension of any anisotropic quadratic form q representing a nonzero element in
InF satisfies dimq ≥ 2n, hence

�
n InF = {0}. Therefore, the problem of deciding

whether two quadratic forms q1, q2 over F are isometric can in principle be solved
by computing cohomology classes: indeed, q1 and q2 are isometric if and only if
dimq1 = dimq2 and q1− q2 is hyperbolic, and the latter condition can be checked
by computing successively2 e0(q1−q2), e1(q1−q2), e2(q1−q2), . . . , which should
all vanish. In view of the Arason–Pfister Hauptsatz, it actually suffices to check that
ed(q1−q2) = 0 for all d ≥ 0 with 2d ≤ dimq1 +dimq2.

This remarkably complete classification result is a model that we want to emu-
late for other algebraic objects. The problem can be formalized as follows: we are
given a base field F and a functor A : FieldsF → Sets from the category of fields
containing F , where the morphisms are F-algebra homomorphisms, to the category
of sets. Typically, A(K) is the set of K-isomorphism classes of some objects (like
quadratic forms) that allow scalar extension. An invariant of A with values in a
functor H : FieldsF → Sets is a natural transformation of functors

e : A→ H.

Typically, H is in fact a functor to the category of abelian groups. If it is a Ga-
lois cohomology functor H(K) = Hd(K,M) for some discrete Galois module M,
the invariant is called a cohomological invariant of degree d. For examples and
background information, we refer to Serre’s contribution to the monograph [16]. In
particular, cohomological invariants of quadratic forms are determined in [16, §17]:
they are generated by the so-called Stiefel–Whitney invariants. (The invariants e1
and e2 above can be computed in terms of Stiefel–Whitney classes, but not ei for
i≥ 3, see [31, p. 135, p. 367].)

In the present notes, we consider the case where A(F) is the set of isomorphism
classes of central simple F-algebras with involution, as explained in the next sec-
tion. Our aim is not to describe the collection of all cohomological invariants of A,

2 For d ≥ 3, the element ed(q1−q2) is defined only if ed−1(q1−q2) = 0.
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but rather to define a sequence of invariants e1, e2, . . . , each of which is defined on
the subfunctor of A on which the preceding invariant vanishes, just as in the case of
quadratic forms. Invariants of degree 2 are essentially Brauer classes of the Tits al-
gebras that arise in the representation theory of linear algebraic groups [51]. Indeed,
central simple algebras with involution define torsors under adjoint classical groups
(see §2), and our approach via central isogenies owes much to Tits’s discussion of
what he calls the β -invariant in [51], [52].

From the Bayer-Fluckiger–Parimala proof of Serre’s conjecture II for classical
groups [2] it follows that the invariants of degree 1 and 2 are sufficient to classify
involutions over a field of cohomological dimension 1 or 2. We shall not address
this topic here, and refer to [34] or [7] for this classification. Below, we aim at clas-
sification results of a different kind, restricting the dimension of the algebra rather
than the cohomological dimension of the center, see Theorem 3.1 for a paradigmatic
case.

2 From quadratic forms to involutions

In these notes, an involution on a ring is an anti-automorphism of order 2. The
involution is said to be of the first kind if its restriction to the center is the identity;
otherwise this restriction is an automorphism of order 2 and the involution is said to
be of the second kind.

Every quadratic form q on an F-vector space V defines an involution adq on the
endomorphism algebra EndF V , as follows: letting b denote the bilinear polar form
of q, the adjoint involution adq : EndF V → EndF V is uniquely determined by the
property that

b
�
x, f (y)

�
= b(adq( f )(x),y) for all x, y ∈V and f ∈ EndF V .

Note that the involution is really adjoint to the bilinear form, not to the quadratic
form, hence we also use the notation adb for adq. Since every F-automorphism of
EndF V is inner, it is easy to check that every F-linear involution on EndF V is ad-
joint to a nonsingular bilinear form that is either symmetric or skew-symmetric.
There are therefore two types of involutions of the first kind on EndF V , which can
be distinguished by the dimension of their space of symmetric elements: the orthog-
onal involutions are adjoint to quadratic forms (or symmetric bilinear forms), and
the symplectic involutions are adjoint to skew-symmetric bilinear forms. The invo-
lutions actually determine up to a scalar factor the form to which they are adjoint,
so mapping each nonsingular symmetric or skew-symmetric form b to the adjoint
involution adb defines bijections

nonsingular symmetric
bilinear forms on V up
to a scalar factor

←→ orthogonal involutions
on EndF V
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and

nonsingular skew-symmetric
bilinear forms on V up to a
scalar factor

←→ symplectic involutions
on EndF V

Central simple F-algebras are twisted forms (in the sense of Galois cohomology)
of endomorphism algebras; therefore, one may also distinguish two types of invo-
lutions of the first kind on a central simple F-algebra A: an involution σ : A → A
is called orthogonal (resp. symplectic) if for any splitting field K and under any K-
isomorphism A⊗F K � EndK V , the involution σ⊗ IdK obtained by scalar extension
is adjoint to a nonsingular symmetric (resp. skew-symmetric) bilinear form. Note
that symplectic involutions exist only on central simple algebras of even degree,
since every skew-symmetric bilinear form on an odd-dimensional vector space is
singular.

Involutions on a central simple algebra can also be obtained by adjunction, as in
the split case: if we fix a representation A = EndD V where D is a central division
F-algebra Brauer-equivalent to A and V is a (right) D-vector space, and choose an
involution of the first kind θ on D, then every involution of the first kind on A is
adjoint to a nonsingular hermitian or skew-hermitian form on V with respect to θ ,
and this hermitian form is uniquely determined up to a factor in F×.

The correspondence between involutions of the first kind and bilinear forms can
also be described in terms of the corresponding automorphism groups. Recall that
the orthogonal group On is the group of isometries of the standard form �1, . . . ,1�
of dimension n:

On(F) = Aut(�1, . . . ,1�).

Let H1(F,On) denote the nonabelian Galois cohomology set

H1(F,On) = H1�Gal(Fs/F),On(Fs)
�
.

The usual technique of nonabelian Galois cohomology (see [47, Ch. III, §1] or [28,
(29.28)]) yields a canonical bijection

isometry classes of quadratic
forms of dimension n over F

←→ H1(F,On). (2.1)

This bijection maps the isometry class of the standard form to the distinguished
element in H1(F,On).

The transpose involution t on Mn(F) = EndF Fn is adjoint to the standard form;
its automorphism group consists of the inner automorphisms Int(g) such that

Int(g)◦ t = t ◦ Int(g).

This condition amounts to Int(gtg) = IdV , hence to gtg ∈ F×; it defines the group
GOn(F) of similitudes of the standard form,
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GOn(F) = {g ∈ GLn(F) | gtg ∈ F×}.

The automorphisms of the transpose involution are the Int(g) with g ∈ GOn(F),
hence

Aut(t) = PGOn(F) := GOn(F)/F×.

Again, Galois cohomology yields a bijection (see [28, §29.F])

isomorphism classes of orthogonal
involutions on central simple alge-
bras of degree n

←→ H1(F,PGOn). (2.2)

Under this bijection, the isomorphism class of the transpose involution corre-
sponds to the distinguished element of H1(F,PGOn). The canonical map On(Fs)→
PGOn(Fs) yields a map H1(F,On)→ H1(F,PGOn). Under the bijections (2.1) and
(2.2) above, this map carries the isometry class of any quadratic form q of dimen-
sion n to the isomorphism class of the adjoint involution adq on the split algebra of
degree n.

In view of the close relationship between quadratic forms and (orthogonal) invo-
lutions, it may be expected that invariants for quadratic forms have counterparts for
involutions. There is however a significant difference to keep in mind: in contrast
with quadratic forms, there is no3 direct sum of involutions. Therefore, the problem
of deciding whether two involutions are isomorphic cannot be readily reduced to the
problem of deciding whether an involution is hyperbolic (i.e., adjoint to a hyperbolic
hermitian or skew-hermitian form).

In the next sections, we successively discuss orthogonal involutions, involutions
of the second kind (also called unitary involutions), and symplectic involutions. In
each case, some invariants with striking common features are defined.

3 Orthogonal involutions

Any involution of the first kind on a central simple algebra A defines an isomorphism
between A and its opposite algebra, hence 2[A] = 0 in the Brauer group. Therefore, A
is split if its degree is odd, and in this case every involution is orthogonal and adjoint
to a quadratic form q. Upon scaling, q can be assumed to have trivial discriminant;
it is then uniquely determined. (These observations also follow from the equality
PGOn = On for n odd.) Thus, the case of involutions on central simple algebras of
odd degree immediately reduces to the case of quadratic forms; we shall not discuss
it further.

In this section, we consider orthogonal involutions on central simple algebras of
even degree. We first review in Subsections 3.1 and 3.2 the cases where the algebra
has Schur index 1 or 2. A collection of invariants ei can then be defined for all i. In

3 More exactly, direct sums of involutions are defined only with some additional data: see [11].
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the following subsections, we successively discuss invariants e1, e2, and e3 without
restriction on the index of the algebra.

3.1 The split case

Just as for involutions on central simple algebras of odd degree, the case of orthog-
onal involutions on split central simple algebras of even degree reduces to the case
of quadratic forms. Note that if q ∈ IdF for some d ≥ 1, then for any λ ∈ F× we
have

q≡ λq mod Id+1F,

hence ed(q) = ed(λq). Since ed only depends on the similarity class of q, we may
consider it as attached to the isomorphism class of the adjoint involution and set

ed(adq) := ed(q) for q ∈ IdF .

We thus have a collection of invariants (ed)d≥1 of orthogonal involutions on split
central simple algebras of even degree. For a given involution σ , the invariant ed(σ)
is defined if and only if all the previous invariants e1(σ), . . . , ed−1(σ) are defined
and vanish.

The following theorem easily follows from corresponding results for quadratic
forms. It provides us with a benchmark against which to compare the invariants we
aim to define in the non-split case.

Theorem 3.1. Let σ be an orthogonal involution on a split central simple algebra
A of even degree. Let also d be an arbitrary integer, d ≥ 1.

Hyperbolicity: If degA < 2d+1, we have ei(σ) = 0 for all i = 1, . . . , d if and only
if σ is hyperbolic.

Decomposition: If degA = 2d+1, we have ei(σ) = 0 for all i = 1, . . . , d if and
only if (A,σ) decomposes into a tensor product of quaternion
algebras with involution:

(A,σ) = (Q1,σ1)⊗F · · ·⊗F (Qd+1,σd+1).

Classification: If degA = 2d, orthogonal involutions on A with ei = 0 for i = 1,
. . . , d−1 are classified by their ed-invariant.

Proof. Let σ = adq, hence dimq = degA. We have ei(σ) = 0 for i = 1, . . . , d if
and only if q ∈ Id+1F , hence the hyperbolicity criterion readily follows from the
Arason–Pfister Hauptsatz. If degA = 2d+1 and ei(σ) = 0 for i = 1, . . . , d, then q is
a multiple of a (d + 1)-fold Pfister form (see [31, Theorem X.5.6]). If (V1,q1), . . . ,
(Vd+1,qd+1) are 2-dimensional quadratic spaces such that q� q1⊗ · · ·⊗qd+1, then

(A,σ)� (EndF V1,adq1)⊗F · · ·⊗F (EndF Vd+1,adqd+1).
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The right side is a tensor product of (split) quaternion algebras with (orthogonal)
involution. Conversely, if (A,σ) is a tensor product of quaternion algebras with
involution, the solution of the Pfister Factor Conjecture by Becher [5] shows that q
is a multiple of some (d +1)-fold Pfister form, hence ei(q) = 0 for i = 1, . . . , d.

Now suppose degA = 2d and σ = adq, σ � = adq� are orthogonal involutions on
A with ei(σ) = ei(σ �) for i = 1, . . . , d − 1, i.e., q, q� ∈ IdF . Let λ ∈ F× (resp.
λ � ∈ F×) be a represented value of q (resp. q�). As observed at the beginning of this
subsection, we have

ed(σ) = ed(q) = ed(λq) and ed(σ �) = ed(q�) = ed(λ �q�).

If ed(σ) = ed(σ �), then λq−λ �q� ∈ Id+1F . But since λq and λ �q� both represent 1,
the dimension of the anisotropic kernel of λq−λ �q� is bounded as follows:

dim(λq−λ �q�)an ≤ 2degA−2 < 2d+1.

By the Arason–Pfister Hauptsatz it follows that λq � λ �q�, hence σ and σ � are
isomorphic. ��
Remark 3.2. A result of Jacobson [23, Theorem 3.12] (see also [35]) on quadratic
forms of dimension 6 with trivial discriminant also shows that orthogonal involu-
tions with e1 = 0 on a split central simple algebra of degree 6 are classified by their
e2-invariant; see also Theorem 3.10 below. As pointed out by Becher, the classifica-
tion result in Theorem 3.1 may hold under much less stringent conditions on degA;
it might be interesting to determine exactly in which degrees orthogonal involutions
with ei = 0 for i = 1, . . . , d−1 are classified by their ed-invariant.

3.2 The case of index 2

In this subsection, we assume the Schur index indA is 2, i.e., A is Brauer-equivalent
to some quaternion division F-algebra Q. Then A can be represented as

A = EndQ V

for some right Q-vector space V of dimension dimQ V = 1
2 degA, and every orthogo-

nal involution σ on A is adjoint to some skew-hermitian form h on V with respect to
the conjugation involution on Q. The form h is uniquely determined up to a factor in
F×. Berhuy defined in [6] a complete system of invariants for skew-hermitian forms
over Q, which readily yield invariants of orthogonal involutions on A since these in-
variants are constant on similarity classes of skew-hermitian forms. The idea is to
extend scalars to the function field F(X) of the Severi–Brauer variety X of Q (this
variety is a projective conic) and to use the fact that the unramified cohomology of
F(X) comes from F .

More precisely, if σ is an orthogonal involution on A, then after scalar extension
to F(X) the involution σF(X) is an orthogonal involution on the split algebra AF(X).
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If ei(σF(X)) is defined for some i≥ 1, then it actually lies in the unramified subgroup
Hi

nr
�
F(X)

�
, and Berhuy shows in [6, Proposition 9] that there is a unique element

ei(σ) ∈
�

H1(F) if i = 1,
Hi(F,µ⊗i−1

4 )/[A] ·Hi−2(F) if i≥ 2

such that
ei(σ)F(X) = ei(σF(X)).

Note that for i ≥ 2 the group [A] ·Hi−2(F) can be identified with the kernel of the
scalar extension map Hi(F,µ⊗i−1

4 )→Hi(F(X),µ⊗i−1
4 ), as shown in the proof of [6,

Proposition 9].

Theorem 3.3. Let σ be an orthogonal involution on a central simple algebra A of
index 2, and let d be an arbitrary integer, d ≥ 1.

(1) If degA < 2d+1, we have ei(σ) = 0 for all i = 1, . . . , d if and only if σ is hyper-
bolic.

(2) If degA = 2d+1, we have ei(σ) = 0 for all i = 1, . . . , d if and only if (A,σ)
decomposes into a tensor product of quaternion algebras with involution:

(A,σ) = (Q1,σ1)⊗F · · ·⊗F (Qd+1,σd+1).

Proof. By definition of ei(σ), we have ei(σ) = 0 if and only if ei(σF(X)) = 0. The
hyperbolicity criterion (1) follows from the split case (Theorem 3.1) since Parimala–
Sridharan–Suresh [39] and Dejaiffe [12] have proved that σF(X) is hyperbolic if and
only if σ is hyperbolic. Likewise, in case (2) Theorem 3.1 shows that (A,σ)F(X)
decomposes into a tensor product of quaternion algebras with involution. By a the-
orem of Becher [5, Theorem 2] it follows that (A,σ) has a similar decomposition.
(Becher’s theorem also shows that the decomposition can be chosen in such a way
that Q1 = Q is the quaternion algebra Brauer-equivalent to A and Qi is split for
i≥ 2.) ��

I do not know whether the analogue of the classification result from Theorem 3.1
holds for algebras of index 2 (except for the cases of low degree discussed in The-
orems 3.6 and 3.10 below). The issue is whether skew-hermitian forms over Q are
similar when they are similar after scalar extension to F(X).

3.3 Discriminant

Let n be an even integer, n = 2m. A first invariant of orthogonal involutions on
central simple algebras of degree n arises from the fact that PGOn is not connected:
if g ∈GOn(F), say gtg = λ ∈ F×, then (detg)2 = λ n, hence detg = ±λ m. The map
g �→ λ m(detg)−1 ∈ µ2 yields a homomorphism δ : PGOn(F)→ µ2, hence an exact
sequence of algebraic groups
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1→ PGO+
n → PGOn

δ−→ µ2 → 1. (3.4)

We thus get a map

δ 1 : H1(F,PGOn)→ H1(F) = F×/F×2, (3.5)

which defines the determinant of orthogonal involutions on central simple algebras
of degree n. The discriminant is the determinant with a change of sign if m is odd:
for σ an orthogonal involution on a central simple algebra of degree n, we set

e1(σ) = discσ = (−1)n/2 detσ ∈ F×/F×2.

Alternatively, the discriminant can be directly obtained by substituting in the discus-
sion above the group PGO(mH) of the hyperbolic space of dimension n for PGOn.
Since the discriminant is more useful than the determinant for our purposes, we
change notation and let henceforth

PGO2m = PGO(mH).

The determinant and discriminant of quadratic forms can be defined similarly
from the exact sequence

1→ O+
n → On

δ−→ µ2 → 1.

Therefore, for any quadratic form q of dimension n,

detadq = detq and discadq = discq.

It follows that the e1-invariant defined above coincides with the e1-invariant defined
in Subsections 3.1 and 3.2 when indA≤ 2.

In [29], Knus–Parimala–Sridharan give a nice direct definition of the determi-
nant: if σ is an orthogonal involution on a central simple algebra A of even degree,
they show that all the skew-symmetric units have the same reduced norm up to
squares and that

detσ = NrdA(a)F×2 for any a ∈ A× such that σ(a) =−a.

In a slightly different form, this formula already appears in Tits’s seminal work [50,
§2.6].

This first invariant is of course rather weak. Yet, we have the following result:

Theorem 3.6. Let σ be an orthogonal involution on a central simple algebra A.

(a) If degA < 4 (i.e., A is a quaternion algebra), σ is hyperbolic if and only if
e1(σ) = 0.

(b) If degA = 4, then e1(σ) = 0 if and only if A decomposes as a tensor product of
quaternion algebras with involution:
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(A,σ) = (Q1,σ1)⊗ (Q2,σ2). (3.7)

(c) If degA = 2, orthogonal involutions on A are classified by their e1-invariant.

Part (b) was first observed by Knus–Parimala–Sridharan in [29]. Note that in
any decomposition of the form (3.7), the involutions σ1 and σ2 are of the same
type (orthogonal or symplectic) since σ is orthogonal. However, when there is any
decomposition of the type (3.7), there is one where σ1 and σ2 are the quaternion
conjugations (which are the unique symplectic involutions on Q1 and Q2). The sub-
algebras Q1 and Q2 are then uniquely determined by σ , see [28, p. 215] (or (3.11)
below).

3.4 Clifford algebras

An analogue of the even Clifford algebra of quadratic forms has been defined for
orthogonal involutions by Jacobson [22] (by Galois descent) and by Tits [50] (ra-
tionally), see also [28, §8]. For σ an orthogonal involution on a central simple F-
algebra A of degree n = 2m, the Clifford algebra C(A,σ) has dimension 2n−1 and its
center Z(A,σ) is isomorphic to F(

√
discσ) if discσ �= 1, to F×F if discσ = 1. It

is simple if Z(A,σ) is a field and is a direct product of two central simple F-algebras
C+(A,σ), C−(A,σ) of degree 2m−1 if Z(A,σ) � F ×F . For any quadratic form q
on an F-vector space V of even dimension we have

C(EndF V,adq) = C0(q).

If discq = 1, then C+(EndF V,adq) and C−(EndF V,adq) are isomorphic and Brauer-
equivalent to the full Clifford algebra C(q).

The construction of the Clifford algebra C(A,σ) is functorial, and may be used
to obtain a second invariant of orthogonal involutions of even degree and trivial dis-
criminant in the same spirit as the Witt invariant of quadratic forms, as we proceed
to show.

The set of isomorphism classes of orthogonal involutions of trivial discriminant
on central simple algebras of even degree n = 2m corresponds under the bijec-
tion (2.2) to the kernel of the map δ 1 of (3.5), which is the image of H1(F,PGO+

n )
in H1(F,PGOn). These involutions can therefore be classified by H1(F,PGO+

n ), but
the map H1(F,PGO+

n ) → H1(F,PGOn) is generally not injective: a given central
simple F-algebra A of degree n with an orthogonal involution σ of trivial discrimi-
nant can be the image of two different elements in H1(F,PGO+

n ), depending on the
choice of an F-algebra isomorphism ϕ : Z(A,σ) ∼−→ F×F . We thus have a bijection

isomorphism classes of triples
(A,σ ,ϕ) as above ←→ H1(F,PGO+

n ).
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If ϕ , ϕ � : Z(A,σ) ∼−→ F×F are the two different isomorphisms, the triples (A,σ ,ϕ)
and (A,σ ,ϕ �) are isomorphic if and only if (A,σ) has an automorphism whose
induced action on C(A,σ) swaps the two components or, equivalently, if A contains
an improper similitude, i.e., an element g such that σ(g)g ∈ F× and NrdA(g) =
−(σ(g)g)n/2. This readily follows from the exact sequence below, which is a part
of the cohomology sequence derived from a twisted version of (3.4):

PGO(A,σ) δ−→ µ2 → H1(F,PGO+(A,σ))→ H1(F,PGO(A,σ)) δ 1
−→ H1(F).

In particular, if A is split, then the triples (A,σ ,ϕ) and (A,σ ,ϕ �) are isomorphic.
The group PGO+

n has a simply connected cover Spinn, and we have an exact
sequence of algebraic groups

1→ µ → Spinn → PGO+
n → 1, (3.8)

where µ is the center of Spinn,

µ =

�
µ4 if n≡ 2 mod 4,

µ2×µ2 if n≡ 0 mod 4.

The cohomology sequence associated to (3.8) yields a map

∂ : H1(F,PGO+
n )→ H2(F,µ),

which can be viewed as a cohomological invariant of degree 2 of algebras with
orthogonal involution of trivial discriminant—except that one has to factor out the
effect of changing (A,σ ,ϕ) into (A,σ ,ϕ �). The images under ∂ of the elements in
H1(F,PGO+

n ) corresponding to (A,σ ,ϕ) and (A,σ ,ϕ �) are

[C+(A,σ)] and [C−(A,σ)] ∈ H2(F,µ4)⊂ Br(F) if n≡ 2 mod 4,

and, if n≡ 0 mod 4,

�
[C+(A,σ)], [C−(A,σ)]

�
and

�
[C−(A,σ)], [C+(A,σ)]

�
∈ H2(F)×H2(F).

When n≡ 2 mod 4 we have (see [28, (9.15), (9.16)])

2[C+(A,σ)] = 2[C−(A,σ)] = [A] and [C+(A,σ)]+ [C−(A,σ)] = 0. (3.9)

When n≡ 0 mod 4 we have (see [28, (9.13), (9.14)])

2[C+(A,σ)] = 2[C−(A,σ)] = 0 and [C+(A,σ)]+ [C−(A,σ)] = [A].

Thus, in both cases we have

[C+(A,σ)]− [C−(A,σ)] = [A].
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Therefore, letting B2
A denote the subgroup of Br(F) generated by [A], i.e., B2

A =
{0, [A]} = [A] ·H0(F), we may set

e2(σ) = [C+(A,σ)]+B2
A = [C−(A,σ)]+B2

A ∈ Br(F)/B2
A.

If q is a quadratic form of trivial discriminant on an even-dimensional vector space
V , we have B2

EndV = {0} and

e2(adq) = e2(q) ∈ H2(F).

Therefore, the e2-invariant defined above coincides with the e2-invariant of Subsec-
tions 3.1 and 3.2 when indA≤ 2.

Theorem 3.10. Let σ be an orthogonal involution on a central simple F-algebra A
of even degree.

(a) If degA < 8, then e1(σ) = e2(σ) = 0 if and only if σ is hyperbolic.
(b) If degA = 8, then e1(σ) = e2(σ) = 0 if and only if (A,σ) has a decomposition of

the form
(A,σ) = (Q1,σ1)⊗F (Q2,σ2)⊗F (Q3,σ3)

for some quaternion F-algebras Q1, Q2, Q3.
(c) If degA = 4 or 6, orthogonal involutions on A with e1 = 0 are classified by their

e2-invariant.
(d) If degA≡ 2 mod 4, then (A,σ)� (EndF V,adq) for some quadratic form q∈ I3F

if and only if e2(σ) = 0.

Sketch of proof. If degA = 4, the two components C±(A,σ) of the Clifford algebra
are quaternion algebras. Letting σ± denote the quaternion conjugation on C±(A,σ),
we have a decomposition

(A,σ)� (C+(A,σ),σ+)⊗F (C−(A,σ),σ−), (3.11)

which arises from the coincidence of Dynkin diagrams D2 = A1 × A1, see [28,
(15.12)]. Since e2(σ) determines the pair {C+(A,σ),C−(A,σ)}, it follows that or-
thogonal involutions of trivial discriminant on A are classified by their e2-invariant.
If C+(A,σ) or C−(A,σ) is split, then the corresponding involution σ+ or σ− is hy-
perbolic, hence σ also is hyperbolic.

If degA = 6, then C+(A,σ) and C−(A,σ) are central simple F-algebras of
degree 4. The exterior power construction λ 2 yields a central simple F-algebra
λ 2C+(A,σ) (resp. λ 2C−(A,σ)) of degree 6 endowed with a canonical involution
γ+ (resp. γ−). As a consequence of the coincidence of Dynkin diagrams D3 = A3
(see [28, (15.32)]), we have isomorphisms

(A,σ)� (λ 2C+(A,σ),γ+)� (λ 2C−(A,σ),γ−).

Since e2(σ) determines the pair {[C+(A,σ)], [C−(A,σ)]}, it follows that orthogonal
involutions of trivial discriminant on A are classified by their e2-invariant.
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Now, suppose degA ≡ 2 mod 4. If C+(A,σ) is split, it follows from (3.9) that
[A] = 0. Similarly, if [C+(A,σ)] = [A], then since (3.9) shows that 2[C+(A,σ)] =
[A] it follows that [C+(A,σ)] = [A] = 0. Therefore, in each case we have (A,σ) �
(EndF V,adq) for some quadratic form q, and

e2(q) = e2(σ) = 0,

hence q ∈ I3F . In particular, if degA = 6 we have dimq = 6, hence q is hyperbolic.
Finally, (b) is a consequence of triality (see [28, §42.B]), which shows that for

the canonical involutions σ+, σ− on C+(A,σ), C−(A,σ) we have

C
�
C+(A,σ),σ+)� (A,σ)× (C−(A,σ),σ−).

If C+(A,σ) is split, then (A,σ) is isomorphic to one of the components of the even
Clifford algebra of a quadratic form of dimension 8, from which the existence of a
decomposition easily follows. ��

In view of part (d) of Theorem 3.10, the case of orthogonal involutions with
e1 = e2 = 0 on central simple algebras of degree 2 (mod 4) is reduced to the split
case. We thus have invariants ei as in Subsection 3.1, and Theorem 3.1 applies.
Therefore, in the rest of this section, we only consider central simple algebras of
degree 0 (mod 4).

3.5 Higher invariants

The hope to define further invariants of orthogonal involutions on the model of the
Arason e3-invariant of quadratic forms was dashed by an example of Quéguiner-
Mathieu [43] or [4, §3.4]. The following variation on Quéguiner-Mathieu’s example
was suggested by Becher: consider quaternion algebras with orthogonal involutions
(Q1,σ1), (Q2,σ2), (Q3,σ3) over an arbitrary field F , and let

(A,σ) = (Q1,σ1)⊗F (Q2,σ2)⊗F (Q3,σ3).

Suppose A is division. We have discσ = 1 and, as observed in Theorem 3.10,
e2(σ) = 0. Suppose we could find a functorial invariant e3(σ) in some quotient
H3(F)/E(A) of H3(F), and let

e3(σ) = ∑
i
(ai) · (bi) · (ci)+EA for some ai, bi, ci ∈ F×.

Let K be the function field of the product of the quadrics

x2
0−aix2

1−bix2
2 +aibix2

3− cix2
4 = 0.

We have e3(σ)K = 0, hence e3(σK) = 0 by functoriality. Now, a theorem of Merkur-
jev on the index reduction of central simple algebras over the function field of
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quadrics [13, Corollary 30.10] shows that AK is a division algebra. After scalar ex-
tension to its generic splitting field L, which is the field of functions on the Severi–
Brauer variety of AK , we have

(AK ,σK)L � (EndL V,adqσ )

for some 8-dimensional quadratic form qσ over L, which must be anisotropic by a
theorem of Karpenko [26]. But since e1(σK) = e2(σK) = e3(σK) = 0, functoriality
yields ei(qσ ) = 0 for i = 1, 2, 3, hence qσ is hyperbolic: this is a contradiction.

The same idea can be used more generally to prove that there is no functorial
invariant e3(σ) in a quotient of a cohomology group H3(F,M) of any torsion module
M, because F has an extension K of cohomological dimension 2 such that AK is a
division algebra, see [37, Proof of Theorem 4].

On the other hand, Rost defined for all simply connected algebraic groups a co-
homological invariant of degree 3 that generalizes the Arason invariant in the fol-
lowing sense: the Rost invariant of any element ξ ∈ H1(F,Spinn) is the Arason
invariant of the quadratic form of dimension n corresponding to the image of ξ in
H1(F,On). The Rost invariant of Spin groups can be used to define a relative invari-
ant of orthogonal involutions, as was shown by Garibaldi [14]. (Bayer-Fluckiger and
Parimala used a similar technique to obtain a relative invariant of hermitian forms
in [3].) We next describe his procedure.

Suppose σ0 is a given orthogonal involution with e1(σ0) = e2(σ0) = 0 on a cen-
tral simple algebra A of degree 0 (mod 4). We consider the twisted version of (3.8)

1→ µ2×µ2 → Spin(A,σ0)→ PGO+(A,σ0)→ 1

and the associated cohomology sequence

H1(F)×H1(F)→H1�F,Spin(A,σ0)
�
→H1�F,PGO+(A,σ0)

� ∂−→H2(F)×H2(F).
(3.12)

Let σ be another involution on A with e1(σ) = e2(σ) = 0. As observed in Sub-
section 3.4 (in the non-twisted case), the cohomology class in H1�F,PGO(A,σ0)

�

associated with (A,σ) lifts in two ways to H1�F,PGO+(A,σ0)
�
, to cohomology

classes η , η � corresponding to triples (A,σ ,ϕ), (A,σ ,ϕ �), where ϕ and ϕ � are the
two F-algebra isomorphisms Z(A,σ) ∼−→ Z(A,σ0) (� F×F). The images of η , η �
under ∂ are the two components of C(A,σ)⊗Z(A,σ0)C(A,σ0), where the tensor prod-
uct is taken with respect to the isomorphism ϕ or ϕ �; we thus get for ∂ (η) and ∂ (η �)
the pairs �

[C+(A,σ)⊗F C+(A,σ0)], [C−(A,σ)⊗F C−(A,σ0)]
�

and �
[C−(A,σ)⊗F C+(A,σ0)], [C+(A,σ)⊗F C−(A,σ0)]

�
.

Since e2(σ) = 0, one of the components C±(A,σ) is split and the other is Brauer-
equivalent to A. The same holds for σ0 since e2(σ0) = 0; therefore, we have ∂ (η) =
0 or ∂ (η �) = 0, and at least one of η , η � lifts to some ξ ∈ H1�F,Spin(A,σ0)

�
. The
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analysis of the exact sequence (3.12) given in [14] shows how the Rost invariant of
ξ varies when a different lift ξ � is chosen: the difference of Rost invariants R(ξ )−
R(ξ �) lies in the subgroup B3

A ⊂ H3(F,µ⊗2
4 ) image under the injection H3(F) �→

H3(F,µ⊗2
4 ) of the subgroup

[A] ·H1(F) = {[A] · (λ ) | λ ∈ F×}⊂ H3(F).

Therefore, a relative e3-invariant of involutions with e1 = e2 = 0 on A is defined by

e3(σ/σ0) = R(ξ )+B3
A ∈ H3(F,µ⊗2

4 )/B3
A.

In the particular case where the Schur index indA divides 1
2 degA, i.e., when

A � M2(A�) for some central simple algebra A�, we may choose for σ0 a hyper-
bolic involution and thus consider e3(σ/σ0) as an absolute invariant e3(σ). When
(A,σ)� (EndF V,adq) we have B3

A = {0} and

e3(adq) = e3(q)

in view of the relation between the Rost and the Arason invariants. Therefore, the
e3-invariant defined above coincides with the e3-invariant of Subsections 3.1 and
3.2 when indA≤ 2.

In the case where degA = 8 (and indA divides 4), an explicit computation of the
e3-invariant was recently obtained by Quéguiner-Mathieu and Tignol: if e1(σ) =
e2(σ) = 0, we may find a decomposition

(A,σ)� (M2(F),ad��λ ��)⊗F (D,θ)

for some λ ∈F×, some central simple F-algebra D of degree 4 and some orthogonal
involution θ on D such that the quaternion F-algebra (discθ ,λ )F is split: see [5] if
indA = 1 or 2, and [36] if indA = 4. The Clifford algebra C(D,θ) is a quaternion
algebra over a quadratic étale F-algebra Z, which is isomorphic to F(

√
discθ) if

discθ �= 1 and to F×F if discθ = 1. Therefore, we may find an element � ∈ Z such
that NZ/F(�) = λ . The e3-invariant is

e3(σ) = corZ/F
�
(�) · [C(D,θ)]

�
+B3

A ∈ H3(F)/B3
A,

as can be seen by extending scalars to the function field FA of the Severi-Brauer
variety of A, since the map H3(F)/B3

A → H3(FA) induced by scalar extension from
F to FA is injective. (Note that in this special case where degA = 8 and one of the
components of the Clifford algebra is split, the Rost invariant has exponent 2, see
[16, p. 146].)

Theorem 3.13. Let σ be an orthogonal involution on a central simple algebra A of
even degree with indA | 1

2 degA. If degA < 16, the involution σ is hyperbolic if and
only if e1(σ) = e2(σ) = e3(σ) = 0.

Proof. The “only if” part is clear. We may thus assume ei(σ) = 0 for i = 1, 2, 3,
and we have to show that σ is hyperbolic. If degA < 8, the theorem follows from
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Theorem 3.10(a). If A is split (which, by Theorem 3.10(d), occurs in particular when
degA≡ 2 (mod 4)), the theorem follows from Theorem 3.1. Likewise, the theorem
follows from Theorem 3.3 if indA = 2. Therefore, it suffices to consider the case
where degA = 8 and indA = 4. Let FA be the function field of the Severi–Brauer
variety of A. Since A splits over FA, and since the theorem holds in the split case,
(A,σ)FA is hyperbolic. It follows that σ is hyperbolic by a theorem of Sivatski [48,
Proposition 3] (based on a result of Laghribi [30, Théorème 4]). ��

Theorem 3.13 yields the expected hyperbolicity criterion for degA < 16, un-
der the hypothesis that indA | 1

2 degA (which is necessary for σ to be hyperbolic).
Whether the decomposition criterion holds when degA = 16 is an open question,
which is addressed by Garibaldi in [14]. By contrast, Quéguiner-Mathieu and Tignol
have used an example of Hoffmann [21] and a result of Sivatski [48, Proposition 4]
to construct nonisomorphic orthogonal involutions σ , σ � on a central simple algebra
A of degree 8 and index 4 such that

e1(σ) = e1(σ �) = e2(σ) = e2(σ �) = 0 and e3(σ) = e3(σ �),

hence the classification criterion does not hold in degree 8. If σ0 is a fixed orthogonal
involution with e1(σ0) = e2(σ0) = 0 on a central simple algebra A of degree 8 and
index 4, orthogonal involutions σ on A with e1(σ) = e2(σ) = 0 and e3(σ) = e3(σ0)
are classified by a relative invariant

e4(σ/σ0) ∈ H4(F)/B4
σ0

where
B4

σ0
= {(a) · e3(σ0) | a ∈ F×, (a) · [A] = 0}.

In [14], Garibaldi shows how to use the Rost invariant of groups of type E8 to
obtain an absolute e3-invariant for orthogonal involutions on central simple algebras
of degree 16.

4 Unitary involutions

Let K = F(
√

a) be a quadratic field extension of F with nontrivial automorphism
ι . For each integer n ≥ 1, let hn be the n-dimensional hermitian form over K with
maximal Witt index, defined for x = (x1, . . . ,xn) and y = (y1, . . . ,yn) ∈ Kn by

hn(x,y) = ι(x1)y1− ι(x2)y2 + · · ·− (−1)nι(xn)yn

= ι(x) ·dn · yt ,

where dn is the diagonal matrix of order n,

dn := diag(1,−1, . . . ,−(−1)n).



74 Jean-Pierre Tignol

Let also τ : Mn(K)→Mn(K) be the unitary involution defined by

τ(m) = d−1
n · ι(m)t ·dn for m ∈Mn(K).

The unitary group Un,K is the group of K-automorphisms of hn,

Un,K(F) := AutK(hn) = {u ∈ GLn(K) | τ(u) = u−1}.

As in the orthogonal case we may consider the group of similitudes

GUn,K(F) := {g ∈ GLn(K) | τ(g)g ∈ F×}

and the corresponding projective group

PGUn,K(F) := AutK(Mn(K),τ) = GUn,K/K×.

Galois cohomology (see [28, §29.D]) yields a bijection

K-isomorphism classes of central
simple K-algebras of degree n
with unitary involution

←→ H1(F,PGUn,K).

More precisely, the set on the left consists of the isomorphism classes of triples
(B,τ,ϕ) where B is a central simple algebra of degree n over a quadratic extension
Z of F , τ is an involution on B that restricts to the nontrivial F-automorphism of Z,
and ϕ : Z ∼−→ K is an F-algebra isomorphism.

4.1 The (quasi-) split case

When B is split, the study of unitary involutions reduces to the quadratic form case
by an observation due to Jacobson: every hermitian form h : V ×V → K on a K-
vector space V yields a quadratic form qh : V → F on V (viewed as an F-vector
space) by

qh(x) = h(x,x) for x ∈V .

The quadratic form uniquely determines h because it is easily verified that if α =√
a ∈ K satisfies ι(α) =−α , then

h(x,y) =
1
2
�
qh(x+y)−qh(x)−qh(y)+qh(x+yα)α−1−qh(x)α−1−qh(yα)α−1�.

Therefore, the invariants of h and qh are the same, and the invariants of adh are
the invariants of the similarity class of qh (which is always even-dimensional since
dimF V = 2dimK V ). If ei(qh) is defined for some i, we set

ei(adh) = ei(qh) ∈ Hi(F).
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The correspondence between the involutions adjoint to h and to qh is made ex-
plicit in the following lemma (which is a very special case of a result of Garibaldi–
Quéguiner-Mathieu [18, Prop. 1.9]):

Lemma 4.1. Let B be a split central simple algebra over K = F(
√

a) and let τ be a
unitary involution on B. There is a split central simple F-algebra A of degree degA =
2degB and an orthogonal involution σ on A such that (B,τ) embeds in (A,σ):

(B,τ) �→ (A,σ).

For a given embedding B ⊂ A, the orthogonal involution σ is uniquely determined
by the condition that σ |B = τ . For any integer i, the invariant ei(τ) is defined if and
only if ei(σ) is defined, and

ei(τ) = ei(σ).

Proof. Let B = EndK V for some K-vector space V , and τ = adh for some hermitian
form h on V . Define A = EndF V , so there is a canonical embedding B �→ A, and
let σ = adqh , the orthogonal involution on A adjoint to the quadratic form qh. It is
readily verified that σ |B = τ . If σ � is another orthogonal involution on A such that
σ �|B = τ , then σ � = Int(s) ◦σ for some s ∈ A× such that σ(s) = s and sx = xs for
all x ∈ B. Since s centralizes B, we must have s ∈ K×; the condition σ(s) = s then
amounts to ι(s) = s, hence s ∈ F× and therefore σ � = σ . By definition of ei(τ), we
have

ei(τ) = ei(qh) = ei(σ).

��

If (v1, . . . ,vn) is a K-base of V where the hermitian form h is diagonal,

h = �a1, . . . ,an�K ,

then a1, . . . , an ∈ F× and (v1,v1α, . . . ,vn,vnα) is an orthogonal F-base of V where
the quadratic form qh is

qh = �1,−a�⊗�a1, . . . ,an�.

Therefore,

e1(adh) =

�
(a) if n is odd,
0 if n is even,

and, when n is even,

e2(adh) = (a,(−1)n/2a1 . . .an)F ∈ H2(F).

The discriminant disch is defined as the image of (−1)n/2a1 . . .an in the factor group
F×/NK/F(K×); the preceding equation may thus be rewritten as

e2(adh) = (a,disch)F .
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To discuss decompositions into tensor products of quaternion algebras, it is use-
ful to keep in mind the following theorem of Albert: if τ is a unitary involution on a
quaternion algebra Q over K = F(

√
a), then there is a unique quaternion F-algebra

Q� with conjugation involution γ such that

(Q,τ) = (Q�,γ)⊗F (K, ι)

where ι is the nontrivial F-automorphism of K. (The quaternion algebra Q� is in
fact the discriminant algebra D(Q,τ): see the proof of Theorem 4.5 below.) There-
fore, every tensor product of quaternion K-algebras with unitary involution has an
alternative decomposition:

(Q1,τ1)⊗K · · ·⊗K (Qn,τn) = (Q�
1,γ1)⊗F · · ·⊗F (Q�

n,γn)⊗F (K, ι).

Theorem 4.2. Let τ be a unitary involution on a split central simple algebra B of
even degree over K = F(

√
a), and let d be an arbitrary integer, d ≥ 1.

(a) If degB < 2d, we have ei(τ) = 0 for i = 2, . . . , d if and only if τ is hyperbolic.
(b) If degB = 2d, we have ei(τ) = 0 for i = 2, . . . , d if and only if (B,τ) decomposes

into a tensor product of quaternion algebras with unitary involutions:

(B,τ) = (Q1,τ1)⊗K · · ·⊗K (Qd ,τd).

(c) If degB = 2d−1, unitary involutions on B with ei = 0 for i = 2, . . . , d− 1 are
classified by their ed-invariant.

Comparing with Theorem 3.1, note the shift in the degree of the algebra.

Proof. Let τ = adh, so ei(τ) = ei(qh) when defined. Note that dimqh = 2degB, so
in case (a) qh is hyperbolic if and only if qh ∈ Id+1F , and this condition is equivalent
to ei(qh) = 0 for i = 2, . . . , d. If degB = 2d and ei(τ) = 0 for i = 2, . . . , d, then qh
is a (d +1)-Pfister form of the type

qh = ��a,a1, . . . ,ad�� for some a1, . . . , ad ∈ F×,

hence
h = ��a1, . . . ,ad��K .

Therefore,

(B,τ) = (M2(F),ad��a1��)⊗F · · ·⊗F (M2(F),ad��ad��)⊗F (K, ι)
= (M2(K),ad��a1��K )⊗K · · ·⊗K (M2(K),ad��ad��K ).

Conversely, suppose there are quaternion F-algebras Q�
1, . . . , Q�

d with conjugation
involutions γ1, . . . , γd such that

(B,τ) = (Q�
1,γ1)⊗F · · ·⊗F (Q�

d ,γd)⊗F (K, ι).
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Since B is split, the product Q�
1⊗F · · ·⊗F Q�

d is split by K, so we may find b ∈ F×
such that

Q�
1⊗F · · ·⊗F Q�

d = (a,b)F in Br(F).

Embed K �→ (a,b)F and pick an involution θ on (a,b)F that restricts to ι on K and
that is orthogonal if d is even, symplectic if d is odd. (So, in the latter case θ is the
conjugation involution.) We then have an embedding

(B,τ) �→ (A,σ) := (Q�
1,γ1)⊗F · · ·⊗F (Q�

d ,γd)⊗F
�
(a,b)F ,θ

�
.

By Theorem 3.1 we have ei(σ) = 0 for i = 1, . . . , d, hence ei(τ) = 0 for i = 2, . . . ,
d by Lemma 4.1.

To prove (c), let B = EndK V with dimK V = 2d−1 and consider unitary involu-
tions τ = adh, τ � = adh� on B with ei = 0 for i = 2, . . . , d− 1. The corresponding
quadratic forms qh and qh� satisfy ei(qh) = ei(qh�) = 0 for i = 1, . . . , d− 1 hence
Theorem 3.1 shows that qh and qh� are similar if and only if ed(qh) = ed(qh�). There-
fore, τ and τ � are isomorphic if and only if ed(τ) = ed(τ �). ��

4.2 The discriminant algebra

Since the group PGUn,K is connected, the procedure that yields the discriminant of
orthogonal involutions in Subsection 3.3 does not apply here. The group PGUn,K
is not simply connected however, so we may obtain cohomological invariants of
degree 2 as in the orthogonal case. The simply connected cover of PGUn,K is the
special unitary group

SUn,K := {u ∈ Un,K | det(u) = 1}.

Its center is a twisted version of the group of n-th roots of unity

µn,K := {z ∈ K× | NK/F(z) = 1 = zn}.

Henceforth, we assume the characteristic of F does not divide n, so that µn,K is a
smooth algebraic group. Its group of rational points over Fs is isomorphic to the
group of n-th roots of unity in Fs, with a twisted Galois action that disappears after
scalar extension to K. From the exact sequence

1→ µn,K → SUn,K → PGUn,K → 1 (4.3)

we obtain a connecting map in cohomology:

∂ : H1(F,PGUn,K)→ H2(F,µn,K).

The features of this map are significantly different according to whether n is odd or
even.
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4.2.1 The Odd Degree Case

When n is odd, the scalar extension map

resK/F : H2(F,µn,K)→ H2(K,µn)

is injective, and identifies H2(F,µn,K) with the kernel of the corestriction map

corK/F : H2(K,µn)→ H2(F,µn),

see [28, (30.12)]. Comparing the exact sequence (4.3) with the corresponding exact
sequence after scalar extension to K, which is

1→ µn → SLn → PGLn → 1,

it is easy to see that the cohomology class in H1(F,PGUn,K) represented by an
algebra with involution (B,τ) is mapped by ∂ to the Brauer class [B] ∈ H2(K,µn).

4.2.2 The Even Degree Case

Let n = 2m. Besides the restriction map resK/F , we may also consider the map
defined by raising to the m-th power

m : H2(F,µn,K)→ H2(F,µ2).

The following description of H2(F,µn,K) is due to Colliot-Thélène–Gille–Parimala
[10, Proposition 2.10]:

Proposition 4.4. The map (resK/F ,m) : H2(F,µn,K) → H2(K,µn)× H2(F,µ2) is
injective. Its image is the group of pairs (ξ ,η) such that ξ m = resK/F(η) and
corK/F(ξ ) = 0.

Let (B,τ) be a central simple K-algebra of degree n with unitary involution, and
let ∆(B,τ) ∈ H2(F,µn,K) be the image under ∂ of the corresponding cohomology
class in H1(F,PGUn,K). As in the case where n is odd, we have

resK/F ∆(B,τ) = [B],

which is an obvious invariant that gives no information on the involution τ . The
other component of ∆(B,τ) under the map of Proposition 4.4 is more interesting;
let

e2(τ) = ∆(B,τ)m ∈ H2(F).

This cohomology class turns out to be the Brauer class of a central simple F-algebra
D(B,τ) of degree

�n
m
�

first considered by Tits [51, §6.3] and by Tamagawa [49].
When B = EndK V and τ = adh for some hermitian form h, the algebra D(B,τ) is
Brauer-equivalent to the quaternion algebra (a,disch)F . Therefore, D(B,τ) is called
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the discriminant algebra of (B,τ) in [28, §10], and the e2-invariant defined above
coincides with the e2-invariant of unitary involutions on split algebras defined in
Subsection 4.1.

Theorem 4.5. Let τ be a unitary involution on a central simple K-algebra B of even
degree.

(a) If degB = 2, then τ is hyperbolic if and only if e2(τ) = 0.
(b) If degB = 4, then e2(τ) = 0 if and only if there is a decomposition

(B,τ) = (B1,τ1)⊗K (B2,τ2)

for some subalgebras B1, B2 ⊂ B of degree 2.
(c) If degB = 2, unitary involutions on B are classified by their e2-invariant.

Proof. If degB = 2, then D(B,τ) is the quaternion F-algebra such that

(B,τ) = (D(B,τ),γ)⊗F (K, ι),

where γ is the conjugation involution, see [28, p. 129]. Therefore, τ is hyperbolic
if D(B,τ) is split, and D(B,τ) determines τ uniquely. Part (b) is due to Karpenko–
Quéguiner [25]. It is based on the coincidence of Dynkin diagrams A3 = D3, which
can be used to show that every central simple algebra of degree 4 with unitary invo-
lution is isomorphic to the Clifford algebra of a canonical orthogonal involution on
its discriminant algebra, see [28, §15.D]. ��

4.3 Higher invariants

The same method as in Subsection 3.5 allows one to derive from Rost’s invariant for
SUn,K a relative invariant of unitary involutions on a given central simple algebra B
over K = F(

√
a). Suppose degB = n is even and not divisible by the characteristic,

and let τ0 be a unitary involution on B with e2(τ0) = 0. By Proposition 4.4, the
cohomology class in H1�F,PGU(B,τ0)

�
corresponding to a unitary involution τ on

B with e2(τ) = 0 lifts to some ξ ∈ H1�F,SU(B,τ0)
�
. The Rost invariant R(ξ ) lies

in H3(F,µ⊗2
d ) where d is the Dynkin index of SU(B,τ0), determined in [16, 12.6,

p. 142]:

d =

�
expB if n is a 2-power and expB = n or n/2,
2expB otherwise.

In view of the description of the Rost invariant on the center of SU(B,τ0) given by
Merkurjev–Parimala–Tignol in [38], one should be able to define

e3(τ/τ0) = R(ξ )+B3
B ∈ H3(F,µ⊗2

d )/B3
B,

where
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B3
B = corK/F

�
[B] ·H1(K,µd)

�
.

As far as I know, this invariant has not been investigated yet.
Although the case where the degree n is odd does not pertain to the line of investi-

gation developed so far in this text, it is worth mentioning that a similar construction
based on the Rost invariant is better documented in this case: consider the F-vector
space Sym(τ) of τ-symmetric elements in B and the quadratic form

Qτ : Sym(τ)→ F, x �→ TrdB(x2).

Assuming degB = n is odd (and not divisible by the characteristic), it is shown in
[28, (31.45)] that the Rost invariant of SU(B,τ0) yields a relative invariant of unitary
involutions on B defined by

f3(τ/τ0) = e3(Qτ −Qτ0) ∈ H3(F).

By a result of Garibaldi–Gille [15, Proposition 7.2], we may in fact define an abso-
lute invariant by

f3(τ) = e3(Qτ −�1�− n−1
2 �2,2a�) ∈ H3(F),

so that f3(τ/τ0) = f3(τ)− f3(τ0). (The form �1�+ n−1
2 �2,2a� is Witt-equivalent to

the form Qτ for τ the adjoint involution of the n-dimensional hermitian form of
maximal Witt index.) The absolute invariant f3 was first investigated in the particu-
lar case where degB = 3 by Haile–Knus–Rost–Tignol [19]. It classifies the unitary
involutions on a given central simple algebra of degree 3 up to isomorphism, see
[28, §19.B and (30.21)].

There is also an absolute invariant of degree 4 defined just for degB = 4 and
K = F(

√
−1) by Rost–Serre–Tignol [44]: letting nD denote the norm form of the

quaternion F-algebra Brauer-equivalent to the discriminant algebra D(B,τ), the in-
variant is

f4(τ) = e4(Qτ −nD) ∈ H4(F).

It vanishes if and only if B is generated by two elements x, y ∈ Sym(τ) such that x4,
y4 ∈ F× and yx = ixy where i =

√
−1 ∈ K. If B is split and τ = adh with

h = �a1,a2,a3,a4�K ,

we have
f4(τ) = (−1) · (−a1a2) · (−a1a3) · (−a1a4).

Note that the 4-fold Pfister form ��−1,−a1a2,−a1a3,−a1a4�� is indeed an in-
variant of the hermitian form h: in the notation of [16, p. 67], we have

��−1,−a1a2,−a1a3,−a1a4��= 2+λ 2
2 (h)+λ 4

2 (h).
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5 Symplectic involutions

Let n be an even integer, n = 2m, and let sn be the following skew-symmetric matrix
of order n:

sn = diag
�� 0 1
−1 0

�
, . . . ,

� 0 1
−1 0

�
� �� �

m

�
.

Define a symplectic involution σ : Mn(F)→Mn(F) by

σ(m) = s−1
n ·m · sn for m ∈Mn(F).

The symplectic group is the automorphism group of the bilinear form with Gram
matrix sn:

Spn(F) := {u ∈ GLn(F) | utsnu = sn} = {u ∈ GLn(F) | σ(u) = u−1}.

As in the orthogonal and symplectic cases, the group of similitudes is defined by

GSpn(F) := {g ∈ GLn(F) | σ(g)g ∈ F×};

its projective version is

PGSpn(F) := Aut(Mn(F),σ) = GSpn(F)/F×.

Galois cohomology (see [28, (29.22)]) yields a bijection

isomorphism classes of central
simple F-algebras of degree n
with symplectic involution

←→ H1(F,PGSpn).

As pointed out in §2, symplectic involutions on split central simple algebras are
adjoint to nonsingular skew-symmetric bilinear forms. Since every such form is
hyperbolic, all the symplectic involutions on a split central simple algebra are hy-
perbolic (and conjugate). The classification problem thus arises only when the index
is at least 2.

5.1 The case of index 2

Let A be a central simple F-algebra of degree n and index 2, i.e., A is Brauer-
equivalent to a quaternion F-algebra Q. As in Subsection 3.2 we may represent
A as

A = EndQ V

for some right Q-vector space V with dimQ V = n/2. Every symplectic involution on
A is adjoint to some hermitian form h on V with respect to the conjugation involution
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γ on Q. As in Subsection 4.1, a result of Jacobson yields a reduction to quadratic
forms since the map

qh : V → F, x �→ h(x,x)

is a quadratic form on V viewed as an F-vector space, which determines h uniquely
(see [46, Theorem 10.1.7, p. 352]). The invariants of adh are the invariants of the
similarity class of h, which are also the invariants of the similarity class of qh. If
ei(qh) is defined for some i, let

ei(adh) = ei(qh) ∈ Hi(F).

The correspondence between the symplectic involution adh and the orthogonal
involution adjoint to qh can also be described directly, as the next lemma shows:

Lemma 5.1. Let A be a central simple F-algebra Brauer-equivalent to a quaternion
F-algebra Q. Let σ be a symplectic involution on A and let γ be the conjugation
involution on Q. Then σ ⊗ γ is an orthogonal involution on the split algebra A⊗F
Q. If (A,σ) = (EndQ V,adh) for some hermitian form h, then there is a canonical
isomorphism

(A⊗F Q,σ ⊗ γ)� (EndF V,adqh)

which carries x⊗ y ∈ A⊗F Q to the map v �→ x(v)γ(y). Therefore, for any integer
i≥ 1, the invariant ei(σ) is defined if and only if ei(σ ⊗ γ) is defined, and then

ei(σ) = ei(σ ⊗ γ).

Proof. The lemma follows by a straightforward verification. ��

Let m = n/2 and let (vα)m
α=1 be an orthogonal Q-base of V with respect to h, in

which h has the diagonalization

h = �λ1, . . . ,λm�Q.

We have λα ∈ F× for all α . If (1, i, j,k) is a quaternion F-base of Q with i2 = a and
j2 = b, then (vα ,vα i,vα j,vα k)m

α=1 is an F-base of V in which qh has the diagonal
form

qh = ��a,b��⊗�λ1, . . . ,λm�.

Therefore,

e1(adh) = 0, e2(adh) =

�
[Q] if m is odd,
0 if m is even,

(5.2)

and, if m is even,

e3(adh) = [Q] ·
�
(−1)m/2λ1 . . .λm

�
∈ H3(F).

Note that the involution adh always decomposes: if V0 ⊂V denotes the F-span of
(vα)m

α=1, then V = V0⊗F Q and
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(EndQ V,adh) = (EndF V0,ad�λ1,...,λm�)⊗F (Q,γ).

Theorem 5.3. Let σ be a symplectic involution on a central simple algebra of in-
dex 2, and let d be an arbitrary integer, d ≥ 2.

(a) If degA < 2d, we have ei(σ) = 0 for all i = 2, . . . , d if and only if σ is hyperbolic.
(b) If degA = 2d, we have ei(σ) = 0 for all i = 2, . . . , d if and only if (A,σ) decom-

poses into a tensor product of quaternion algebras with involution:

(A,σ) = (Q1,σ1)⊗F · · ·⊗F (Qd ,σd). (5.4)

(c) If degA = 2d−1, symplectic involutions on A with ei = 0 for i = 2, . . . , d−1 are
classified by their ed-invariant.

Proof. Using the same notation as in Lemma 5.1, part (a) readily follows from The-
orem 3.1 since ei(σ) = ei(σ ⊗ γ) and σ is hyperbolic if and only if σ ⊗ γ is hyper-
bolic.

If degA = 2d and ei(σ) = 0 for i = 2, . . . , d, then qh is a (d +1)-Pfister form

qh = ��a,b,λ1, . . . ,λd−1�� for some λ1, . . . , λd−1 ∈ F×,

and we have a decomposition

(A,σ)� (M2(F),ad��λ1��)⊗F · · ·⊗F (M2(F),ad��λd−1��)⊗F (Q,γ).

Conversely, if we have a decomposition (5.4), then

(A⊗F Q,σ ⊗ γ)� (Q1,σ1)⊗F · · ·⊗F (Qd−1,σd−1)⊗F (Q,γ).

By Theorem 3.1, we have ei(σ ⊗ γ) = 0 for i = 2, . . . , d, hence ei(σ) = 0 for i = 2,
. . . , d by Lemma 5.1.

Similarly, part (c) reduces to the split orthogonal case by Lemma 5.1. ��

5.2 Invariant of degree 2

The group PGSpn is connected, so there is no analogue of the discriminant of or-
thogonal involutions as defined in Subsection 3.3. The simply connected cover of
PGSpn is the symplectic group, whose center is µ2. The exact sequence

1→ µ2 → Spn → PGSpn → 1 (5.5)

yields a connecting map in cohomology:

∂ : H1(F,PGSpn)→ H2(F).
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The cohomology class corresponding to an algebra with involution (A,σ) is mapped
by ∂ to the Brauer class [A], which does not yield any information on σ . Yet, we
have a result analogous to Theorems 3.6 and 4.5:

Theorem 5.6. Let σ be a symplectic involution on a central simple F-algebra A of
even degree.

(a) If degA = 2, then σ is unique. It is hyperbolic if and only if A is split.
(b) If degA = 4, there is a decomposition

(A,σ) = (Q1,σ1)⊗F (Q2,σ2)

for some quaternion subalgebras Q1, Q2 ⊂ A.

Part (a) is clear. Part (b) was first observed by Rowen [45, Th. B]. For a proof
based on the coincidence of Dynkin diagrams B2 = C2, see [52, p. 131] or [28,
(16.16)].

5.3 The discriminant

Quéguiner-Mathieu’s construction of §3.5 has an analogue for symplectic involu-
tions, showing that there is no absolute invariant of degree 3 for symplectic involu-
tions on central division algebras of degree 4. Start with an arbitrary division algebra
A of degree 4 with symplectic involution σ over a field F , and suppose there is a
functorial invariant e3(σ) ∈ H3(F). Let

e3(σ) = ∑
i
(ai) · (bi) · (ci) for some ai, bi, ci ∈ F×.

Let K be the function field of the product of the quadrics

x2
0−aix2

1−bix2
2 +aibix2

3− cix2
4 = 0.

We have e3(σ)K = 0, hence e3(σK) = 0, but AK is a division algebra by a theorem
of Merkurjev [13, Corollary 30.10]. It is a tensor product of quaternion algebras
by Theorem 5.6; let Q1, Q2 be quaternion K-algebras such that AK � Q1 ⊗K Q2.
The difference of the norm forms nQ1 − nQ2 is Witt-equivalent to a 6-dimensional
quadratic form ϕ known as an Albert form of AK . Let L be the function field of
the projective quadric ϕ = 0. Over L the quaternion algebras Q1, Q2 have isomor-
phic maximal subfields, hence AL is not division. It is not split either, since the
function field of a quadric does not split any algebra of index 4, hence indAL = 2.
Since e3(σL) = 0, Theorem 5.3(a) shows that σL is hyperbolic. In view of the co-
incidence of Dynkin diagrams B2 = C2, this property translates into a condition on
a 5-dimensional quadratic F-form q such that4 A � C0(q) under an isomorphism

4 This condition determines q uniquely up to a scalar factor, see [28, §15.C].
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that carries σ to the canonical involution of C0(q): the form qL is isotropic (see
[28, (15.21)]). However, qK is anisotropic and is not a Pfister neighbor since AK is a
division algebra (see [28, p. 270, Exerc. 8]). We obtain a contradiction because Hoff-
mann has shown [20] that such a form cannot become isotropic by scalar extension
to the function field of a 6-dimensional quadratic form.

On the other hand, as in the orthogonal case (see §3.5), the Rost invariant of Spn
can be used to define a relative invariant of symplectic involutions on central simple
algebras of degree n≡ 0 mod 4. In the symplectic case, this relative invariant has an
easy description.

Let σ0 be a fixed symplectic involution on a central simple F-algebra A of even
degree n = 2m. If m is odd, the index of A is 1 or 2. As pointed out at the beginning
of this section, the split case is uninteresting since every symplectic involution is
hyperbolic. If indA = 2, then (5.2) yields e2(σ0) = [A] �= 0, hence there is no ei-
invariant for i ≥ 3. Therefore, throughout this section we assume m is even. On
the vector space Sym(σ0) of symmetric elements, the reduced norm has a square
root given by a polynomial map Nrp analogous to the Pfaffian of skew-symmetric
matrices under the transpose involution. The map

Nrp: Sym(A,σ0)→ F

is a form of degree m such that Nrp(1) = 1, Nrd(s) = Nrp(s)2 and

Nrp
�
asσ0(a)

�
= Nrp(s)Nrd(a) for s ∈ Sym(σ0) and a ∈ A.

Every symplectic involution σ on A has the form σ = Int(s) ◦ σ0 for some unit
s ∈ Sym(σ0) uniquely determined up to a scalar factor. Since Nrp(λ s) = λ m Nrp(s)
for λ ∈ F , and since m is even, the square class

�
Nrp(s)

�
∈ H1(F) is uniquely

determined by σ . We may thus set

e3(σ/σ0) =
�
Nrp(s)

�
· [A] ∈ H3(F).

If σ � is a symplectic involution on A such that (A,σ) and (A,σ �) are isomorphic,
then σ and σ � are conjugate so there exists a ∈ A× such that

σ � = Int(a)◦σ ◦ Int(a)−1 = Int
�
asσ0(a)

�
◦σ0.

Since Nrp
�
asσ0(a)

�
= Nrp(s)Nrd(a) and

�
Nrd(a)

�
· [A] = 0, we have

�
Nrp(asσ0(a))

�
· [A] =

�
Nrp(s)

�
· [A],

hence
e3(σ �/σ0) = e3(σ/σ0).

Therefore, e3(σ/σ0) depends only on the isomorphism class of σ : it is an invariant
of symplectic involutions on A.

Alternatively, as pointed out by Garibaldi, the invariant e3(σ/σ0) may be ob-
tained by mimicking the argument in §3.5, using the following twisted version of
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(5.5):
1→ µ2 → Sp(A,σ0)→ PGSp(A,σ0)→ 1.

The involution σ defines a cohomology class ξ ∈ H1�F,PGSp(A,σ0)
�

that can be
lifted to H1�F,Sp(A,σ0)

�
. The Rost invariant of the lift is the invariant e3(σ/σ0).

Note that in this case the Rost invariant does not depend on the choice of the lift of
ξ since it vanishes on cocycles that come from the center of Sp(A,σ0) (see [38]).
Therefore, we don’t have to factor out H3(F) by a subgroup depending on A to
obtain a well-defined relative invariant.

Theorem 5.7. If degA = 4, then the symplectic involutions σ and σ0 are conjugate
if and only if e3(σ/σ0) = 0.

This theorem was proved by Knus–Lam–Shapiro–Tignol [27] with a slightly dif-
ferent definition of the invariant; see also [28, §16.B].

If the Schur index indA divides 1
2 degA, then A carries hyperbolic involutions.

Taking for σ0 a hyperbolic involution, we may consider e3(σ/σ0) as an absolute
invariant. It coincides with the e3-invariant of Subsection 5.1 when indA = 2, as
was shown by Berhuy–Monsurrò–Tignol [8, Example 2].

If degA ≡ 0 mod 8, the invariant e3 can be turned into an absolute invariant
by reduction to the case where indA divides 1

2 degA, as was shown by Garibaldi–
Parimala–Tignol [17]:

Theorem 5.8. If n ≡ 0 mod 8, there is a unique invariant e3 of central simple al-
gebras of degree n with symplectic involution with values in H3 such that for any
extension K of F and any symplectic involutions σ , σ0 on a central simple K-algebra
A of degree n,

(i) e3(σ) = 0 if σ is hyperbolic;
(ii) e3(σ/σ0) = e3(σ)− e3(σ0).

Proof. Let A be a central simple F-algebra of degree 8. If A is not division, then it
carries a hyperbolic involution σ0. On the set of isomorphism classes of symplectic
involutions on A, the unique map e3 satisfying the conditions of the theorem is given
by

e3(σ) = e3(σ/σ0).

Now, suppose A is division and decomposes into a tensor product of quaternion
subalgebras:

A = Q1⊗F Q2⊗F Q3.

Then Q1⊗Q2 is division, and remains division over the generic splitting field FQ3
of Q3. Let X be the projective quadric defined by the vanishing of an Albert form of
Q1⊗Q2. Over the function field F(X), the product Q1⊗Q2 is not division, hence
we may find e3(σF(X)) ∈ H3(F(X)). Similarly, since Q3 splits over FQ3 we may
find e3(σFQ3

) ∈ H3(FQ3). One may check that e3(σF(X)) is unramified over F , i.e.,
it is in the kernel of all the residue maps corresponding to points of codimension 1
on X . Arason [1, 5.6] proved that the scalar extension map H3(F) → H3

nr(F(X))
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is injective, and Kahn [24] showed that its cokernel is Z/2Z, the nontrivial el-
ement being represented by the relative invariant e3(ρF(X)/ρ0) where ρ is any
symplectic involution on Q1⊗Q2 and ρ0 is a hyperbolic symplectic involution on
(Q1 ⊗Q2)F(X). Since Q1 ⊗Q2 remains division after scalar extension to FQ3 , the
form ϕ is anisotropic over FQ3 , and we have a commutative diagram where the ver-
tical maps are given by scalar extension:

0 −−−−→ H3(F) −−−−→ H3
nr(F(X)) −−−−→ Z/2Z −−−−→ 0

�
�

���

H3(FQ3) −−−−→ H3
nr(FQ3(X)) −−−−→ Z/2Z −−−−→ 0.

By uniqueness of e3 over FQ3(X) we must have

e3(σFQ3
)FQ3 (X) = e3(σF(X))FQ3 (X) = e3(σFQ3 (X)),

hence a diagram chase shows that e3(σF(X)) is the image of a unique element
e3(σ) ∈ H3(F). Thus, e3 is well-defined and unique on the set of isomorphism
classes of symplectic involutions on tensor products of three quaternion algebras.
The proof in the general case relies on the same arguments, using induction on the
minimal number of terms in a decomposition of [A] into a sum of Brauer classes of
quaternion algebras. See [17, §2]. ��

The e3-invariant of symplectic involutions has the same property regarding
tensor decompositions as the invariants e1 and e2 of orthogonal involutions (see
Theorems 3.6(b) and 3.10(b)) and the invariant e2 of unitary involutions (Theo-
rem 4.5(b)), as was shown in [17]:

Theorem 5.9. Let σ be a symplectic involution on a central simple F-algebra of
degree 8. There is a decomposition

(A,σ) = (Q1,σ1)⊗F (Q2,σ2)⊗F (Q3,σ3)

for some quaternion subalgebras Q1, Q2, Q3 ⊂ A if and only if e3(A,σ) = 0.

Appendix: trace form invariants

Besides those that are explicitly defined in terms of the trace form (at the end of
§4.3), several invariants defined above5 have an alternative description in terms of
the trace form. Throughout this appendix we use the following notation: for σ an
involution of arbitrary type on a central simple algebra A, we let Qσ denote the
quadratic form

Qσ : Sym(σ)→ F, x �→ TrdA(x2),

5 Essentially the first nontrivial invariant in each of the orthogonal, unitary, and symplectic case.
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where F is the subfield fixed under σ in the center of A.

Suppose first σ is orthogonal and degA = n = 2m. Lewis [32, Theorem 1] and
Quéguiner [42, §2.2] computed

detQσ = 2m detσ .

(See also [28, (11.5)].) The Witt–Clifford invariant of Qσ was computed by Qué-
guiner [42, §2.3]; it turns out to depend only on the discriminant of σ , the Brauer
class of A and the residue of m modulo 8. Therefore, if σ and σ0 are two orthogonal
involutions with the same discriminant on A, then Qσ −Qσ0 ∈ I3F . The e3-invariant
of that form was computed in a particular case in [9, Lemma 4]. Note that e3(Qσ −
Qσ0) lies in H3(F) whereas e3(σ/σ0) lies in H3(F,µ⊗2

4 )/B3
A.

Suppose next τ is a unitary involution on a central simple algebra B of degree n
over a field K = F(

√
a). Then by [42, Lemma 13] (see also [28, (11.16)])

detQτ = (−a)n(n−1)/2 ·F×2 ∈ F×/F×2.

If n = 2m, the Witt–Clifford invariant e2(Qτ) is related to the Brauer class e2(τ) of
the discriminant algebra D(B,τ) as follows:

e2(Qτ) = e2(τ)+(−a) · (2m(−1)m(m−1)/2),

see [42, §3.4] or [28, (11.17)].

Finally, assume σ is a symplectic involution on a central simple F-algebra A of
degree n = 2m. Then by [32, Theorem 1] or [42, §2.2] detQσ = 1, and by [42, §2.3]

e2(Qσ ) =






0 if m≡ 0, 1 mod 8,

[A] if m≡ 2, 7 mod 8,

[A]+ (−1) · (−1) if m≡ 3, 6 mod 8,

(−1) · (−1) if m≡ 4, 5 mod 8.

If σ , σ0 are symplectic involutions on A, then by [8, Theorem 4] we have

e3(Qσ −Qσ0) =

�
e3(σ/σ0) if m is even,

0 if m is odd.

In a different direction, note that the trace form is also used to define the signature
of an involution, see [33], [41] or [28, §11].
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R. Acad. Sci. Paris Sér. I Math. 332(2), 105–108 (2001)
13. Elman, R., Karpenko, N., Merkurjev, A.: The algebraic and geometric theory of quadratic

forms, American Mathematical Society Colloquium Publications, vol. 56. American Mathe-
matical Society, Providence, RI (2008)

14. Garibaldi, S.: Orthogonal involutions on algebras of degree 16 and the Killing form of E8 (with
an appendix by kirill zainoulline). In: Quadratic Forms—Algebra, Arithmetic, and Geometry,
Contemp. Math., vol. 493, pp. 131–162. Amer. Math. Soc., Providence, RI (2009)

15. Garibaldi, S., Gille, P.: Algebraic groups with few subgroups. J. London Math. Soc. (2) 80,
405–430 (2009).

16. Garibaldi, S., Merkurjev, A., Serre, J.P.: Cohomological invariants in Galois cohomology, Uni-
versity Lecture Series, vol. 28. American Mathematical Society, Providence, RI (2003)

17. Garibaldi, S., Parimala, R., Tignol, J.P.: Discriminant of symplectic involutions. Pure App.
Math. Quart. 5(1), 349–374 (2009)
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R. Math. Acad. Sci. Paris 342(2), 83–87 (2006)

45. Rowen, L.H.: Central simple algebras. Israel J. Math. 29(2-3), 285–301 (1978)
46. Scharlau, W.: Quadratic and Hermitian forms, Grundlehren der math. Wiss., vol. 270.

Springer-Verlag, Berlin (1985)
47. Serre, J.P.: Cohomologie galoisienne, Lecture Notes in Mathematics, vol. 5, fifth edn.

Springer-Verlag, Berlin (1994)
48. Sivatski, A.S.: Applications of Clifford algebras to involutions and quadratic forms. Comm.

Algebra 33(3), 937–951 (2005)
49. Tamagawa, T.: Representation theory and the notion of the discriminant. In: Algebraic number

theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), pp. 219–
227. Japan Soc. Promotion Sci., Tokyo (1977)



Cohomological invariants of central simple algebras with involution 91

50. Tits, J.: Formes quadratiques, groupes orthogonaux et algèbres de Clifford. Invent. Math. 5,
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