
CHAPTER I

Duality of finite-dimensional vector spaces

1. Dual space

Let E be a finite-dimensional vector space over a field K. The vector space of linear maps E → K
is denoted by E∗, so

E∗ = L(E,K).

This vector space is called the dual space of E. Its elements are called linear forms on E. For ϕ ∈ E∗

and u ∈ E∗, let

〈ϕ, u〉 = ϕ(u) ∈ K.

1.1. Proposition. For ϕ, ψ ∈ E∗, u, v ∈ E and α, β ∈ K,

1. 〈αϕ+ βψ, u〉 = α〈ϕ, u〉 + β〈ψ, u〉.
2. 〈ϕ, uα+ vβ〉 = 〈ϕ, u〉α+ 〈ϕ, v〉β.
3. If 〈ϕ, u〉 = 0 for all u ∈ E, then ϕ = 0.
4. If 〈ϕ, u〉 = 0 for all ϕ ∈ E∗, then u = 0.

Proof. 1. This follows from the definition of the sum and the scalar multiplication in E∗.
2. This follows from the fact that ϕ is a linear map.
3. This is the definition of the zero map.
4. If u 6= 0, then u is the first element in some basis of E. Let (u, e2, . . . , en) be such a basis. From

the construction principle for linear maps, it follows that there is a linear form ϕ ∈ E∗ which
maps u to 1 and the other basis vectors to 0. This proves the contrapositive of implication 4.

1.1. Dual basis

Let e = (e1, . . . , en) be a basis of E. By the construction principle for linear maps, there exists for all
i = 1, . . . , n a linear form e∗i ∈ E∗ which maps ei to 1 and the other basis vectors to 0, i.e.,

〈e∗i , ej〉 = δij =

{

1 if i = j,

0 if i 6= j.

Thus, for u =
∑n

j=1 ejuj ∈ E we have

〈e∗i , u〉 =
n∑

j=1

〈e∗i , ej〉uj =
n∑

j=1

δijuj = ui,

which shows that the linear form e∗i maps every vector of E to its i-th coordinate with respect to the
basis e. Therefore, for all u ∈ E,

u =

n∑

i=1

ei〈e
∗
i , u〉.(1)

1.2. Theorem. The sequence e∗ = (e∗1, . . . , e
∗
n) is a basis of E∗. In particular, dimE∗ = dimE.

Proof. The elements e∗1, . . . , e∗n are linearly independent: Let
∑n

i=1 αie
∗
i = 0. For j = 1, . . . ,

n,

0 =
〈 n∑

i=1

αie
∗
i , ej

〉

=

n∑

i=1

αi〈e
∗
i , ej〉 =

n∑

i=1

αiδij = αj .
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The sequence e∗ spans E∗: Let us show that for all ϕ ∈ E∗,

ϕ =

n∑

i=1

〈ϕ, ei〉e
∗
i .(2)

It suffices to show that both sides take the same value on every vector u ∈ E. From (1), it follows
that

〈ϕ, u〉 =
〈

ϕ,

n∑

j=1

ej〈e
∗
j , u〉

〉

=

n∑

j=1

〈ϕ, ej〉〈e
∗
j , u〉.

On the other hand,
〈 n∑

i=1

〈ϕ, ei〉e
∗
i , u
〉

=

n∑

i=1

〈ϕ, ei〉〈e
∗
i , u〉.

1.2. Bidual space

Every vector u ∈ E defines a linear form evu : E∗ → K by

evu(ϕ) = ϕ(u).

Thus, evu ∈ (E∗)∗. Moreover, the map

ev : E → E∗∗; u 7→ evu

is linear since for u, v ∈ E, α, β ∈ K and ϕ ∈ E∗,

evuα+vβ(ϕ) = ϕ(uα+ vβ) = ϕ(u)α+ ϕ(v)β = evu(ϕ)α + evv(ϕ)β.

1.3. Theorem. The map ev : E → E∗∗ is a vector space isomorphism.

Proof. First, we show that ev is injective: if u ∈ E is such that evu = 0, then 〈ϕ, u〉 = 0 for all
ϕ ∈ E∗, hence u = 0 by Proposition 1.1. Therefore, Ker ev = 0 and ev is injective.

On the other hand, applying Theorem 1.2 twice, we find

dimE∗∗ = dimE∗ = dimE.

Since ev is injective, it is therefore also surjective.

The isomorphism ev is natural, inasmuch as it does not depend on the choice of bases in E and
E∗∗. It is used to identify these two vector spaces. Thus, for u ∈ E, it is agreed that

u = evu ∈ E∗∗.

Therefore, 〈u, ϕ〉 is defined for u ∈ E and ϕ ∈ E∗, and we have

〈u, ϕ〉 = 〈evu, ϕ〉 = ϕ(u) = 〈ϕ, u〉.

2. Orthogonality

For every subspace V ⊂ E, the orthogonal subspace V 0 ⊂ E∗ is defined by

V 0 = {ϕ ∈ E∗ | 〈ϕ, u〉 = 0 for all u ∈ V }.

It is easily checked that V 0 is a subspace of E∗.

2.1. Proposition. dimV 0 = dimE − dimV .

Proof. Let (e1, . . . , er) be a basis of V , which we extend into a basis e = (e1, . . . , er, er+1, . . . , en)
of E. Consider the last n− r elements of the dual basis e∗ = (e∗1, . . . , e

∗
r , . . . , e

∗
n). We shall show:

V 0 = span〈e∗r+1, . . . , e
∗
n〉.

The proposition follows, since the right side is a subspace of dimension n − r, as e∗r+1, . . . , e∗n are
linearly independent.

Equation (2) shows that every ϕ ∈ V 0 is a linear combination of e∗r+1, . . . , e∗n. Therefore,

V 0 ⊂ span〈e∗r+1, . . . , e
∗
n〉.
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On the other hand, every v ∈ V is a linear combination of (e1, . . . , er), hence equation (1) shows that

〈e∗i , v〉 = 0 for i = r + 1, . . . , n.

Therefore, e∗r+1, . . . , e∗n ∈ V 0, hence

span〈e∗r+1, . . . , e
∗
n〉 ⊂ V 0.

2.2. Corollary. For every subspace V ⊂ E,

V 00 = V

(under the identification of E and E∗∗, since V 00 ⊂ E∗∗).

Proof. By definition,

V 00 = {u ∈ E | 〈u, ϕ〉 = 0 for all ϕ ∈ V 0}.

Since 〈ϕ, u〉 = 0 for u ∈ V and ϕ ∈ V 0, we have V ⊂ V 00. Now, the preceding proposition and
Theorem 1.2 yield

dimV 00 = dimE∗ − dimV 0 = dimE − dimV 0 = dimV.

Therefore, the inclusion V ⊂ V 00 is an equality.

3. Transposition

Let A : E → F be a linear map between finite-dimensional vector spaces. The transpose map

At : F ∗ → E∗

is defined by

At(ϕ) = ϕ ◦A for ϕ ∈ F ∗.

3.1. Proposition. At is the only linear map from F ∗ to E∗ such that
〈
At(ϕ), u

〉
=
〈
ϕ,A(u)

〉
for all ϕ ∈ F ∗ and all u ∈ E.

Proof. For ϕ ∈ F ∗ and u ∈ E we have
〈
At(ϕ), u

〉
= 〈ϕ ◦A, u〉 = ϕ ◦A(u) =

〈
ϕ,A(u)

〉
,

hence At satisfies the property.
Suppose B : F ∗ → E∗ is another linear map with the same property. Then for all ϕ ∈ F ∗ and all

u ∈ E,
〈
B(ϕ), u

〉
=
〈
ϕ,A(u)

〉
=
〈
At(ϕ), u

〉
,

hence B(ϕ) = At(ϕ) and therefore B = At.

Now, let e and f be arbitrary bases of E and F respectively, and let e∗, f∗ be the dual bases.

3.2. Proposition. The matrices of At and A are related as follows:

e∗(At)f∗ = f (A)t
e.

Proof. Let f (A)e = (aij)16i6m
16j6n

, i.e.,

A(ej) =

m∑

i=1

fiaij for j = 1, . . . , n(1)

and e∗(At)f∗ = (a′ij) 16i6n
16j6m

, i.e.,

At(f∗
j ) =

n∑

i=1

e∗i a
′
ij for j = 1, . . . ,m.
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We have to prove a′ij = aji for i = 1, . . . , n and j = 1, . . . , m. Substituting At(f∗
j ) for ϕ in

equation (2) of section 1.1, we obtain

At(f∗
j ) =

n∑

i=1

〈
At(f∗

j ), ei

〉
e∗i for j = 1, . . . ,m,

hence a′ij =
〈
At(f∗

j ), ei

〉
. By Proposition 3.1, it follows that

a′ij =
〈
f∗

j , A(ei)
〉
.

On the other hand, we may compute the right side of this last equation by using equation (1), which
yields

〈
f∗

j , A(ei)
〉

=
〈

f∗
j ,

n∑

k=1

fkaki

〉

=

n∑

k=1

〈f∗
j , fk〉aki = aji.

Thus, a′ij = aji for i = 1, . . . , n and j = 1, . . . , m.

3.3. Proposition. 1. For A, B : E → F and α, β ∈ K,

(αA + βB)t = αAt + βBt.

2. For A : E → F and B : F → G,

(B ◦A)t = At ◦Bt.

3. For A : E → F ,

(At)t = A

(under the identifications E∗∗ = E and F ∗∗ = F , since (At)t : E∗∗ → F ∗∗).

Proof. These properties can be proved either by reduction to the corresponding properties of
matrices (by using arbitrary bases of the relevant spaces), or by using the characterization of transpose
maps in Proposition 3.1.



CHAPTER II

Quotient spaces

1. Definition

Let E be an arbitrary vector space over a field K and let V ⊂ E be an arbitrary subspace. For
x ∈ E let

x+ V = {x+ v | v ∈ V } ⊂ E.

1.1. Lemma. For x, y ∈ E, the equation x+ V = y + V is equivalent to x− y ∈ V .

Proof. Suppose first x+V = y+V . Since x = x+0 ∈ x+V , we have x ∈ y+V , hence x = y+v
for some v ∈ V and therefore x− y = v ∈ V .

Conversely, suppose x − y = v ∈ V . For all w ∈ V we then have x + w = y + (v + w) ∈ y + V ,
hence x+ V ⊂ y + V . We also have

y + w = x+ (w − v) ∈ x+ V,

hence y + V ⊂ x+ V , and therefore x+ V = y + V .

Let

E/V = {x+ V | x ∈ E}.

An addition and a scalar multiplication are defined on this set by

(x+ V ) + (y + V ) = (x+ y) + V for x, y ∈ E,

(x+ V )α = xα+ V for x ∈ E and α ∈ K.

It is easily checked that these operations are well-defined and endow the set E/V with a K-vector
space structure.

In view of the definitions above, the map

εV : E → E/V

defined by

εV (x) = x+ V

is a surjective linear map. It is called the canonical epimorphism of E onto E/V . Its kernel is the set
of x ∈ E such that x+ V = 0 + V . The lemma shows that this condition holds if and only if x ∈ V ;
therefore

Ker εV = V.

1.2. Proposition. Suppose E is finite-dimensional; then

dimE/V = dimE − dim V.

Moreover,

(a) if (e1, . . . , en) is a basis of E which extends a basis (e1, . . . , er) of V , then (er+1+V, . . . , en+V )
is a basis of E/V ;

(b) if (e1, . . . , er) is a basis of V and ur+1, . . . , un are vectors of E such that (ur+1+V, . . . , un+V )
is a basis of E/V , then (e1, . . . , er, ur+1, . . . , un) is a basis of E.
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Proof. Since Ker εV = V and Im εV = E/V , the relation between the dimensions of the kernel
and the image of a linear map yields

dimE = dimV + dimE/V.

(a) Since dimE/V = dimE−dimV = n−r, it suffices to prove that the sequence (er+1+V, . . . , en+V )
spans E/V . Every x ∈ E is a linear combination of e1, . . . , en. If

x = e1x1 + · · · + enxn,

then

x+ V = εV (x) = εV (e1)x1 + · · · + εV (en)xn.

Now, εV (ei) = 0 for i = 1, . . . , r since ei ∈ V , hence

x+ V = (er+1 + V )xr+1 + · · · + (en + V )xn.

(b) Since dimE = dimV + dimE/V , it suffices to prove that e1, . . . , er, ur+1, . . . , un are linearly
independent. Suppose

e1α1 + · · · + erαr + ur+1βr+1 + · · · + unβn = 0.(1)

Taking the image of each side under εV , we obtain (ur+1 + V )βr+1 + · · · + (un + V )βn = 0, hence
βr+1 = · · · = βn = 0. Therefore, by (1) it follows that α1 = · · · = αr = 0, since (e1, . . . , er) is a basis
of V .

2. Induced linear maps

Let A : E → F be a linear map and let V ⊂ E be a subspace. A linear map A : E/V → F is said
to be induced by A if

A(x+ V ) = A(x) for all x ∈ E.

In other words,

A ◦ εV = A.

This condition is also expressed as follows: the diagram

E
εV

//

A
��

??
??

??
??

E/V

A
}}{{

{{
{{

{{

F

is commutative or commutes.

2.1. Proposition. A linear map A : E → F induces a linear map

A : E/V → F

if and only if V ⊂ KerA.

Proof. If A ◦ εV = A, then A(v) = 0 for all v ∈ V since V = Ker εV . For the converse, suppose
V ⊂ KerA and consider x, x′ ∈ E. If x+ V = x′ + V , then x− x′ ∈ KerA, hence A(x− x′) = 0 and
therefore

A(x) = A(x′).

We may then define a map A : E/V → F by

A(x+ V ) = A(x) for all x ∈ E.

It is easily checked that the map A thus defined is linear.
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Now, consider a linear map A : E → F and subspaces V ⊂ E and W ⊂ F . A linear map

A : E/V → F/W

is said to be induced by A if

A(x+ V ) = A(x) +W for all x ∈ E

or, alternatively, if A◦εV = εW ◦A. This condition can also be expressed by saying that the following
diagram is commutative:

E
A

//

εV

��

F

εW

��

E/V
A

// F/W

or that A makes the above diagram commute.

2.2. Corollary. The linear map A : E → F induces a linear map A : E/V → F/W if and only
if A(V ) ⊂W .

Proof. Consider the linear map A′ = εW ◦ A : E → F/W . The preceding proposition shows
that there exists a linear map A such that A′ = A ◦ εV if and only if V ⊂ KerA′. In view of the
definition of A′, this condition is equivalent to

A(V ) ⊂ Ker εW = W.

If A(V ) ⊂W , we may restrict the linear map A to the subspace V and get a linear map

A|V : V →W.

We aim to compare the matrices of A, of A|V and of A : E/V → F/W .
Consider a basis e′ = (e1, . . . , er) of V , a basis e = (er+1 + V, . . . , en + V ) of E/V and the

sequence e = (e1, . . . , er, er+1, . . . , en) which, according to Proposition 1.2, is a basis of E. Similarly,
let f ′ = (f1, . . . , fs) be a basis of W , f = (fs+1 +W, . . . , fm +W ) a basis of F/W and consider the
basis f = (f1, . . . , fs, fs+1, . . . , fm) of F .

2.3. Proposition.

f (A)e =

(

f ′(A|V )e′ ∗

0 f (A)e

)

.

Proof. Let A(ej) =
∑m

i=1 fiaij for j = 1, . . . , n, so that

f (A)e = (aij)16i6m
16j6n

.

For j = 1, . . . , r we have ej ∈ V , hence A(ej) ∈ W . Therefore, A(ej) is a linear combination of f1,
. . . , fs, hence

aij = 0 for j = 1, . . . , r and i = s+ 1, . . . , m.

Moreover, A(ej) = A|V (ej) for j = 1, . . . , n, hence A|V (ej) =
∑s

i=1 fiaij and therefore

f ′(A|V )e′ = (aij)16i6s
16j6r

.

On the other hand, for j = r + 1, . . . , n,

A(ej + V ) = A(ej) +W =
m∑

i=1

(fi +W )aij .

For i = 1, . . . , s, we have fi ∈W , hence fi +W = 0. The preceding equation thus yields A(ej +V ) =
∑m

i=s+1(fi +W )aij for j = r + 1, . . . , n, hence

f (A)e = (aij)s+16i6m
r+16j6n

.
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The proof is thus complete.

In particular, if F = E and W = V ,

e(A)e =

(

e′(A|V )e′ ∗

0 e(A)e

)

and since the determinant of a block-triangular matrix is the product of the determinants of the blocks
the following corollary follows:

2.4. Corollary. detA = detA|V · detA and PcA = PcA|V ·PcA.

3. Triangulation

3.1. Proposition. Let A : E → E be a linear operator on a finite-dimensional vector space E.
There exists a basis e of E such that the matrix e(A)e is upper triangular if and only if the characteristic
polynomial PcA decomposes into a product of factors of degree 1.

Proof. If the matrix e(A)e is upper triangular, let

e(A)e =






λ1 ∗
. . .

0 λn




 ,

then PcA(X) = (X − λ1) . . . (X − λn).
Conversely, suppose PcA decomposes into a product of factors of degree 1. We argue by induction

on the dimension of E. If dimE = 1, there is nothing to prove since every matrix of order 1 is upper
triangular. Let dimE = n. By hypothesis, the characteristic polynomial of A has a root λ. Let
e1 ∈ E be an eigenvector of A with eigenvalue λ and let V = e1K be the vector space spanned by e1.
We have

A(V ) = A(e1)K = e1λK ⊂ V,

hence A induces a linear operator

A : E/V → E/V.

By Corollary 2.4, we have PcA(X) = (X−λ) PcA(X), hence the characteristic polynomial of A decom-
poses into a product of factors of degree 1. By induction, there exists a basis e =
(e2 + V, . . . , en + V ) of E/V such that the matrix e(A)e is upper triangular. Proposition 1.2 shows
that the sequence e = (e1, e2, . . . , en) is a basis of E. Moreover, by Proposition 2.3,

e(A)e =

(
λ ∗

0 e(A)e

)

.

Since the matrix e(A)e is upper triangular, so is e(A)e.



CHAPTER III

Tensor product

1. Tensor product of vector spaces

Let E1, . . . , En, F be vector spaces over a field K. Recall that a map

f : E1 × · · · × En → F

is called n-linear or multilinear if

f(x1, . . . , xi−1, xiα+ x′iα
′, xi+1, . . . , xn) =

f(x1, . . . , xi−1, xi, xi+1, . . . , xn)α + f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)α′

for each i = 1, . . . , n and for all x1 ∈ E1, . . . , xi−1 ∈ Ei−1, xi, x
′
i ∈ Ei, xi+1 ∈ Ei+1, . . . , xn ∈ En and

α, α′ ∈ K. In other words, for each i = 1, . . . , n and for all x1 ∈ E1, . . . , xi−1 ∈ Ei−1, xi+1 ∈ Ei+1,
. . . , xn ∈ En fixed, the map

f(x1, . . . , xi−1, •, xi+1, . . . , xn) : Ei → F

which carries x ∈ Ei to f(x1, . . . , xi−1, x, xi+1, . . . , xn) is linear. For example, all the products for
which the distributive law holds are bilinear maps.

Clearly, if f : E1 × · · · ×En → F is multilinear and A : F → G is linear, then the composite map
A ◦ f : E1 × · · · × En → G is multilinear. It turns out that, for given E1, . . . , En, there exists a
“universal” linear map ⊗ : E1 × · · · × En → E1 ⊗ · · · ⊗En, called the tensor product of E1, . . . , En,
from which all the multilinear maps originating in E1 × · · · × En can be derived. The goal of this
section is to define this universal map.

1.1. Universal property

Let E1, . . . , En be vector spaces over a field K. A pair (f, F ) consisting of a K-vector space F and
a multilinear map

f : E1 × · · · × En → F

is called a universal product of E1, . . . , En if the following property (called the universal property)
holds: for every K-vector space G and every multilinear map

g : E1 × · · · ×En → G

there exists a unique linear map A : F → G such that g = A ◦ f or, in other words, which makes the
following diagram commute:

E1 × · · · ×En

f
//

g
&&MMMMMMMMMMM

F

A
~~~~

~~
~~

~~

G.

The existence of a universal product is far from obvious. By contrast, the uniqueness (up to isomor-
phism) easily follows from the definition by abstract nonsense.

1.1. Proposition. Suppose (f, F ) and (f ′, F ′) are two universal products of E1, . . . , En. Then
there is one and only one vector space isomorphism ϕ : F → F ′ such that the following diagram

9
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commutes:

E1 × · · · ×En

f
//

f ′

&&MMMMMMMMMMM
F

ϕ
~~}}

}}
}}

}}

F ′.

Proof. The existence of a unique linear map ϕ : F → F ′ such that f ′ = ϕ ◦ f follows from the
universal property of (f, F ). We have to show that ϕ is bijective. To achieve this goal, observe that
the universal property of (f ′, F ′) yields a linear map ϕ′ : F ′ → F such that f = ϕ′ ◦ f ′. Now, the
following diagrams commute:

E1 × · · · ×En

f
//

f
&&LLLLLLLLLLL F

IdF
����

��
��

��

F

E1 × · · · ×En

f
//

f
&&MMMMMMMMMMM F

ϕ′◦ϕ
��~~

~~
~~

~~

F.

In view of the uniqueness condition in the universal property of (f, F ), it follows that ϕ′ ◦ ϕ = IdF .
Similarly, the universal property of (f ′, F ′) shows that ϕ◦ϕ′ = IdF ′ . Therefore, ϕ and ϕ′ are reciprocal
bijections.

This proposition shows that a universal product of E1, . . . , En, if it exists, can be considered
as unique. We shall refer to this universal product as the tensor product of E1, . . . , En and denote
it as (⊗, E1 ⊗ · · · ⊗ En). The image of an n-tuple (x1, . . . , xn) ∈ E1 × · · · × En under ⊗ is denoted
x1 ⊗ · · · ⊗ xn.

Our next goal is to prove the existence of the tensor product. We consider first the case where
n = 2 and then derive the general case by associativity.

1.2. The tensor product of two vector spaces

1.2. Proposition. Let µ : Km ×Kn → Km×n be defined by

µ
(
(xi)16i6m, (yj)16j6n

)
= (xiyj)16i6m

16j6n

.

The pair (µ,Km×n) is a universal product of Km and Kn.

Proof. Denoting the elements of Km and Kn as column vectors, we have

µ(x, y) = x · yt for x ∈ Km and y ∈ Kn,

where · denotes the matrix multiplication Km×1 × K1×n → Km×n. Therefore, the bilinearity of µ
follows from the properties of the matrix multiplication.

Let (ci)16i6m (resp. (c′j)16j6n) be the canonical basis of Km (resp. Kn). Let also

eij = µ(ci, c
′
j) for i = 1, . . . , m and j = 1, . . . , n.

Thus, eij ∈ Km×n is the matrix whose only non-zero entry is a 1 at the i-th row and j-th column.
The family (eij)16i6m

16j6n

is a basis of Km×n. Therefore, given any bilinear map

B : Km ×Kn → F,

we may use the construction principle to obtain a linear map ϕ : Km×n → F such that ϕ(eij) =

B(ci, c
′
j). For all x =






x1

...
xm




 ∈ Km and y =






y1
...
yn




 ∈ Kn, we have x =

∑m
i=1 cixi, y =

∑n
j=1 c

′
jyj ,

hence

µ(x, y) =
∑

16i6m
16j6n

xiyjµ(ci, c
′
j) =

∑

16i6m
16j6n

xiyjeij
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and

B(x, y) =
∑

16i6m
16j6n

xiyjB(ci, c
′
j) =

∑

16i6m
16j6n

xiyjϕ(eij) = ϕ
( ∑

16i6m
16j6n

xiyjeij

)

.

Therefore, B = ϕ ◦ µ.
Uniqueness of the linear map ϕ : Km×n → F such that B = ϕ ◦ µ is clear, since this equation

yields

B(ci, c
′
j) = ϕ

(
µ(ci, c

′
j)
)

= ϕ(eij),

and a linear map is uniquely determined by the image of a basis. Thus, (µ,Km×n) is a universal
product of Km and Kn.

1.3. Theorem. Any two vector spaces over a field K have a tensor product.

Proof. We give the proof for finite-dimensional vector spaces only. If dimE = m and dimF = n,
we may identify E to Km and F to Kn by the choice of arbitrary bases of E and of F (by mapping
every vector in E (resp. F ) to the m-tuple (resp. n-tuple) of its coordinates with respect to the chosen
basis). The preceding proposition then shows that (µ,Km×n) is a universal tensor product of E and
F .

Note that, even though bases of E and F were chosen in the proof of the theorem, the tensor
product itself does not depend on the choice of bases (but its identification with (µ,Km×n) does). It
is a canonical construction. To simplify the notation, we suppress the bilinear map ⊗ in the tensor
product notation (⊗, E ⊗ F ), and refer to the tensor product of E and F simply as E ⊗ F .

1.4. Corollary. If e = (ei)16i6m is a basis of E and f = (fj)16j6n is a basis of F , then
(ei ⊗ fj)16i6m

16j6n

is a basis of E ⊗ F . In particular, dim(E ⊗ F ) = dimE dimF .

Proof. It was observed in the proof of Proposition 1.2 that
(
µ(ci, c

′
j)
)

16i6m
16j6n

is a basis of Km×n.

If E is identified with Km and F with Kn by means of the bases e and f , then e and f correspond
to the canonical bases of Km and Kn respectively, hence µ(ci, c

′
j) = ei ⊗ fj .

The corollary shows that every element in E⊗F has the form
∑

16i6m
16j6n

αijei⊗fj for some αij ∈ K.

Grouping terms, we obtain

∑

16i6m
16j6n

αijei ⊗ fj =

n∑

j=1

( m∑

i=1

αijei

)

⊗ fj

hence every element in E ⊗ F can be written in the form

x1 ⊗ y1 + · · · + xr ⊗ yr

for suitable x1, . . . , xr ∈ E and y1, . . . , yr ∈ F (and r ∈ N). Note that this expression is not unique:
for instance,

(e1 + e2) ⊗ f1 + (e1 − e2) ⊗ f2 = e1 ⊗ (f1 + f2) + e2 ⊗ (f1 − f2).

1.3. The tensor product of three or more vector spaces

Let E1, E2, E3 be vector spaces over K. We may consider the tensor products E1 ⊗ E2 and (E1 ⊗
E2) ⊗ E3. The map

⊗′ : E1 × E2 × E3 → (E1 ⊗ E2) ⊗ E3

defined by ⊗′(x1, x2, x3) = (x1 ⊗ x2) ⊗ x3 is 3-linear.

1.5. Proposition. The pair
(
⊗′, (E1 ⊗ E2) ⊗ E3

)
is a universal product of E1, E2 and E3.
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Proof. Let T : E1 × E2 × E3 → F be a 3-linear map. For all x3 ∈ E3, the map

T (•, •, x3) : E1 × E2 → F

is bilinear, hence there is a unique linear map ϕx3
: E1 ⊗ E2 → F such that

ϕx3
(x1 ⊗ x2) = T (x1, x2, x3) for all x1 ∈ E1, x2 ∈ E2.

For x1 ∈ E1, x2 ∈ E2, x3, x
′
3 ∈ E3 and α, α′ ∈ K, we have

T (x1, x2, αx3 + α′x′3) = αT (x1, x2, x3) + α′T (x1, x2, x
′
3),

hence

ϕαx3+α′x′

3
(x1 ⊗ x2) = αϕx3

(x1 ⊗ x2) + α′ϕx′

3
(x1 ⊗ x2).

Since E1 ⊗ E2 has a basis consisting of products x1 ⊗ x2, by Corollary 1.4, and since a linear map is
uniquely determined by the image of a basis, it follows that

ϕαx3+α′x′

3
= αϕx3

+ α′ϕx′

3
.(1)

Consider the map Φ: (E1 ⊗ E2) × E3 → F defined by

Φ(ξ, x3) = ϕx3
(ξ) for ξ ∈ E1 ⊗ E2 and x3 ∈ E3.

By (1) and since each map ϕx3
is linear, the map Φ is bilinear. Therefore, the universal property of

tensor products yields a linear map

ϕ : (E1 ⊗ E2) ⊗ E3 → F

such that

ϕ(ξ ⊗ x3) = Φ(ξ, x3) for all ξ ∈ E1 ⊗ E2, x3 ∈ E3.

In particular,

ϕ
(
(x1 ⊗ x2) ⊗ x3

)
= ϕx3

(x1 ⊗ x2) = T (x1, x2, x3),

hence T = ϕ ◦ ⊗′.
Uniqueness of the map ϕ satisfying this equation is clear, since every element in (E1 ⊗ E2) ⊗ E3

can be written as
∑

i(xi ⊗ yi)⊗ zi =
∑

i ⊗
′(xi, yi, zi) for some xi ∈ E1, yi ∈ E2 and zi ∈ E3. If ϕ and

ϕ′ satisfy T = ϕ ◦ ⊗′ = ϕ′ ◦ ⊗′, we must have

ϕ
(∑

i

(xi ⊗ yi) ⊗ zi

)

=
∑

i

T (xi, yi, zi) = ϕ′
(∑

i

(xi ⊗ yi) ⊗ zi

)

,

hence ϕ = ϕ′.

The proposition above proves the existence of the tensor product E1 ⊗ E2 ⊗ E3, and shows that
there is a canonical isomorphism

E1 ⊗ E2 ⊗ E3 = (E1 ⊗ E2) ⊗ E3.

Obviously, we also have E1 ⊗ E2 ⊗ E3 = E1 ⊗ (E2 ⊗ E3). By induction, it follows that the tensor
product of arbitrarily many vector spaces exists, and may be defined by associativity.

The following corollary also follows by induction on the number of factors:

1.6. Corollary. Let (eiji
)16ji6ni

be a basis of Ei, for i = 1, . . . , r. Then

(e1j1 ⊗ e2j2 ⊗ · · · ⊗ erjr
)16j16n1

···
16jr6nr

is a basis of E1 ⊗ · · · ⊗Er. In particular,

dimE1 ⊗ · · · ⊗ Er = dimE1 . . . dimEr.
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1.4. Example

Let E1, . . . , En be finite-dimensional K-vector spaces and let F be an arbitrary K-vector space.
Denote by M(E1 × · · · ×En, F ) the set of all multilinear maps

f : E1 × · · · ×En → F.

It is easily checked that M(E1 × · · · × En, F ) is a subspace of the space F(E1 × · · · × En, F ) of all
mappings E1 × · · · ×En → F .

Let E∗
i be the dual space of Ei for i = 1, . . . , n. For y ∈ F and ϕ1 ∈ E∗

1 , . . . , ϕn ∈ E∗
n, define

θy,ϕ1,... ,ϕn
: E1 × · · · ×En → F

by

θy,ϕ1,... ,ϕn
(x1, . . . , xn) = y〈ϕ1, x1〉 · · · 〈ϕn, xn〉.

Clearly, the map θy,ϕ1,... ,ϕn
is multilinear, hence

θy,ϕ1,... ,ϕn
∈M(E1 × · · · ×En, F ).

Moreover, it is also clear that

(y, ϕ1, . . . , ϕn) 7→ θy,ϕ1,... ,ϕn

is a multilinear map F ×E∗
1 × · · · ×E∗

n →M(E1 × · · · ×En, F ). We denote it by θ. By the universal
property of tensor products, θ induces a linear map

Θ: F ⊗ E∗
1 ⊗ · · · ⊗E∗

n →M(E1 × · · · ×En, F ).

1.7. Theorem. The map Θ is an isomorphism of vector spaces.

Proof. We have to show that Θ is one-to-one and onto. To achieve this, we construct a reciprocal
map. For i = 1, . . . , n, let (eiji

)16ji6mi
be a basis of Ei, and let (e∗iji

)16ji6mi
be the dual basis. For

every multilinear map f ∈M(E1 × · · · ×En, F ), define

Ψ(f) =
∑

16j16m1
···

16jn6mn

f(e1j1 , . . . , enjn
) ⊗ e∗1j1

⊗ · · · ⊗ e∗njn
∈ F ⊗ E∗

1 ⊗ · · · ⊗E∗
n.

The map Ψ: M(E1×· · ·×En, F ) → F ⊗E∗
1 ⊗· · ·⊗E∗

n is linear. To prove that Ψ and Θ are reciprocal
bijections, we shall show1 that Ψ ◦ Θ is the identity on F ⊗ E∗

1 ⊗ · · · ⊗ E∗
n and Θ ◦ Ψ is the identity

on M(E1 × · · · ×En, F ).
Every element in F ⊗ E∗

1 ⊗ · · · ⊗E∗
n can be written in the form

ξ =
∑

16j16m1
···

16jn6mn

yj1···jn
⊗ e∗1j1

⊗ · · · ⊗ e∗njn
.

For this ξ, we have

Θ(ξ) =
∑

16j16m1
···

16jn6mn

θyj1···jn ,e∗

1j1
,... ,e∗

njn

hence

Θ(ξ)(e1k1
, . . . , enkn

) =
∑

16j16m1
···

16jn6mn

yj1···jn
〈e∗1j1

, e1k1
〉 · · · 〈e∗njn

, enkn
〉

= yk1···kn

for all k1 = 1, . . . , m1, . . . , kn = 1, . . . , mn.

1The notation makes the following proof hardly readable. The reader is warmly encouraged to check the statement
by him/herself!
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Now, by definition of Ψ we have

Ψ ◦ Θ(ξ) =
∑

16j16m1
···

16jn6mn

Θ(ξ)(e1k1
, . . . , enkn

) ⊗ e∗1k1
⊗ · · · ⊗ e∗nkn

=
∑

16j16m1
···

16jn6mn

yk1···kn
⊗ e∗1k1

⊗ · · · ⊗ e∗nkn

= ξ.

Therefore, Ψ ◦ Θ is the identity on F ⊗ E∗
1 ⊗ · · · ⊗E∗

n.
Now, let f ∈M(E1 × · · · ×En, F ). We have

Θ ◦ Ψ(f) =
∑

16j16m1
···

16jn6mn

θf(e1j1
,... ,enjn ),e∗

1j1
,... ,e∗

njn
,

hence

Θ ◦ Ψ(f)(e1k1
, . . . , enkn

) =
∑

16j16m1
···

16jn6mn

f(e1j1 , . . . , enjn
)〈e∗1j1

, e1k1
〉 · · · 〈e∗njn

, enkn
〉

= f(e1k1
, . . . , enkn

)

for all k1 = 1, . . . , n1, . . . , kn = 1, . . . , mn. Since multilinear maps are uniquely determined
by their values on basis elements, it follows that Θ ◦ Ψ(f) = f , hence Θ ◦ Ψ is the identity on
M(E1 × · · · ×En, F ).

Note that the isomorphism Θ is canonical, even though its reciprocal isomorphism Ψ is defined
above through the choice of bases of E1, . . . , En. We may therefore use Θ to identify

F ⊗ E∗
1 × · · · ×E∗

n = M(E1 × · · · ×En, F ).

This provides an alternative definition for the tensor product of vector spaces, at least when all but
one of the factors are finite-dimensional.

2. Formalism

2.1. Covariant and contravariant behaviour

Let E be a finite-dimensional vector space over a field K, and let (ei)16i6n be a basis of E. It is
sometimes convenient to write the coordinates of vectors x ∈ E with upper indices instead of lower
indices.2 We thus write

x =

n∑

i=1

eix
i.

This notation is simplified by the Einstein convention: on every index appearing twice in a formula,
the summation is understood:

x = eix
i (= xiei).

For notational coherence, the entries in any change-of-basis matrix receive an upper index and a lower
index: if (e′α)16α6n is another basis of E we write

e′α = eia
i
α(1)

(instead of e′α =
∑n

i=1 eiaiα). So, (ai
α)16i6n are the coordinates of e′α with respect to (ei)16i6n. The

upper index is the row index and the lower index is the column index. If (bαi )16i,α6n is the inverse
matrix, we have (by definition of the inverse matrix)

ai
αb

β
i = δβ

α and ai
αb

α
j = δi

j

2Of course, upper indices should not be confused with exponents. There should not be any confusion, since in
(multi)linear algebra exponents appear very exceptionally.
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where δi
j (resp. δβ

α) is the Kronecker symbol, i.e., δi
j = 1 if i = j and δi

j = 0 if i 6= j. We also have

ei = e′αb
α
i .(2)

Now, consider a vector x = eix
i = e′αx

′α. Substituting eia
i
α for e′α, we obtain x = eia

i
αx

′α, hence

xi = ai
αx

′α.(3)

Similarly,

x′
α

= bαi x
i.(4)

It is a crucial observation that, although (3) and (4) look like (1) and (2), these equations are
essentially different: multiplying by the matrix ai

α transforms ei into e′α while it has the reverse effect
on coordinates, transforming x′

α
into xi.

Now, consider the dual bases (e∗i )16i6n and (e′
∗
α)16α6n. (These are bases of the dual space E∗.)

Equation (2) in section 1.1 of Chapter I yields

e′
∗
α = e∗i 〈e

′∗
α, ei〉 and e∗i = e′

∗
α〈e

∗
i , e

′
α〉

hence, taking into account (1) and (2),

e′
∗
α = e∗i b

α
i and e∗i = e′

∗
αa

i
α.(5)

In view of these equations, notational coherence dictates to denote ei for e∗i and e′α for e′∗α; then (5)
can be rewritten as

e′
α

= eibαi and ei = e′
α
ai

α.(6)

These equations are exactly like (4) and (3).
To complete the picture, consider a linear form ϕ ∈ E∗. Equation (2) of section 1.1 of Chapter I

yields

ϕ = ei〈ϕ, ei〉 = e′
α
〈ϕ, e′α〉.

Therefore, the coordinates (ϕi)16i6n (resp. (ϕ′
α)16α6n) of ϕ with respect to the basis (ei)16i6n (resp.

(e′α)16α6n) of E∗ are given by

ϕi = 〈ϕ, ei〉, ϕ′
α = 〈ϕ, e′α〉.

Using (1) and (2), we get

ϕ′
α = 〈ϕ, ei〉a

i
α = ϕia

i
α and ϕi = 〈ϕ, e′α〉b

α
i = ϕ′

αb
α
i ,(7)

which should be compared to (3) and (4).
Thus, coordinates of linear forms behave under a change of basis exactly like basis vectors: this

is the covariant behaviour. By contrast, coordinates of vectors and dual basis vectors behave in the
opposite way to basis vectors: they display the so-called contravariant behaviour.

2.2. Covariant and contravariant tensors

For p and q any natural numbers, let

T q
p (E) = E∗ ⊗ · · · ⊗E∗

︸ ︷︷ ︸

p

⊗E ⊗ · · · ⊗E
︸ ︷︷ ︸

q

if p, q are not both zero,

and T 0
0 (E) = K. The elements in T q

p (E) are called p-covariant and q-contravariant tensors on E.
This is a shameless abuse of terminology, since the elements in T q

p (E) do not vary at all. It is
motivated by the fact that the coordinates of elements in T q

p (E) have p covariant (i.e., lower) indices
and q contravariant (i.e., upper) indices, as we proceed to show.

Let (ei)16i6n be a basis of E, and let (ei)16i6n be the dual basis, which is a basis of E∗. Corol-
lary 1.6 shows that (ei1 ⊗· · ·⊗eip ⊗ej1 ⊗· · ·⊗ejq

)16i1,... ,jq6n is a basis of T q
p (E), hence every element

in T q
p (E) can be written as

t = t
j1···jq

i1···ip
ei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq

.(8)
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Let (e′α)16α6n be another basis of E and (e′
α
)16α6n be its dual basis, and suppose the bases are

related by

e′α = eia
i
α and ei = e′αb

α
i(9)

hence

e′
α

= eibαi and ei = e′
α
ai

α,

as in the preceding section. Substituting in (8), we get

t = t
j1···jq

i1···ip
(e′

α1ai1
α1

) ⊗ · · · ⊗ (e′
αpaip

αp
) ⊗ (e′β1

bβ1

j1
) ⊗ · · · ⊗ (e′βq

b
βq

jq
)

=
(
t
j1···jq

i1···ip
ai1

α1
· · · aip

αp
bβ1

j1
· · · b

βq

jq

)
e′

α1 ⊗ · · · ⊗ e′
αp ⊗ e′β1

⊗ · · · ⊗ e′βq
.

Therefore, the coordinates t′
β1···βq

α1···αp
of t ∈ T q

p (E) with respect to the basis (e′
α1 ⊗ · · · ⊗ e′

αp ⊗ e′β1
⊗

· · · ⊗ e′βq
)16α1,... ,βq6n are given by

t′
β1···βq

α1···αp
= t

j1···jq

i1···ip
ai1

α1
· · ·aip

αp
bβ1

j1
· · · b

βq

jq
.(10)

This shows that the lower indices are indeed covariant while the upper indices are contravariant (as
they should).

Similarly, we have

t
j1···jq

i1···ip
= t′

β1···βq

α1···αp
bα1

i1
· · · b

αp

ip
aj1

β1
· · ·a

jq

βq
.

From a formal point of view, the change of basis formula (10) is the only condition for an indexed
array to be the coordinates of a p-covariant and q-contravariant tensor, as the following tensoriality
criterion shows.

2.1. Theorem. Suppose that to each basis e = (ei)16i6n of E is attached an array of scalars
(
u(e)

j1···jq

i1···ip

)

16i1,... ,jq6n
∈ Knp+q

. There exists a tensor in T q
p (E) whose coordinates with respect to

each basis e are u(e)
j1···jq

i1···ip
if and only if the arrays attached to any two bases e, e′ related by (9) satisfy

u(e′)
β1···βq

α1···αp
= u(e)

j1···jq

i1···ip
ai1

α1
· · · aip

αp
bβ1

j1
· · · b

βq

jq
.

Proof. The “if” part readily follows from the computation leading to equation (10). To prove
the “only if” part, pick an arbitrary basis ẽ of E and define a tensor u ∈ T q

p (E) by

u = u(ẽ)
j1···jq

i1···ip
ẽi1 ⊗ · · · ⊗ ẽip ⊗ ẽj1 ⊗ · · · ⊗ ẽjq

.

By definition,
(
u(ẽ)

j1···jq

i1···ip

)

16i1,... ,jq6n
is the array of coordinates of u with respect to the basis (ẽi1 ⊗

· · ·⊗ẽip⊗ẽj1⊗· · ·⊗ẽjq
)16i1,... ,jq6n. We have to show that for any basis ê = (êα)16α6n, the coordinates

of u with respect to (êα1⊗· · ·⊗ êαp ⊗ êβ1
⊗· · ·⊗ êβq

)16α1,... ,βq6n are
(
u(ê)

β1···βq

α1···αp

)

16α1,... ,βq6n
. Suppose

êα = ẽia
i
α and ẽi = êαb

α
i , hence êα = ẽibαi and ẽi = êαai

α. Then by (10) the coordinates of u with
respect to (êα1 ⊗ · · · ⊗ êαp ⊗ êβ1

⊗ · · · ⊗ êβq
)16α1,... ,βq6n are

(

u(ẽ)
j1···jq

i1···ip
ai1

α1
· · · aip

αp
bβ1

j1
· · · b

βq

jq

)

16α1,... ,βq6n
.

By hypothesis, this array is
(
u(ê)

β1···βq

α1···αp

)

16α1,... ,βq6n
.

2.3. Tensors on euclidean spaces

In this section, we assume that the vector space E is finite-dimensional and endowed with a scalar
product

(·|·) : E × E → K,

i.e., a symmetric bilinear form which is non-degenerate in the sense that (x|y) = 0 for all y ∈ E implies
x = 0. Using the scalar product, we define a linear map

Φ: E → E∗
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by mapping every vector x ∈ E to the linear form y 7→ (x|y), so

〈
Φ(x), y

〉
= (x|y) (= (y|x)) for x, y ∈ E.

The non-degeneracy condition on the scalar product means that Φ is injective, hence it is bijective
since dimE = dimE∗, by Theorem 1.2 of Chapter I. We may thus use Φ to identify E and E∗, hence
also T q

p (E) with Tp+q(E) or T p+q(E).
In the rest of this section, we show how this identification works at the level of coordinates.
Let (ei)16i6n be an arbitrary basis of E. For i, j = 1, . . . , n, let

gij = (ei|ej) ∈ K.

The matrix (gij)16i,j6n is the Gram matrix of the scalar product with respect to the basis (ei)16i6n.
Its entries are the coordinates of the 2-covariant tensor

g = (ei|ej)e
i ⊗ ej ∈ E∗ ⊗ E∗

which corresponds to the scalar product (or to the map Φ) under the identification of Theorem 1.7:

M(E × E,K) = E∗ ⊗ E∗ (= M(E,E∗)).

The tensor g is called the metric tensor on the euclidean space E.
For i = 1, . . . , n, the basis vector ei ∈ E is identified with Φ(ei) ∈ E∗. By equation (2) of

section 1.1 of Chapter I, we have

Φ(ei) = ej
〈
Φ(ei), ej

〉
= ej(ei|ej) = gije

j ,

hence

ei = gije
j under the identification E = E∗.(11)

Consequently, any p-covariant and q-contravariant tensor

t = t
j1···jq

i1···ip
ei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq

∈ T q
p (E)

is identified to

t
j1···jq

i1···ip
ei1 ⊗ · · · ⊗ eip ⊗ (gj1k1

ek1) ⊗ · · · ⊗ (gjqkq
ekq)

=
(
t
j1···jq

i1···ip
gj1k1

· · · gjqkq

)
ei1 ⊗ · · · ⊗ eip ⊗ ek1 ⊗ · · · ⊗ ekq .

We may therefore define the (p+ q)-covariant coordinates of t as follows:

ti1···ipj1···jq
= t

k1···kq

i1···ip
gk1j1 · · · gkqjq

.

To define the (p + q)-contravariant coordinates of t, we use the inverse of the Gram matrix
(gij)16i,j6n. (The Gram matrix is invertible because the scalar product is non-degenerate.) Let
(gij)16i,j6n be the inverse matrix. From equation (11), we derive

ei = gijej,

hence

t = t
j1···jq

i1···ip
(gi1k1ek1

) ⊗ · · · ⊗ (gipkpekp
) ⊗ ej1 ⊗ · · · ⊗ ejq

=
(
t
j1···jq

i1···ip
gi1k1 · · · gipkp

)
ek1

⊗ · · · ⊗ ekp
⊗ ej1 ⊗ · · · ⊗ ejq

.

Therefore, the (p+ q)-contravariant coordinates of t are

ti1···ipj1···jq = t
j1···jq

k1···kp
gk1i1 · · · gkpip .
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3. Tensor product of linear maps

3.1. Theorem. For i = 1, . . . , n, let Ai : Ei → Fi be a linear map. There is a linear map

A1 ⊗ · · · ⊗An : E1 ⊗ · · · ⊗En → F1 ⊗ · · · ⊗ Fn

such that

(A1 ⊗ · · · ⊗An)(x1 ⊗ · · · ⊗ xn) = A1(x1) ⊗ · · · ⊗An(xn)(1)

for all x1 ∈ E1, . . . , xn ∈ En.

Proof. This follows from the universal property of tensor products, applied to the multilinear
map

E1 × · · · ×En → F1 ⊗ · · · ⊗ Fn

which carries (x1, . . . , xn) ∈ E1 × · · · ×En to A1(x1) ⊗ · · · ⊗An(xn).

Clearly, the linear map A1⊗· · ·⊗An is uniquely determined by condition (1), since every element
in E1 ⊗ · · · ⊗En is a sum of products x1 ⊗ · · · ⊗ xn.

3.2. Proposition. 1. If Ai : Ei → Fi and Bi : Fi → Gi are linear maps, for i = 1, . . . , n,
then

(B1 ◦A1) ⊗ · · · ⊗ (Bn ⊗An) = (B1 ⊗ · · · ⊗Bn) ◦ (A1 ⊗ · · · ⊗An).

2. IdE1
⊗ · · · ⊗ IdEn

= IdE1⊗···⊗En
.

3. If Ai is injective (resp. surjective) for all i = 1, . . . , n, then A1 ⊗ · · · ⊗ An is injective (resp.
surjective).

Proof. 1. For x1 ∈ E1, . . . , xn ∈ En, we have

(B1 ◦A1) ⊗ · · · ⊗ (Bn ◦An)(x1 ⊗ · · · ⊗ xn) = B1 ◦A1(x1) ⊗ · · · ⊗Bn ◦An(xn)

and

(B1 ⊗ · · · ⊗Bn) ◦ (A1 ⊗ · · · ⊗An)(x1 ⊗ · · · ⊗ xn) = (B1 ⊗ · · · ⊗Bn)
(
A1(x1) ⊗ · · · ⊗An(xn)

)

= B1 ◦A1(x1) ⊗ · · · ⊗Bn ◦An(xn).

2. For x1 ∈ E1, . . . , xn ∈ En we have

(IdE1
⊗ · · · ⊗ IdEn

)(x1 ⊗ · · · ⊗ xn) = IdE1
(x1) ⊗ · · · ⊗ IdEn

(xn)

= x1 ⊗ · · · ⊗ xn

= IdE1⊗···⊗En
(x1 ⊗ · · · ⊗ xn).

3. If Ai is injective (resp. surjective), then there is a linear map Bi : Fi → Ei such that Bi ◦Ai =
IdEi

(resp. Ai ◦Bi = IdFi
), hence

(B1 ⊗ · · · ⊗Bn) ◦ (A1 ⊗ · · · ⊗An) = IdE1⊗···⊗En

(resp. (A1 ⊗ · · · ⊗An) ◦ (B1 ⊗ · · · ⊗Bn) = IdF1⊗···⊗Fn
)

by the first two parts of the proposition. It follows that A1 ⊗ · · · ⊗ An is injective (resp.
surjective).


