CHAPTER 1
Duality of finite-dimensional vector spaces

1. Dual space

Let E be a finite-dimensional vector space over a field K. The vector space of linear maps £ — K
is denoted by E*, so

E* = L(E, K).

This vector space is called the dual space of E. Its elements are called linear forms on E. For ¢ € E*
and u € E*, let

(p,u) = p(u) € K.
1.1. PROPOSITION. For ¢, p € E*, u,ve E and a, § € K,
L {ap + By, u) = alp,u) + B{Y, u).
2. (p,ua +vf) = (p, u)a + (p, ).
3. If {p,u) =0 for all u € E, then ¢ = 0.
4. If {p,u) =0 for all p € E*, then u = 0.

PROOF. 1. This follows from the definition of the sum and the scalar multiplication in E*.

2. This follows from the fact that ¢ is a linear map.

3. This is the definition of the zero map.

4. Tf u # 0, then w is the first element in some basis of E. Let (u, ea, ... ,e,) be such a basis. From
the construction principle for linear maps, it follows that there is a linear form ¢ € E* which
maps u to 1 and the other basis vectors to 0. This proves the contrapositive of implication 4.

O
1.1. Dual basis
Let e = (e1,... ,e,) be a basis of E. By the construction principle for linear maps, there exists for all
i=1,...,n alinear form e} € E* which maps e; to 1 and the other basis vectors to 0, i.e.,
N 1 ifi=j,
(€7, €5) = 6ij = e
0 ifi#j.

Thus, for u = >_"

j—1 €ju; € E we have

n n
(er,u) =D (el ej)uy = > diju; = us,
=1

j=1
which shows that the linear form e} maps every vector of E to its i-th coordinate with respect to the
basis e. Therefore, for all u € E,

n
(1) u=p eile;,u).
i=1
1.2. THEOREM. The sequence e* = (e}, ... ,ek) is a basis of E*. In particular, dim E* = dim E.
PROOF. The elements €3, ..., el are linearly independent: Let Y .  asef =0. For j =1, ...,

n n n
* *
0= < E aiei,ej>: E Oéi<€i,6j>: E aiéij = Q4.
i=1 i=1 =1
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2. ORTHOGONALITY 2
The sequence e* spans E*: Let us show that for all ¢ € E*,
n
(2) =) (peier.
i=1

It suffices to show that both sides take the same value on every vector w € E. From (1), it follows
that

n n

(o) = (0 D eales,uh) = ()65 ),
On the other hand, . " . "
(Xtoeieru) = loeidlel u)

1.2. Bidual space
Every vector u € E defines a linear form ev,,: E* — K by

evu(p) = ¢(u).
Thus, ev, € (E*)*. Moreover, the map

ev: E — E**, U — evy,
is linear since for u, v € E, o, § € K and ¢ € E*,
eVuatup(p) = p(ua +vB) = p(u)a + o(v)B = evy(p)a + evy () 5.
1.3. THEOREM. The map ev: E — E** is a vector space isomorphism.

PROOF. First, we show that ev is injective: if u € E is such that ev,, = 0, then (p,u) = 0 for all
@ € E*, hence u = 0 by Proposition 1.1. Therefore, Kerev = 0 and ev is injective.
On the other hand, applying Theorem 1.2 twice, we find

dim E** = dim E* = dim E.
Since ev is injective, it is therefore also surjective. (|

The isomorphism ev is natural, inasmuch as it does not depend on the choice of bases in F and
E**. Tt is used to identify these two vector spaces. Thus, for u € E, it is agreed that

u=-ev, € B,
Therefore, (u, ) is defined for u € E and ¢ € E*, and we have
(u, 0) = (evu, ) = p(u) = (p,u).
2. Orthogonality
For every subspace V C E, the orthogonal subspace V° C E* is defined by
VY={pec E*|(p,u) =0 forall u € V}.
It is easily checked that VY is a subspace of E*.

2.1. PrRoPOSITION. dimV? =dim F — dim V.

PROOF. Let (eq,... ,e,) beabasis of V, which we extend into a basise = (e1,... ,€r, €r41,... ,€p)
of E. Consider the last n — r elements of the dual basis e* = (ef,... ,eX,... ,e:). We shall show:
VO =span(e},,...,¢e5).
The proposition follows, since the right side is a subspace of dimension n —r, as ey, ..., ey are
linearly independent.
Equation (2) shows that every ¢ € V? is a linear combination of e’ {, ..., ej;. Therefore,

VO C span{ef ;... e5).
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On the other hand, every v € V is a linear combination of (eq,... ,e,), hence equation (1) shows that
(er,v) =0 fori=r+1,...,n.
Therefore, €7, 1, ..., e € VO hence

span{el,,... ,en) C V.

2.2. COROLLARY. For every subspace V C E,
Vo0 — v/
(under the identification of E and E**, since V0 C E**).
PROOF. By definition,
VO ={uec E|{u,p) =0 for all p € V°}.

Since (p,u) = 0 for u € V and ¢ € VY we have V C V%. Now, the preceding proposition and
Theorem 1.2 yield

dim VY9 =dim E* —dimV® = dim E — dim V° = dim V.

Therefore, the inclusion V' C V% is an equality. |

3. Transposition
Let A: F — F be a linear map between finite-dimensional vector spaces. The transpose map
At F* B
is defined by
Al(p) =po A for ¢ € F*.
3.1. PROPOSITION. At is the only linear map from F* to E* such that
(A (), u) = {p, A(u)) for all p € F* and allu € E.
ProOF. For ¢ € F* and u € E we have
(A(p),u) = (po A u) = po Au) = (¢, Au)),

hence A? satisfies the property.
Suppose B: F* — E* is another linear map with the same property. Then for all ¢ € F* and all
u €k,

(B(p),u) = (¢, A(u)) = (A'(¢),u),
hence B(p) = A'(p) and therefore B = A'. O
Now, let e and f be arbitrary bases of E and F respectively, and let e*, f* be the dual bases.
3.2. PROPOSITION. The matrices of A and A are related as follows:
e (A = (A

PROOF. Let f(A)e e (aij)lgigm, ie.,
1<jsn

(1) A(ej) = Zfiaij fOI‘j = 1, P 12
i=1

and e* (At)f* = (a;j) 1<i<n i'e',
1ggjsm
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We have to prove aj; = aj; fori =1, ..., nand j = 1, ..., m. Substituting At(f;) for ¢ in
equation (2) of section 1.1, we obtain

AYED) =D (AN ) ee; forj=1,...,m,
i=1
hence a}; = <At(f;), e;). By Proposition 3.1, it follows that
a;j = <ff,A(€z')>-

On the other hand, we may compute the right side of this last equation by using equation (1), which
yields

(f5 Aled)) = <f}‘7 kaaki> =Y {f7 fdari = aji.
k=1 k=1
Thus, aj; =aj; fori=1,...,nand j=1,..., m. O
3.3. PROPOSITION. 1. For A, B: E— F anda, € K,
(aA + BB)' = aA' + BB
2. For A: E—F and B: F — G,
(Bo A)t = At o B,
3. For A: E— F,
(A=A
(under the identifications E** = E and F** = F, since (A")': E** — F**).
PROOF. These properties can be proved either by reduction to the corresponding properties of

matrices (by using arbitrary bases of the relevant spaces), or by using the characterization of transpose
maps in Proposition 3.1. [l



CHAPTER TI
Quotient spaces

1. Definition

Let E be an arbitrary vector space over a field K and let V' C E be an arbitrary subspace. For
x € FE let

r+V={zx+v|veV}CE.
1.1. LEMMA. Forz, y € E, the equation x +V =y +V is equivalent tox —y € V.

PRrROOF. Suppose first t+V =y+V. Sincex =x+0 € z+V, we have z € y+V, hence x = y+v
for some v € V and therefore z —y =v € V.

Conversely, suppose x —y =v € V. For all w € V we then have z + w =y + (v +w) € y+ V,
hence z +V C y+ V. We also have

ytw=z+(w—-v)€ex+V,
hence y +V C x4+ V, and therefore xt +V =y + V. (|
Let
E/V={z+V |zeE}
An addition and a scalar multiplication are defined on this set by

(+V)+y+V)=(+y)+V for z, y € E,
4+ V)a=za+V forre Eand a € K.

It is easily checked that these operations are well-defined and endow the set E/V with a K-vector
space structure.
In view of the definitions above, the map

ey: E—E/JV
defined by
ev(z)=z+V

is a surjective linear map. It is called the canonical epimorphism of E onto E/V. Its kernel is the set
of z € E such that x +V = 0+ V. The lemma shows that this condition holds if and only if x € V;
therefore

Kerey = V.
1.2. PROPOSITION. Suppose E is finite-dimensional; then
dimE/V =dim FE — dim V.

Moreover,
(a) if (e1,... ,en) is a basis of E which extends a basis (e1, ... ,er) of V, then (e,11+V, ... ,en+V)
is a basis of EJV;
(b) if (e1,...,er) is a basis of V and wy41, - .. , upn are vectors of E such that (ur41+V, ... ,un+V)
is a basis of E/V, then (e1,... ,€r,Upt1,... ,Un) s a basis of E.
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PROOF. Since Kerey =V and Imey = E/V, the relation between the dimensions of the kernel
and the image of a linear map yields

dimE =dimV +dim E/V.

(a) Since dim F/V = dim E—dim V' = n—r, it suffices to prove that the sequence (e, 114V, ... ,en+V)
spans E/V. Every x € E is a linear combination of ey, ... , e,. If

T =e1T1 + -+ enln,

then

x4+ V=cy(z)=cv(e)zs + - +ev(en)rn.
Now, ey (e;) =0fori=1, ..., r since ¢; € V, hence

x4+ V=(eps1+V)xps1+- -+ (en +V)x,
(b) Since dim E = dim V' 4 dim E/V, it suffices to prove that e1, ..., e, Upq1, ... , Uy, are linearly
independent. Suppose
(1) erar + -+ epQr + Upp1Brp1 - unfBn = 0.
Taking the image of each side under ey, we obtain (uy41 + V)Brs1 + -+ + (un + V)5, = 0, hence
Br41 =+ = Bn =0. Therefore, by (1) it follows that a; = --- = a,- = 0, since (eq,... ,e,) is a basis
of V. O

2. Induced linear maps

Let A: E — F be a linear map and let V C E be a subspace. A linear map A: E/V — F is said
to be induced by A if

Az +V) = A=) for all x € E.
In other words,
Aoey = A.
This condition is also expressed as follows: the diagram

E—Y SE/V

N4

2.1. PROPOSITION. A linear map A: E — F induces a linear map

is commutative or commutes.

A: E/V—F
if and only if V C Ker A.

PROOF. If Aoey = A, then A(v) =0 for all v € V since V = Kerey. For the converse, suppose
V C Ker A and consider z, 2’ € E. If 2 +V =2’ +V, then  — 2’ € Ker A4, hence A(x — 2’) = 0 and
therefore

We may then define a map A: E/V — F by
Alx+V) = A(x) for all x € E.

It is easily checked that the map A thus defined is linear. O
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Now, consider a linear map A: E — F and subspaces V C E and W C F. A linear map
A: E)V — F/W
is said to be induced by A if

Alx+V)=A(z) + W forallz € E
or, alternatively, if Aoey = ey o A. This condition can also be expressed by saying that the following

diagram is commutative:

E—2 - F

S

E)V —2~ F/W
or that A makes the above diagram commute.
2.2. COROLLARY. The linear map A: E — F induces a linear map A: E/V — F/W if and only
if A(V) CW.

PRrROOF. Consider the linear map A" = eyy 0o A: E — F/W. The preceding proposition shows
that there exists a linear map A such that A’ = A o ey if and only if V C Ker A’. In view of the
definition of A’, this condition is equivalent to

A(V) C Kereyy = W.

If A(V) C W, we may restrict the linear map A to the subspace V and get a linear map
A|V V- W.

We aim to compare the matrices of A, of Aly and of A: E/V — F/W.

Consider a basis ¢/ = (e1,...,e,) of V, a basis € = (e;41+ V,...,en + V) of E/V and the
sequence € = (e1,...,€p,€r41,-.. ,6€,) which, according to Proposition 1.2, is a basis of E. Similarly,
let f' = (f1,...,fs) be a basis of W, f = (fs41 + W,..., fmu + W) a basis of F//W and consider the
basis f = (f1,--- s fs, fs+1,--- s fm) of F.

2.3. PROPOSITION.
7 (Alv)e *
f(A)e = ( — .
0 | 4@

PrOOF. Let A(e;) =Y, fia;j for j =1, ..., n, so that
r(A)e = (aij)igi<m.
1<jsn
For j =1, ..., r we have e; € V, hence A(e;) € W. Therefore, A(e;) is a linear combination of fi,
., fs, hence
ai; =0 forj=1,...,randi=s+1,...,m.
Moreover, A(e;) = Alv(e;) for j =1, ..., n, hence Aly(e;) = > i_, fia;; and therefore
p(Alv)e = (aij) 1<igs-
1<j<r
On the other hand, for j=r+1, ..., n,
Z(ej + V) = A(ej) +W = Z(fZ + W)Cbij.
i=1
Fori=1,...,s, wehave f; € W, hence f; + W = 0. The preceding equation thus yields A(e; + V) =
Yo i1 (fi+ W)ag; for j=r+1, ..., n, hence

7(Z)€ = (aij)s+1<i<m-
r+H1<j<n
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The proof is thus complete. O
In particular, if F = FE and W =V,
: )
e(A)e

e’ (A|V)e/
e(A)e = <
0
and since the determinant of a block-triangular matrix is the product of the determinants of the blocks
the following corollary follows:

2.4. COROLLARY. det A = det A|y - det A and Pcy = Pcy), -Peg.

3. Triangulation

3.1. PROPOSITION. Let A: E — E be a linear operator on a finite-dimensional vector space E.
There ezists a basis e of E such that the matriz .(A)e is upper triangular if and only if the characteristic
polynomial Pca decomposes into a product of factors of degree 1.

PRrOOF. If the matrix .(A), is upper triangular, let
/\1 *
e (A)e = T 3
0 An
then Pea(X) = (X — A1) ... (X — \n).

Conversely, suppose Pc 4 decomposes into a product of factors of degree 1. We argue by induction
on the dimension of F. If dim F = 1, there is nothing to prove since every matrix of order 1 is upper
triangular. Let dim £ = n. By hypothesis, the characteristic polynomial of A has a root \. Let
e1 € E be an eigenvector of A with eigenvalue A\ and let V' = e; K be the vector space spanned by e;.
We have

A(V) = A(el)K =e1AK C V,
hence A induces a linear operator
A: E)V — E/JV.

By Corollary 2.4, we have Pc(X) = (X — ) Pcp(X), hence the characteristic polynomial of A decom-
poses into a product of factors of degree 1. By induction, there exists a basis € =
(e2+V,... ,en+ V) of E/V such that the matrix ¢(A)¢ is upper triangular. Proposition 1.2 shows
that the sequence e = (e, es,... ,ey) is a basis of E. Moreover, by Proposition 2.3,

A — A *
N >e_(JF E@E).

Since the matrix z(A)z is upper triangular, so is .(A).. O



CHAPTER III
Tensor product

1. Tensor product of vector spaces
Let Eq, ..., E,, F be vector spaces over a field K. Recall that a map
f: By x---xE, > F
is called n-linear or multilinear if
fxe, .o o, v+ 2 i, .. @) =
f@r, o i1, Ty Ty - s Tp)a+ f(T1, 00 T, Ty i1y e, X))

for each i = 1,... ,nand forall z; € Ei,...,x;1 € E;_q, Ii,I; ek, Tit1 € Ei+1, ., xn € B, and
a, o’ € K. In other words, for eachi =1, ..., nand forallx; € Fy, ..., x;_1 € E;_1, x;11 € Fi11,
., xn € B, fixed, the map

f(xla"' yLi—1,® Lit1y--- 7xn): Ei — F

which carries x € E; to f(x1,...,%i—1,%,Tit1,-.. ,Zn) is linear. For example, all the products for
which the distributive law holds are bilinear maps.

Clearly, if f: Fy X --- x E,, — F is multilinear and A: F — G is linear, then the composite map
Ao f: Fy x -+ X E, — @ is multilinear. It turns out that, for given F;, ..., E,, there exists a
“universal” linear map ®: E1 X --- X E,, — F; ® --- ® E,, called the tensor product of Ey, ..., E,,
from which all the multilinear maps originating in £; x --- x E,, can be derived. The goal of this
section is to define this universal map.

1.1. Universal property

Let E1, ..., E, be vector spaces over a field K. A pair (f, F) consisting of a K-vector space F' and
a multilinear map

fr By x---xE, > F

is called a universal product of Ey, ..., E, if the following property (called the universal property)
holds: for every K-vector space G and every multilinear map

g: By x -+ x E, -G

there exists a unique linear map A: F — G such that g = Ao f or, in other words, which makes the
following diagram commute:

Fy x---x FE,

The existence of a universal product is far from obvious. By contrast, the uniqueness (up to isomor-
phism) easily follows from the definition by abstract nonsense.

1.1. PROPOSITION. Suppose (f,F) and (f', F') are two universal products of Ey, ..., E,. Then
there is one and only one vector space isomorphism @: F — F' such that the following diagram

9
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commutes:

'XEn ! F
F.

PROOF. The existence of a unique linear map ¢: F — F’ such that f' = ¢ o f follows from the
universal property of (f, F). We have to show that ¢ is bijective. To achieve this goal, observe that
the universal property of (f/, F') yields a linear map ¢’: F' — F such that f = ¢’ o f’. Now, the
following diagrams commute:

Ey x---xE, —>F Ey x---xE, —>F

N N

In view of the uniqueness condition in the universal property of (f, F), it follows that ¢’ o ¢ = Idp.
Similarly, the universal property of (f’, F’) shows that pog’ = Idp/. Therefore, ¢ and ¢’ are reciprocal

bijections. [l
This proposition shows that a universal product of Ey, ..., E,, if it exists, can be considered
as unique. We shall refer to this universal product as the tensor product of Fy, ..., E, and denote

it as (®,FE1 ® --- ® Ey,). The image of an n-tuple (x1,...,z,) € E1 X -+ X E, under ® is denoted
T1 Q- Q.

Our next goal is to prove the existence of the tensor product. We consider first the case where
n = 2 and then derive the general case by associativity.

1.2. The tensor product of two vector spaces
1.2. PROPOSITION. Let pi: K™ x K™ — K™*™ be defined by

p((zi)1<icm, Wii<icn) = (@iy5)1<i<m.-
1<y

<jsn
The pair (u, K™*™) is a universal product of K™ and K.
PROOF. Denoting the elements of K and K" as column vectors, we have
wlz,y) =x -yt forx € K™ and y € K",

where - denotes the matrix multiplication K™*! x K" — K™*"_ Therefore, the bilinearity of x
follows from the properties of the matrix multiplication.
Let (ci)1<igm (resp. (¢})igj<n) be the canonical basis of K™ (resp. K™). Let also

eij = p(ci, c;) fori=1,..., mand j=1,...,n.

Thus, e;; € K™*" is the matrix whose only non-zero entry is a 1 at the i-th row and j-th column.

The family (e;;)1<i<m is a basis of K™*™. Therefore, given any bilinear map
1<jsn

B: K" x K" — F,

we may use the construction principle to obtain a linear map ¢: K™*" — F such that ¢(e;;) =

T Y1
B(ci,cj). Forallz = [ © [ € K™ andy = | : | € K", we have v = > 1" | ciwy, y = D05, iy,
T Yn
hence
M(Jf,y) = Z :Elyju Ciy C J Z LiYj€ij
1<i<m 1<i<m

1<j<n 1<5<n
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and

/
B(Iay) = Iiij(Civc‘) = $iyj<ﬂ(€ij) =@ TiYj€ij |-
J
1<i<m 1<i<m 1<i<m
1<j<n 1<j<n 1<j<n

Therefore, B = ¢ o pu.
Uniqueness of the linear map ¢: K™*" — F such that B = ¢ o p is clear, since this equation
yields

Blci, ) = p(plei cf)) = pleiy),
and a linear map is uniquely determined by the image of a basis. Thus, (u, K™*™) is a universal

product of K™ and K™. O

1.3. THEOREM. Any two vector spaces over a field K have a tensor product.

PRrROOF. We give the proof for finite-dimensional vector spaces only. If dim £ = m and dim F' = n,
we may identify F to K™ and F to K" by the choice of arbitrary bases of E and of F' (by mapping
every vector in F (resp. F') to the m-tuple (resp. n-tuple) of its coordinates with respect to the chosen
basis). The preceding proposition then shows that (u, K™*™) is a universal tensor product of E and
F. O

Note that, even though bases of £ and F' were chosen in the proof of the theorem, the tensor
product itself does not depend on the choice of bases (but its identification with (u, K™*™) does). It
is a canonical construction. To simplify the notation, we suppress the bilinear map ® in the tensor
product notation (®, E ® F'), and refer to the tensor product of F and F simply as E® F.

1.4. COROLLARY. If e = (e;)igi<m 5 a basis of E and f = (fj)igj<n i a basis of F, then

(e; ® fj)igigm s a basis of E® F. In particular, dim(EF ® F') = dim Edim F.
1<isn

PROOF. It was observed in the proof of Proposition 1.2 that (,u(cl-, C;‘))lgigm is a basis of K™*",

<jsn

If E is identified with K™ and F' with K™ by means of the bases e and f, then e and f correspond
to the canonical bases of K™ and K™ respectively, hence u(c;, c;) =€ ® f;. O

The corollary shows that every element in E® F' has the form Y 1<i<m oyje;® f; for some o € K.
1<j<n
Grouping terms, we obtain

n m
> e ®fi =D (D ewer) ©
1<i<m j=1 i=1
1<jsn
hence every element in £ ® F' can be written in the form

$1®y1+"'+$r®yr

for suitable x1, ..., z, € E and y1, ..., y, € F (and r € N). Note that this expression is not unique:
for instance,

(e14+e)®@fit+(e1—e)® fa=e1®@(fi+ fo) +e2® (f1 — fo).

1.3. The tensor product of three or more vector spaces

Let Ey, F2, E3 be vector spaces over K. We may consider the tensor products F1 ® Es and (E; ®
EQ) ® E3. The map

Qyi<E1X<E2X<E3—%(E1@WE2)@3EB
defined by ®'(z1,22,23) = (21 ® 22) ® 3 is 3-linear.
1.5. PROPOSITION. The pair (®', (E1 ® E2) ® Eg) s a universal product of E1, Ey and E3.
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PROOF. Let T': E; x Es x E3s — F be a 3-linear map. For all 3 € F3, the map
T(e,e,x3): E1 X Ey = F
is bilinear, hence there is a unique linear map ¢, : E1 ® Ey — F such that
Oy (X1 @ T2) = T(x1, T2, x3) for all 1 € B4, x5 € Es.
For z1 € By, 22 € Ea, 3, 25 € B3 and «, o/ € K, we have
T(x1, 22, axs + 'x%) = oT (x1, T2, 23) + T (21, T2, T4),
hence
Pawgtarzy(T1 ® T2) = oz (T1 @ T2) + ooy (1 ® 22).

Since F7 ® E» has a basis consisting of products z1 ® x2, by Corollary 1.4, and since a linear map is
uniquely determined by the image of a basis, it follows that

(1) Poazs+a'zl, = APz + O/@zé'
Consider the map ®: (F; ® F2) X E3 — F defined by
(I)(f,Ig) = @13(5) for g € F1 ® F> and x3 € Fj3.

By (1) and since each map ¢, is linear, the map ® is bilinear. Therefore, the universal property of
tensor products yields a linear map

¢: (B1 ® E3) @ E3 — F
such that
o ®@x3) = P(E,3)  forall € € By ® Es, 3 € Fs.
In particular,
gp((xl ® x2) ® a:g,) = @y (X1 @ x2) = T(21, 22, X3),
hence T' = po ®'.

Uniqueness of the map ¢ satisfying this equation is clear, since every element in (E; ® Fs) ® Ej3
can be written as >, (z; @ y;) ® z; = Y, ®' (x4, ¥4, 2;) for some z; € By, y; € Es and z; € Es. If ¢ and
¢ satisfy T = p o ® = ¢’ 0 ®, we must have

SD(Z(% QYi) ® Zi) = ZT($i7yi, zi) = ¢/ (Z(iﬂz ®yi) ® Zi>,

3

K2

hence ¢ = ¢'. O

The proposition above proves the existence of the tensor product F1 ® Es ® F3, and shows that
there is a canonical isomorphism

E1® B> ® E3 = (E1 ® E2) ® Es.

Obviously, we also have Ey ® F; ® F3 = E1 ® (F2 ® E3). By induction, it follows that the tensor
product of arbitrarily many vector spaces exists, and may be defined by associativity.
The following corollary also follows by induction on the number of factors:

1.6. COROLLARY. Let (€;5,)1<ji<n: be @ basis of E;, fori=1, ..., r. Then

(e1j; ® €24, @+ @ €rj, )1<ji<n
1<), <ny

s a basis of F1 ® -+ ® E,.. In particular,
dmF ® - - E, =dimF,...dim FE,.
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1.4. Example

Let Ei, ..., E, be finite-dimensional K-vector spaces and let F' be an arbitrary K-vector space.
Denote by M(FEy X -+ X E,, F) the set of all multilinear maps

f: By x---x B, — F.

It is easily checked that M (F; x --- x E,, F) is a subspace of the space F(FE; X --- x E,, F) of all
mappings Fq X --- X B, — F.

Let E} be the dual space of E; for i =1, ... ,n. For y € F and ¢ € Ef, ..., v, € E, define
Oyorvon: B1 X - xEy = F
by
Oyr,...om (@1, @) = Y1, 21) -+ (Pn, Tn)-
is multilinear, hence

Oyor,ion € M(Ey X -+~ X Ep, F).

Clearly, the map 0.4, ,... o

n

Moreover, it is also clear that

(Y, P10 n) = Oy n
is a multilinear map F' X Ef x --- x EX — M(E1 x --- x E,, F'). We denote it by 6. By the universal
property of tensor products, 6 induces a linear map
©0: FRE® --QE, — M(Ey x - x E,, F).
1.7. THEOREM. The map © is an isomorphism of vector spaces.

PROOF. We have to show that © is one-to-one and onto. To achieve this, we construct a reciprocal
map. Fori=1,...,n, let (€ij)1<j;<m,; be a basis of E;, and let (€]}, )1<j;<m, be the dual basis. For
every multilinear map f € M (Fy X - -+ X E,, F), define

V()= > fleyju, - renj) @€l @ @ep; €FQE; @@ E).
1<ji<m
1< <mn
The map U: M(Ey X X E,, F) - FQEf®---®E’ is linear. To prove that ¥ and © are reciprocal
bijections, we shall show! that ¥ o © is the identity on F ® Ff @ --- ® E; and © o ¥ is the identity
on M(Ey X -+ x E,, F).
Every element in F'® Ef @ --- ® E* can be written in the form
= Z Yirjn ® €15, © - R ep; .
1<jism
1< <mn

For this &, we have
9(5) = Z eyjl"'jn!eijl’“"e:.jn

1<jisma
1<in<mn

hence

O&)(e1kys -+ s enk,) = Z Yjrjn (€115 €1k1 )+ {€mj, s Cnkyy)

forall ky =1,... ,my, ..., kp =1, ..., my,.

IThe notation makes the following proof hardly readable. The reader is warmly encouraged to check the statement
by him/herself!
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Now, by definition of ¥ we have
Vo) = Y OO etk enk,) @ik, @ @eny,
1<jism
1< <mn
= Z Yhyokn @ €1, @ ®eqp
1<jism
1< <mn
Therefore, ¥ o © is the identity on F ® B} ® --- ® E7.
Now, let f € M(Ey x --- x E,, F). We have

GO\I/(f) = Z 9]"(61]'1,.,.,enjn),e’l‘jl,... e* .

njn

1<ji<ma

1<jn<mn
hence

OoU(f)(e1kyy--- senk,) = Z ferjys v senj, )€l s €ihy) - (enj. s €nk,)
1<ji<ma
1< <
= f(€1ky,- -+ s €nk,)

foral ky, =1, ..., ny, ..., ko = 1, ..., m,. Since multilinear maps are uniquely determined
by their values on basis elements, it follows that © o ¥(f) = f, hence © o ¥ is the identity on
M(Ey x --- X E,, F). O

Note that the isomorphism O is canonical, even though its reciprocal isomorphism ¥ is defined
above through the choice of bases of E1, ..., E,. We may therefore use © to identify

FQE]x---xE=M(E x---x E,,F).

This provides an alternative definition for the tensor product of vector spaces, at least when all but
one of the factors are finite-dimensional.

2. Formalism
2.1. Covariant and contravariant behaviour

Let E be a finite-dimensional vector space over a field K, and let (e;)1<i<n be a basis of E. It is
sometimes convenient to write the coordinates of vectors z € E with upper indices instead of lower
indices.? We thus write

This notation is simplified by the Finstein convention: on every index appearing twice in a formula,
the summation is understood:

T = e;x’ (= 2'¢;).
For notational coherence, the entries in any change-of-basis matrix receive an upper index and a lower
index: if (€],)1<a<n is another basis of E we write
(1) ey = eiay,
(instead of €/, = Y7, €;aa). So, (a,)1<i<n are the coordinates of e/, with respect to (e;)1<i<n. The
upper index is the row index and the lower index is the column index. If (b$')1<; a<n is the inverse
matrix, we have (by definition of the inverse matrix)

aflbf = 5§ and agbjof = 5;»

20f course, upper indices should not be confused with exponents. There should not be any confusion, since in
(multi)linear algebra exponents appear very exceptionally.
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where 0% (resp. 67) is the Kronecker symbol, i.e., 2 = 1if i = j and 6% = 0 if i # j. We also have

(2) e; = e by,

Now, consider a vector z = e;x’ = e/, x’“. Substituting e;a’, for e/, we obtain x = ¢;a’,2'“, hence
(3) r' = a2

Similarly,

(4) ' = bt

It is a crucial observation that, although (3) and (4) look like (1) and (2), these equations are
essentially different: multiplying by the matrix af, transforms e; into €/, while it has the reverse effect
on coordinates, transforming z’® into .

Now, consider the dual bases (€} )1<i<n and (¢',)1<a<n. (These are bases of the dual space E*.)
Equation (2) in section 1.1 of Chapter I yields

1%

o= ef(e’:;, €;) and ef = eﬁ(ef, el)

e

hence, taking into account (1) and (2),

I* __  xpa * _ I1* g
(5) e, = el and el =é'al,.

In view of these equations, notational coherence dictates to denote e’ for e} and e’ for ¢’’; then (5)
can be rewritten as
(6) d=eb¢ and e =€,
These equations are exactly like (4) and (3).

To complete the picture, consider a linear form ¢ € E*. Equation (2) of section 1.1 of Chapter I
yields

p=cp,e) =€ (p,eq).
Therefore, the coordinates (¢;)1<i<n (resp. (L )1<a<n) of ¢ with respect to the basis (e%)1<;<n (resp.
(€'")1<a<n) of E* are given by
pi=(p,ei),  Po={p.eq)-

Using (1) and (2), we get
(7) Yo = (p,eidag, = piag  and @i = (g, )b = @Lb7,

which should be compared to (3) and (4).

Thus, coordinates of linear forms behave under a change of basis exactly like basis vectors: this
is the covariant behaviour. By contrast, coordinates of vectors and dual basis vectors behave in the
opposite way to basis vectors: they display the so-called contravariant behaviour.

2.2. Covariant and contravariant tensors

For p and ¢ any natural numbers, let

THE)=E"® - QF QE® - -®F if p, ¢ are not both zero,

p q

and T§(E) = K. The elements in TJ(E) are called p-covariant and q-contravariant tensors on E.
This is a shameless abuse of terminology, since the elements in T} (E) do not vary at all. It is
motivated by the fact that the coordinates of elements in T)(E) have p covariant (i.e., lower) indices
and ¢ contravariant (i.e., upper) indices, as we proceed to show.

Let (e;)1<i<n be a basis of E, and let (e?)1<;<n be the dual basis, which is a basis of E*. Corol-
lary 1.6 shows that (e @---®e» ®ej, @ --®€j,)1<i,... jy<n 1S a basis of T(E), hence every element
in TJ(E) can be written as
(8) t:tﬁ:::?qeh@...@eir’ ®ej @ ®ej,.

p
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Let (€l,)1<a<n be another basis of E and (¢/“)i<a<n be its dual basis, and suppose the bases are
related by

/ ] /
9) e, = €;a;, and e = e, b
hence
/A TN % Nl T 1 g
e =e'b; and e'=e"a,,

as in the preceding section. Substituting in (8), we get

t:#“w%ﬂm~®@MW><%W>~®@M@

% aq

= (7 Tal el b M @@l @ @@

lp Q1 ap J1

Therefore, the coordinates t’gll',',',g‘; of t € TJ(E) with respect to the basis (¢ @ --- ® /7 @ e}, ®
*® € )1<au, .. ,B,<n are given by

(10) el = tjll Jral, "'azcl;b?f cobPe

This shows that the lower indices are indeed covariant while the upper indices are contravariant (as
they should).
Similarly, we have

Jig B1-B ! J

t-l iq:tll aib?ll' bp]l_ G/ﬁq
From a formal point of view, the change of basis formula (10) is the only condition for an indexed
array to be the coordinates of a p-covariant and g-contravariant tensor, as the following tensoriality
criterion shows.

2.1. THEOREM. Suppose that to each basis e = (e;)1<i<n Of E is attached an array of scalars

(u(e)ﬁjq)K“) )]qgn € K™ There exists a tensor in TJ(E) whose coordinates with respect to

each basis e are u(e)h,,,JZ if and only if the arrays attached to any two bases e, e’ related by (9) satisfy

u(e ooy = u(e)f)fral, aln bl b
PRrOOF. The “if” part readily follows from the computation leading to equation (10). To prove
the “only if” part, pick an arbitrary basis € of E' and define a tensor u € T)(E) by
u:u(e)]l fqe“ Q- Qe ®Ej, @ ®Ej,.

i1
L. NJ1ed

By definition, (u(e)zils)lgl1 usn

S®E ®Ej, @ ®€j,)1<iy,... jy<n- We have to show that for any basis ¢ = (éa)1<a<n, the coordinates

of u with respect to (6% @+ @™ ©ép, @@, 1<, ... f,<n A1 (U)o "0h) 1y gyn

€ = €;a’, and &; = eab hence é% = &'b¢ and &' = é%a’,. Then by (10) the coordinates of u with
respect to (¥ ®@ -+ ® eO‘P ®ép, @ @€, )1<an,... By<n AT€

is the array of coordinates of u with respect to the basis (6" ®

Suppose

~\J1Jq i a'» pPt B
(u(e)il_,,i;’aal1 .. Ofpbh .. 'bj:)lsm o pen’
By hypothesis, this array is (u(é)gll'.'.'.g‘;)Kal Bon’ O
B IEERRY L AN

2.3. Tensors on euclidean spaces

In this section, we assume that the vector space E is finite-dimensional and endowed with a scalar
product

() ExXFE— K,

i.e., a symmetric bilinear form which is non-degenerate in the sense that (z|y) = 0 for all y € E implies
x = 0. Using the scalar product, we define a linear map

®: FE— E*
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by mapping every vector € F to the linear form y — (z|y), so

(®(x),y) = (zly) (= (ylx)) forz,ye k.

The non-degeneracy condition on the scalar product means that ® is injective, hence it is bijective
since dim F = dim E*, by Theorem 1.2 of Chapter I. We may thus use ® to identify F and E*, hence
also TJ(E) with T}y 4(E) or TPT9(E).

In the rest of this section, we show how this identification works at the level of coordinates.

Let (e;)1<ign be an arbitrary basis of E. For i, j =1, ..., n, let

gij = (eilej) € K.

The matrix (g;;)1<i,j<n is the Gram matrix of the scalar product with respect to the basis (e;)1<ign-
Its entries are the coordinates of the 2-covariant tensor

g=(eilej)e!®el € E* @ E*
which corresponds to the scalar product (or to the map ®) under the identification of Theorem 1.7:
M(Ex E,K)=E*®E* (= M(E,E")).

The tensor g is called the metric tensor on the euclidean space E.
For i = 1, ..., n, the basis vector ¢; € E is identified with ®(e;) € E*. By equation (2) of
section 1.1 of Chapter I, we have

D(e;) = e/ (Plei), e;) = € (eilej) = gije?,
hence
(11) e = gij€’ under the identification £ = E*.
Consequently, any p-covariant and g-contravariant tensor

t=tle @@t e, @ ®ey, € THE)

3

is identified to
e @ @e” @ (gjr ™) @ @ (g k)
= (tgll:::g:ghkl .. 'gjqkq)eil R - RerPRe ®...® ek,
We may therefore define the (p + g)-covariant coordinates of ¢ as follows:

L kykg
til---ipj1'“jq = tilmip Gkij1 * " Gkgjq-

To define the (p + ¢)-contravariant coordinates of ¢, we use the inverse of the Gram matrix
(gij)1<i,j<n- (The Gram matrix is invertible because the scalar product is non-degenerate.) Let
) 1<i.j<n be the inverse matrix. From equation (11), we derive
g ILIX

ot — gijej,
hence
b=t (g e, ) ® - @ (g7 rer,) B e - @y,
= (t‘zjllf:gllkl .. .g’ipkp)ekl ® e ® ekp ® ejl ® . ® ejq'

Therefore, the (p 4+ ¢)-contravariant coordinates of ¢ are

i1ip1dq — 4J1 7 da  kiiy kpi
t P q_tkl»»»kpg s gtPr,
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3. Tensor product of linear maps

3.1. THEOREM. Fori=1,...,n, let A;: E; — F; be a linear map. There is a linear map
AR - QRA, B1®---QF, - F1®---QF,

such that
(1) (A1@ @A) (1@ @xp) = A1(21) @ @ Ay(n)
forallxy € By, ..., z, € E,.

PRrOOF. This follows from the universal property of tensor products, applied to the multilinear
map

By xBy— R @-0F,
which carries (z1,...,2,) € E1 X -+ X B, to A1(21) @ -+ - ® Ap(xy). O

Clearly, the linear map 4; ® - - - ® A,, is uniquely determined by condition (1), since every element
in 1 ®---® E, is a sum of products 1 ® - - - ® .

3.2. PROPOSITION. 1. If A;: E; — F; and B;: F; — G; are linear maps, fori=1, ..., n,
then

(BioA)®-®(Bp®Ap) = (B1® - ®@By)o (A1 @ @ Ap).
2. ldg, ®---®1dg, =1dg,g.-.E, -

3. If A; is injective (resp. surjective) for alli =1, ..., n, then A; ® --- ® A, is injective (resp.
surjective).
PrOOF. 1. Forz1 € E4, ..., x, € E,, we have
(B1oA41)® - ®@(BroAy) (1 Q- Qax,) =B1oA1(z1)® - ® B, o Ay ()
and

(B1® - ®Bp)o(A1 @ @A) (01 ® ®ap) = (B1 @+ @ By)(A1(21) @ -+ ® Ap(z))
=B1oAi(21)® - Q ByoAy(zy).
2. Forxy € Fq, ..., z, € E, we have
(Idg, ® - ®@Idg, )(t1 ® - @ zp) =Idp, (1) @ --- @ Idg, (z4)
lde, @08, (T1 @ - ® zp).

3. If A; is injective (resp. surjective), then there is a linear map B;: F; — E; such that B;o A; =
Idg, (resp. A; o B; =1Idp,), hence

(B1®--®@Bp)o(A® - ®Ay) =ldp,e..08,
(resp. (A1 ®---®A,)0(B1®---®By) =ldpg..oF,)

by the first two parts of the proposition. It follows that 4; ® --- ® A,, is injective (resp.
surjective).
([l



