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Introduction :

Generalized crossec products, in which the Galois field extension is
replacec by a central simple algebra over a Galois field extensicn, were
defined by Teichmiller in 1540. In the present paper, a multiplication
formula for generalized creossed products is proved. This multiplicatiaon
formula fturns out to be useful to investigate the structure of (inertially
split) division algeoras over Henselian valued fields, as Jacob and
Wadsworth show in [3,§5 ]. Ancther applicatien in the same vein is given
in secticn Z af the present paper, where the index and the exponent of

generic abelian extensions of central simple algebras are determined.

The author wishes to thank A. Wadsworth for his keen interest in this

WOTK.

“. A multiplication formula for generalized crossed products.

1.1. Let G and M be (multiplicative) groups. Assume G acts by automor-
ohisms on the center Z(M) of M. A factor set of G in M is a couple
lw,f) of maps

w : G+ Aut(M)

GxG—*M

—+

such that, denoting by Inn(m) the inner automorphism x = mx m
wo(zl = glz) for g € G, z € Z[M)

w_ew = Inn(flo,1)).w for 0,7 € G
J T aT

wOEfET.vJ]F[U,Tv] = flog,t)flaot,v) for o,t,v € G.

* Supperted in part by the FNRS.




1f G acts trivially on Z(M}, then the set F{G,M) of factor sets of G
im M contains the trivial element (I,1), where I, is the identity aon M

for all o € G and 1({g,7) = 1 for all 0,1t € G. If the action of G on
7(M] is not trivial, then F(G,M) may be empty.

Factor sets (w,f) and (n,g) are said to oe cohomologous if there exists

in M a family (mU]GEG such that

n

Innim J.w far g € G
g g a

-1
and gla,t) acwo[aT]F[c,T)acT for ¢,.T € G.

It is readily verified that cohomclogy is an equivalence relation on
F(G,M). The guotient of F(G,M) by this relation is denoted by H(G,M).
These definitions are classical : they date back at least to Q. Schreier
[10]who showed that the sets H(G,M), for the various actions of G on
Z(M), classify the group externsions of M Dy G. If M is abelian, then
H(G,M) = HZEG,M].

1.2. Henceforth, we focus on the follocwing special case, first ccnsidered
oy 0. Teichmiller [11,p.145 ]1: G is the Galois group of a (finite) exten-
sign af fields K/F and M = A® is the multiplicative group of invertible

claments in a (finite-dimensional) central simple K-algebra Ai
Moreover, we consider only actions w : G Aut[Ax) of G on A" which

arise from actions of G on A by ring-autcmorphisms. If
S S
F(3,A7") is not empty, then for each factor set (w,f) a generalizec cros-

sed procduct (A,G,{w,f)} is constructed as follows

(A.Gfw,F)) = B_ . AZ_

where the zg's are indeterminates subject to the relaticns :

N
1}
1]

wg[a].zO for a €A and g €06

N
~
]

E F[c,r].ch for o,T € G.

It is easily checked that (A,Glw,f)) is an associative F-algebra with
/]

identify element F(I,I) 2. The algebra A can be identified to a sub-

algebra of [(A,Glw,f)) by mapping a € A onto a.F(I,I]-1.zI, and the

same arguments as in the commutative case {where A = K} (see for instarce

[4,§8.4 ]) yield the following results




1.3. THEOREM :

a) The generalized crossed product (A,Gfw,f)) s a central simple F-algebra

of degree [K : F ] deg A. The algebra A is the centralizer of K in (A,G,lw.f)).
b) If a central simple F-algebra A contains K, then, denoting by A the centra-

lizer of K in A, there exists a factor set (w,f) € F(G,A") such that
A=~ (A,C, (w,f)).
c) Factor sets (w,f) and (n,g) in F(5,A") are cohomologous if and only ©if
(A,G, (w,f)) =~ (A,G,(n,g)).

1.4. COROLLARY : The map (w,f) = [ (A,Glw,f)) ] € Br(F) defines a 1-1 corres-
pondence between H(G,A") and the set of similarity classes [A ] € Br(F)
such that [A EF K1=10A].

Proof : The only assertion which does not readily follow from the preceding
thecrem is that if a class [A ] satisfies [A B K ]1=[A 1], then it is of the
form [ (A,G, (w,f)) ]. In order to prove that, consider a maximal subfield L
of the division algebra D which is similar to A. Since A is split by i, it
is similar to an algebra B containing L as a maximal subfield. If A = Mr[D]’

then MF[B] contains K and

(M (B) : F ] 2L F1%-0[A:KIK : FI2

Therefore, the centralizer C of K in MF(B} nas the following properties
[C:K]=[A:K] and [C ]= [MF[B] EF K1 =1A EF K1 =[A1.
It follows that C =~ A, hence part (a) of the preceding theorem shows that

Mr[B] has the farm (A,G, (w,f)) for some [w,f] € F[G,Ax].

1.5. Let now A and B be central simple K-algebras and let f{w,f) € F(G,A"}
and (n,g) € F(G,B"). A factor set (w 8 n, ¥ 8 g) € F(GA 2 B)*) is then
defined as fcllows : for o € G, (w & nJU =W ] Ny is the automorphism

which maps a 8 b onto mg[a] & n_(bl,and for o,t € G,
(f 8 g) (og,1) = flo,1) 8 glo,T),
1.6. THEOREM : Letting ~ denote similarity of central simple algebras,

(A,G, {w, 1)) EF (B,G,(n,gl}) ~ (A B B,GlwB&n, fag).

K

Proof : Dencte

A = AJ » = - = k] 2 » = -
" (A,Gf{w,f)) = B ___ A.x B = (B,5.(n.g)) = 8 . B.y_

C = r » r = L] L]
(A& B, G loBnfBegl) =8 (A8 Bl.z

Let I be the left ideal of A EF B generated by all the elements of the form
(a.k) 8 b - a@ (b.k)] for a €A, b€B and k € K.

The guotient V = (A B Bl/I 1is a left A 8 B - module on which C acts on the

right by




. 5 A
(v + I].[EU[ac | bc]zcl v.{EG S 8 bU yc} + I for v €ARB,
ay € A and b0 € B.

(That an action of C on V is well-defined by this formula is a tedious but

straightfoward verification.)

The actions of A ) B and C on V define an embedding :
g C°P c
A QF B .F C EndF(V}. (1]
To complete the proof, it suffices to show :

dim_ V = deg A.deg B.deg C,

ie. dim. V = [A : FLIB : FLIK : 170,
since then A B ¢ & End_(V) ~ F,
hence A EF B~ C.

In fact, the embedding (1) already yields :
dim. V > deg A.deg B.deg C,
so it suffices to prove the reverse inequality.

Let [ai} (resp. [bj}] be a basis of A (resp. B) as a right vector space

nver K, and let EKGJ be a basis of K over F. Then (aika B b ] is a

1“8
basis of A QF B over F, and since

a.k BbH, k, =Ea, Bb,.k k mod I,
i g j B i I a B

it follows that [ai ) bj ka + I} generates V as a vector space over F.

Therefore, dimF ve[A:F].[B: F].IK : F ]-1.

and the prcof is complete.

1.7. Remark. In the commutative case, i.e. when A = B = K, theorem 1.6
amounts to the well-known multiplication formula for crossed products.
The proof above is copied from the proof of that formula in [ 2,pp.94-95],
for that matter. A. Wadsworth pointed out that the classical proof of
the multiplication formula (see e.g. [4,Theorem 8.9 1) can also be adap-
ted to generalized crossed products : since A and B both contain K, the

tensor product A 8- B contains

F o€G g




where (EGJGEG are orthogenal idempotents such that
k 8 1.80 =18 otk].ec for o € G, kK € K.
Then A 8 B~ eI.A g B.eI and one verifies that
er- A B B.eI = C.

Oetails are left to the reader.

1.8. COROLLARY : If H(G,A") Zs not empty. then for any factor set
(0, f) € F(G.A") there is a bijection H2(G,K*) = H(G,A") which maps

any 2-coecyele c to (w,f.cl.

Proof : It suffices to show that the map is onta, since injectivity is

readily checked. Let (n,g) € F(G,A"). By theorem 1.3,

(A,G.(n,g)) B (A,G, (0, )17 82 K v A B A% ~ K
therefore, (A,G,(n,g)) ~ (A,G,(w,f)) EF (K,G,c)

for some cocycle < € ZZ(G.Kx]. By theorem 1.5, the right-hand side is

similar to

(A QF K, 6,(w 8 I,f 8 c)) = (A,G,(w,f.c)],

hence, by theorem 1.3, the factor sets (n,g) and (w,f.c) are cohomologous.

2. Generic abelian extensions of central simple algebras.

2.1. Let A be a (finite-dimensional) central simple algebra over a field
F. Assume A contains a Galois extensicn K of F with abelian Galois group
5, and denote by A the centralizer of K in A. A generic abelian exten-
sion of A [with respect to a basis of G) can then be constructed by
mimicking the canstruction of A from A and replacing generators of A by
indeterminates (see 2.2 below for a precise definition]. This was first
done by Amitsur and Saltman {1 1in the special case where A = K. Their
construction was subsequently generalized by Rowen [7] (see also his
construction in [ 8]) tc the case where K is contained in a Galois maxi-

mal subfisld of A.

In this section, we define a generic abelian extension of A and determine
its (Schur) index and exponent in full gererality. This is done by
discussing simultaneously a power series counterpart first considered by

3,4. Neumann {5 ], tc which recent results of Jacob and Wadsworth cn




Henselian valuations con divisicn algebras can be applied.
2.2. For each ¢ € G, pick 2z € A* such that
z k =o(k] z for all K € K ;
o} c

let W € Aut(A) be the restriction of Inn[zg] ta A and let

flo,t) = 2_ 2 2-1 € A* for all o,T € G ;
c T OoT

then (w,f) € F(G,AY) and A = (A,G,(w,f)).

For simplicity, we assume henceforth that =z

1 1 ; then w_ =1 and
f(o,t) = © whenever o or T is L.

Now, fix a surjective homomorphism

€ En -+ G

and consider formal series

z

s=za€Z” % ‘a ’

where Za is an indeterminate and a_ €A for a € Z'. The support of

such a series is defined as usual :
supp(s) = {a € z" | 2y £ Gl

Let then PEEA.G,[w.f]] {resp. SEEA,G,(m,f]]}[denoted simply by P and $

in the seguel) be the set of all formal series whose support is finite
(resp. well-ordered with respect to some {fixed) tntal-ordering on Zchampa*
tible with its group structure). Multiplication is defimed oh P and S by the

£ { i
fullowing relations 7 .a = w (a).Z
a ela) a

Za.Zs = flela),e(8)) Za+B'

The centers of P and § are easily determined : letting I' = ker £, we

have

(P = {2

vEr
{

£ Z €PIlf €F}
Y oY Y

W

Z(S) £ Z E€SIf €F}.
Y Y

Fyer Ty
The ring Z(P) is a domain  which can be identified to the group ring
of T over F, while Z(8) is a field of formal power series in n indeter-

minates with coefficients in F.

Let R (= RE[A.G,[u,F]]] be the ring of central guotients of P. The cen-
ter of R is the ring of fractions of Z(P), which we denote by F'. We




also denote

F=2(8) ;
thus Fr CF, PcRCS
and it is easily verified that
S = =
R GF‘ F.

The ring R is a generic abelian extension of A, as defined in [7,§2].

5. 3. THEOREM : R and S are central simple algebras over F' and F respec-
tively. Their degree, exponent and (Schur) index are

deg R = ceg S = deg A (= [K : F].deg Al.

exp R = exp 3= Z.c.m. (exp G, exp Al.

ind R = ind S =[x : F ].ind{A g K (= [K : F].ind{A)).

In particular, tf one of the algebras A, R or S is a division algebra, then

the other two are also division algebwae. [ compare [ 12,Theorem 2.7.1and [ 13,
Proposition 2.41])
Proof. In order to prove the first part, it suffices to represent R

and S as generalized crossed products. Let

K= {t k Z €8] k €K}
¢ ye€r v v Y
and K' = KNR ;
let also -

A = (I er aY ZY € S| a € A}
and A' = ANR.

Then, K/F anc K'/F' are Galois extensions with Galois group G, and A

{resp. A') is the centralizer of K (resp. K') in S (resp. R).

Now, choose & map

p ¢+ G *“Eﬂ

such that ep = I. For simplicity, we assume moreover p(I}) = 0. The

indeterminates Zp(c}' for o € G, generate S (resp. R) as a left vector

-

space over A (resp. A') and are subject to the following relations :

= w (a).2z for a € A and o €6
g 0

Zo[c]'a (g

o s ——— -



Zp(o]'zp(r] = FLGJT)C(U'T)ZQ(OT] for ao,t € G,
whera cla,t} = Zp[o)+pttl-otcr]€ ’
Therefore,
S = (A5, (w,fc)) and R = (A',G,(w,fc)).

This proves that S and R are central simple algebras of the same degree

as A. Moreover, since

(A,G,(w,f)) = A B F and (A",G,(w,f1) = AR F
the isomorphisms above also yield, by theorem 1.6 :
S A8 (K,G,c) and R~ A B (K'.G.cl. (2)

In order to determine the index and the exponent of §, observe that F
is Henselian with respect to the valuation

v : F=T
defined by vis] = min (supp(s)).

‘see [ 9, Corcliary, p.91].or [S, Corolleire, p. 103 1).

5.4, LEMMA : The algebra N = (K,3,c) 1§ a nicely semiranified diviswon

algebra ; the quoient of value groups FN/F ig naturally tsomorphic to

G.
Proof : Let N = 8 K x where the indeterminates X gatisfy the
— g€G a a
relations
Xg k = alk) X5 for c €5 and k€ K
x x =oclo,1) % for o,t € G.
g T ot
For a € ZZn, define
X =17
a a-pela) *ela) €N
so that, inm particular,
X =12 for vy € T.
Y Y
Then
. n
Xor. XB = xoﬁB for a,B € Z
and

>
=
"

ela)(ki.x_for a € z" and k € K.




Every element in N can be regarded as a series with well-ordered support

in the X 's, hence N can be identified to the ring SE(K.G,11. where

1€ ZZ{G.KX] je the trivial cocycle. It then follows from a general

result of B.H. Neumann [5,Theorem 5.7 ] that N is a division algebra.

Moreaover, N contains as maximal subflelds the field K, which is inertial
- ] |

over F, and the field {Z cn fuxa ENIF € F}, which is totally

ramified of radical type over F; this shows that N is nicely semirami-

fied. Finally, Ty = Z" and ¢ induces an isomorphism FN/F * G.

2.5. End of the proof of theorem 2.3 : Thedivisionalgebra similar to

A8 B is inertial over F, hence it follaws from (2), by theorem 5.13
cf [3], that ind S = [K : F].ind A and exp S = &cm (exp G, exp A).
In arder to determine the index and the exponent of R, first note that
from -
S-Ra., F,
it readily follows that
ind S divides 1ind R and exp S divides exp K. {(3)

If M is a maximal subfielg of the division algebra similar to A, then
MY =M QF F' contains K' and splits A, hence also R, in view of (2].
Therefore,

ind R civides [M' : F' ] ={K : F]l.ind A. {4}
On t-e other hand, if e = exp G, then eplg) € T for all o € G, hence

Z ., € F' and
e -1
= .2 .
clo, 1) zeo[u] eplT] Zep[or]

is a coboundary in HZ(G,K'XJ. Therefare,

exp(K',G,c} divides sxp G
and from (2) it follows that

exp R divides £cm (exp G, exp A), {5)

Since ind S=[K : F] ind A and exp S = £cm [exp G, exp A), relations
(3), (4) and (5) show that ind R = ind § and exp R = exp 8, and com-

clete the proof.
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