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Abstract. According to Tits, the quadric of dimension 6 over the “field”

F1 with one element is a set of 8 points structured by a permutation of or-

der 2 without fixed points. Subsets that are disjoint from their image under
the permutation are the subspaces of the quadric. As in the classical case of

hyperbolic quadrics over an arbitrary field, maximal subspaces come in two

different types. We define a geometric triality to be a permutation of order 3
of the set consisting of points and maximal subspaces, carrying points to max-

imal subspaces of one type and maximal subspaces of the other type to points
while preserving the incidence relations. We show analogues over F1 of the

one-to-one correspondence between geometric trialities, trialitarian automor-

phisms of algebraic groups of type D4, and symmetric composition algebras of
dimension 8. Here, the algebraic groups of type D4 are replaced by their Weyl

group, which is the semi-direct product S3
2 oS4, and composition algebras by

a certain type of binary operation on a quadric to which a 0 is adjoined. As
in the classical case, we show that there are two types of trialities, one related

to octonions and the other to Okubo algebras.

1. Introduction

As shown by Tits ([Tit57]) all split simple adjoint algebraic groups can be realized
as automorphism groups of geometries. Their Weyl groups can as well be realized
as automorphism groups of certain finite geometries, which Tits calls geometries
over the “field” F1 of one element. For example a n-dimensional projective space
over F1 is a set with n+ 1 elements and its automorphism group is the symmetric
group on n + 1 elements Sn+1. The motivation for introducing this “field” which
does not exist is as follows. There exist geometries over finite fields with q elements,
whose groups of automorphisms are the Chevalley groups over the corresponding
fields. If q tends towards 1 one gets geometries having as automorphism groups
the Weyl groups. Another introductory paper to projective geometry over F1 is
[Coh04]. Tits’s ideas led more than thirty years later to new developments in what
is called today F1-geometry (see [LPn12] for a survey).

In this paper, which is in Tits’s original spirit, we classify trialities over F1. At
the end of [Tit57] Tits observes that some important properties of quadrics (over
ordinary fields) also hold for quadrics over F1. An example mentioned by Tits
without details is triality. Tits refers to unpublished work of Mlle F. Lenger. We
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were unable to trace her work, but we assume that some of our results are similar
to hers.

Classically, triality appears in two different settings: as a geometric property of 6-
dimensional quadrics and as trialitarian automorphisms, i.e., outer automorphisms
of order 3 of simple adjoint or simple simply connected algebraic groups of type
D4. There are two types of solids on a 6-dimensional quadric, and geometric triality
permutes cyclically the points and the two types of solids on the quadric. Following
the pioneering work of Élie Cartan ([Car25]) and its beautiful presentation by van
der Blij and Springer ([vdBS60]), it was observed by Markus Rost that a specific
kind of composition algebras, which Rost called symmetric compositions, is well
suited to describe triality in both settings (see [KMRT98, Ch. VIII]). Symmetric
compositions exist in dimension 2, 4, and 8. As shown in [CKT12] the classifications
of 8-dimensional symmetric compositions and of trialities are, in fact, equivalent.
One of the aims of this paper is to introduce symmetric compositions over F1 so
that triality over F1 can be presented in a way parallel to classical triality.

After recalling in Section 2 how algebra and geometry look over F1, we introduce
symmetric compositions over F1 in Section 3 and prove that they occur only in
dimension 2, 4, and 8. In Section 4 we use geometric or combinatorial techniques to
describe geometric triality over F1. Absolute points and hexagons, a tool introduced
by Tits in his IHES paper on triality ([Tit59]), play here a fundamental role. We
close this section by constructing a bijective correspondence between geometric
trialities and 8-dimensional symmetric compositions.
Trialitarian automorphisms over F1 are outer automorphisms of order 3 of the
Weyl group of type D4, which is the semi-direct product S3

2 o S4. We show in
the last part of the paper that the three kind of objects: 8-dimensional symmetric
compositions over F1, geometric trialities over F1 and trialitarian automorphisms
are in bijective correspondence. There are two types of each, which we describe
explicitly. One type of 8-dimensional symmetric compositions is closely related to
octonions (whose connection with triality in the classical case was already noticed

by É. Cartan) and the other case is related to algebras introduced by the theoretical
physicist S. Okubo.

2. Geometry and algebra over F1

Vector spaces and projective spaces. Following Kapranov–Smirnov ([KS95])
we define a finite-dimensional vector space V over F1 as a finite pointed set V =
{x1, . . . , xn, 0}, with n elements x1, . . . , xn and a distinguished point 0. The
associated projective space P(V) over F1 is the set 〈V〉 = V \ {0}. The dimension
dimV of V is the cardinality |〈V〉| of 〈V〉 and the dimension of P(V) is equal to
dimV −1. Thus, as in Tits ([Tit57]), a projective space of dimension n − 1 over
F1 is a set with n elements. Linear subspaces are subsets containing 0. Any linear
subspace U of V defines a linear subvariety 〈 U 〉 = U \ {0} of P(V). Linear maps of
vector spaces over F1 are maps of pointed sets and the full linear group of a vector
space V over F1 is the permutation group S(〈V〉), which is as the same time the
projective linear group of P(V):

GL(V) = PGL(〈V〉) = S(〈V〉).
Direct sums V ⊕ V ′ of vector spaces are given by disjoint unions where the zero
elements are identified.
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Quadratic forms. A (nonsingular) quadratic form on an even-dimensional vector
space V over F1 is a bijective self-map of order 2

˜ : V → V, x 7→ x̃,

without fixed points on 〈V〉 and such that 0̃ = 0. We call the pair Q = (V, ˜)
an even-dimensional quadratic space over F1. The map ˜ will be referred to from
now on as the structure map of the quadratic space. Orthogonal sums Q ⊥ Q′ of
quadratic spaces are direct sums of the underlying vector spaces, with the structure
map that restricts to the structure map on each summand. A quadratic subspace
is a linear subspace U ⊂ V that is preserved by the structure map. For any linear
subspace U , we set U⊥ = {x ∈ V | x̃ /∈ U} t {0}. In the language of diagram
geometry the operator ⊥ is a (thin) polarity. If U is a nonsingular subspace, then
V = U ⊥ U⊥. Isotropic subspaces of V are linear subspaces U of V such that
U ⊂ U⊥, i.e., if x ∈ U and x 6= 0, then x̃ /∈ U . If dimV = 2n, isotropic subspaces
have dimension at most n. If U is maximal isotropic, we have U = U⊥ and for
x 6= 0 the condition x ∈ U is equivalent to x̃ /∈ U .
If Q = (V, ˜) is a 2n-dimensional quadratic space, the structure map ˜ restricts
to a map 〈V〉 → 〈V〉 also denoted by ˜. Following Tits ([Tit57, p. 287] the pair
〈Q 〉 =

(
〈V〉, ˜) is a (hyper)quadric of dimension 2n−2 in P(V). Isotropic subspaces

of Q of dimension k + 1 define k-dimensional subvarieties of 〈Q〉, which we call k-
solids. 0-solids are points, 1-solids lines, 2-solids planes, and (n− 1)-solids are the
maximal solids. The structure map ˜ extends to a map of k-solids to k-solids still
denoted by ˜. Observe that ω ∩ ω̃ = ∅ for any solid ω.
We say that two maximal isotropic spaces U and U ′ (resp. two maximal solids ω
and ω′) are of the same kind if dim(U ∩ U ′) has the same parity as dimU (resp. if
dim(ω ∩ ω′) has the same parity as dimω). Thus maximal isotropic subspaces are
of two kinds. Let C(〈Q 〉) be the set of maximal isotropic subspaces of Q (or the
set of maximal solids in 〈Q 〉). The choice of a decomposition C(〈Q 〉) = C1 t C2,
where C1 is the set of subspaces of one fixed kind and C2 the set of subspaces of the
other kind, is an orientation ∂ of 〈Q 〉. More precisely, an orientation is a surjective
map

(2.1) ∂ : C(〈Q 〉)→ {1, 2}

such that ∂−1(1) = C1 is the set of maximal solids of one kind and ∂−1(2) = C2 is
the set of maximal solids of the other kind.
Isometries of quadratic spaces φ : (V, ˜) → (V ′, ˜) are linear maps φ : V → V ′

such that φ̃(x) = φ(x̃) for all x ∈ V. The restrictions of isometries to 〈V〉 are
the isomorphisms of quadrics. We let O(Q) (= PGO(〈Q 〉) denote the group of
isometries Q → Q (or the group of isomorphisms 〈Q 〉 → 〈Q 〉) and define O+(Q)
(= PGO+(〈Q 〉)) as the subgroup of isometries (or isomorphisms) that map C1 to
C1 and C2 to C2. The elements of O+(Q) are the proper isometries. Observe that
proper isometries respect each of the two orientations.
The group Sn acts by permutations on Sn

2 . Viewing Sn−1
2 as a subgroup of Sn

2

through the exact sequence

1→ Sn−1
2 → Sn

2
π→ S2 → 1, π(ε1, . . . , εn) = ε1 · . . . · εn,

we get an action of Sn on Sn−1
2 .
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Lemma 2.2. For any quadratic space Q of dimension 2n, the group O(Q) =
PGO(〈Q 〉) is isomorphic to the semi-direct product Sn

2 o Sn, and O+(Q) =
PGO+(〈Q 〉) is isomorphic to Sn−1

2 oSn.

Proof. For any x ∈ 〈Q 〉, let σx ∈ O(Q) be the reflection

σx(y) =

{
ỹ if y ∈ {x, x̃},
y if y /∈ {x, x̃}.

Any element of O(Q) induces a permutation of the set of n pairs {x, x̃} for x ∈ 〈Q〉.
Thus we get a homomorphism π : O(Q)→ Sn whose kernel is the subgroup Sn

2 of
O(Q) generated by all reflections σx. Moreover the sequence

1→ Sn
2 → O(Q)→ Sn → 1

is split, hence the first claim.
Fixing x ∈ 〈Q 〉, note that every maximal solid ω of 〈Q 〉 contains either x or x̃. If
x ∈ ω, then σx(ω) is the solid obtained by substituting x̃ for x in ω, hence

(2.3) dim
(
ω ∩ σx(ω)

)
= (dimω)− 1.

The same equation holds if x̃ ∈ ω. Therefore, every reflection switches the two
kinds of maximal solids, and a product of reflections is in O+(Q) if and only if the
number of factors is even. The second claim follows. �

Observe that the center of O+(Q) is the group of order 2 generated by the structure
map ˜.

Lemma 2.4. The group PGO(〈Q 〉) acts transitively on C(〈Q 〉) and, given an
orientation of 〈Q 〉, the group PGO+(〈Q 〉) acts transitively on C1 and on C2.

Proof. Let ω, ω′ be maximal solids of the quadric 〈Q 〉, and let x1, . . . , xr be the
points in their intersection, so if Q = {0, xi, x̃i}ni=1 we may assume

ω = {x1, . . . , xr, xr+1, . . . , xn} and ω′ = {x1, . . . , xr, x̃r+1, . . . , x̃n}.
Using the reflections σx defined in the proof of Lemma 2.2, we have

ω′ = σxr+1
◦ · · · ◦ σxn(ω).

Note that σxr+1
◦ · · · ◦ σxn ∈ PGO(〈Q 〉), and this element lies in PGO+(〈Q 〉) if

n− r is even, which occurs if and only if ω and ω′ are maximal solids of the same
kind. �

An incidence relation between k-solids, for k = 0, 1, 2,. . . , n− 1, is defined by the
inclusion. Moreover, two maximal solids of different kinds are called incident if the
dimension of their intersection has the same parity as their own dimension. With
this incidence relation the sets of points, lines, up to maximal solids of Q define
a geometry whose automorphism group is the Weyl group of type Dn (see [Tit57,
(3.2)]).

Lemma 2.5. For any two maximal solids ω, ω′ on a quadric 〈Q 〉, there exists a
finite sequence of maximal solids ω0, . . . , ωs of 〈Q 〉 such that

• ω0 = ω, ωs = ω′, and
• ωi−1 and ωi are incident for all i = 1, . . . , s.

The integer s is even if and only if ω and ω′ are of the same kind.
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Proof. By Lemma 2.4, there exist reflections σ1, . . . , σs such that ω′ = σs ◦ · · · ◦
σ1(ω). Set ωi = σi ◦ · · · ◦σ1(ω), and observe that ωi−1 and ωi are incident by (2.3).

�

Example 2.6. Let F be a field, let V be a 2n-dimensional vector space over F and
let P = P(V ) be the associated projective space of dimension 2n − 1 over F . We
designate by 〈X〉 the subvariety of P(V ) defined by a linear subspace X of V . Let
Q = (V, q) be a 2n-dimensional hyperbolic quadratic space (in the classical sense)
over F and let b be the polar of q. Let 〈Q〉 be the 2n − 2-dimensional quadric in
P defined by the equation q = 0. Lines (resp. planes, ..., (n − 1)-solids on 〈Q 〉
are linear subvarieties defined by 2- (resp. 3-, ..., n-dimensional) totally isotropic
subspaces of P. We say again that two maximal solids ω, ω (resp. two maximal
isotropic subspaces U and U ′) are of the same kind if dim(ω ∩ ω′) has the same
parity as dimω (resp. dim(U∩U ′) has the same parity as dimU). Let PGO(〈Q 〉) be
the subgroup of the group PGL(V ) of collineations of P(V ) mapping 〈Q 〉 to itself.
The special projective orthogonal group of 〈Q 〉 is the subgroup PGO+(〈Q 〉) of
PGO(〈Q 〉) of collineations respecting the decomposition of the set of solids into
the two types.
Let {ei, fi}ni=1 be a hyperbolic basis of Q, i.e.,

q(ei) = q(fj) = 0 and b(ei, fj) = δij for i, j = 1, . . . , n.

The set Q = {ei, fi}ni=1 ∪ {0} with x 7→ x̃ defined as ẽi = fi, f̃i = ei, 0̃ = 0, is
a typical example of a quadratic space over F1. Elements of PGO(〈Q 〉) (resp. of
PGO+(〈Q 〉)) are the restrictions of elements of PGO(〈Q 〉) (resp. of PGO+(〈Q 〉))
which map Q to itself.

Algebras. A finite-dimensional algebra (S, ?) over F1 is a finite-dimensional F1-
vector space S together with a map

? : S × S → S, (x, y) 7→ x ? y,

called the multiplication, such that 0 ? x = x ? 0 = 0 for all x ∈ S. If (S, ?) is an
algebra over F1, the opposite algebra (S, ?op), is defined by x ?op y = y ? x.

Example 2.7. Let S be a finite-dimensional algebra (not necessarily associative
and not necessarily with unit element) over a field F . If S admits a basis {ui} such
that the multiplication table with respect to this basis is monomial, i.e., ui · uj =
λijkuk for some λijk ∈ F , we deduce from S an algebra S = {vi} over F1, with
product ? defined by

vi ? vj =

{
vk if λijk 6= 0,

0 if λijk = 0.

The philosophy is that an algebra structure that can be defined in terms of multi-
plication only (i.e., without using the addition) goes over to F1.

3. Symmetric compositions

Symmetric compositions form a class of algebras that play a fundamental role in
triality over arbitrary fields (see [KMRT98, Ch. VIII] and [CKT12] for recent re-
sults). In this section, we show that symmetric compositions have analogues over
F1. We first recall the situation over fields.
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Symmetric compositions over fields. A composition on a finite-dimensional
quadratic space (S, n) is a bilinear multiplication ? on S for which the quadratic
form is multiplicative in the sense that

(3.1) n(x ? y) = n(x)n(y) for all x, y ∈ S.

Linearizing this equation yields the following formulas for the polar bilinear form
b: for all x, y, z ∈ S,

(3.2) b(x ? y, x ? z) = n(x)b(y, z) and b(y ? x, z ? x) = b(y, z)n(x)

and

(3.3) b(x ? y, u ? v) + b(x ? v, u ? y) = b(x, u)b(y, v) for all x, y, u, v ∈ S.

The composition is called symmetric if the polar bilinear form b is associative; i.e.,

(3.4) b(x ? y, z) = b(x, y ? z) for all x, y, z ∈ S.

By [KMRT98, (34.1)], we then also have the relations

(3.5) x ? (y ? x) = n(x)y = (x ? y) ? x for all x, y ∈ S,

and their linearizations

(3.6) x? (y ? z) + z ? (y ?x) = b(x, z)y = (x?y) ? z+ (z ? y) ?x for all x, y, z ∈ S.

Symmetric compositions are completely classified. We refer for example to [KMRT98,
§34] for details.

Symmetric compositions over F1. Let (S, ˜) be a nonzero even-dimensional
quadratic space over F1.

Definition 3.7. A symmetric composition on (S, ˜) is an algebra multiplication ?
on S satisfying the following properties for all x, y ∈ S:

(SC1) x̃ ? y = x̃ ? ỹ.
(SC2) If x, y 6= 0, then x ? y = 0 ⇐⇒ x ? ỹ 6= 0 ⇐⇒ x̃ ? y 6= 0 ⇐⇒ x̃ ? ỹ = 0.
(SC3) If x ? y 6= 0, then (x ? y) ? x̃ = y and ỹ ? (x ? y) = x.
(SC4) If x? y = 0, then (x⊥? y)?x = y ?(x?y⊥) = {0}; i.e., (u?y)?x = y?(x?v) = 0

for all u 6= x̃ and v 6= ỹ.

Given a symmetric composition, the opposite algebra is also a symmetric com-
position. We say that two symmetric compositions � and ? on S are isomorphic
(resp. properly isomorphic) if there is φ ∈ O(S) (resp. φ ∈ O+(S)) such that
φ(x ? y) = φ(x) � φ(y) for all x, y ∈ S. An involution of (S, ?) is an isometry ι of
order 2 of S such that ι(x ? y) = ι(y) ? ι(x) for x, y ∈ S.

Explanation 3.8. The choice of the above rules for symmetric compositions over F1

can be explained as follows. The idea is to draw consequences of the axioms of
classical symmetric compositions with hyperbolic norm for the elements of a hy-
perbolic basis, ignoring scalar factors and recording only the vanishing or non-
vanishing of scalars. Let ? be a classical symmetric composition on a hyperbolic
quadratic space (S, n) over a field, let {ei, fi}ni=1 be a hyperbolic basis of S, and
let S = {ei, fi}ni=1 ∪ {0}. Define on S the structure map ˜ by

0̃ = 0, ẽi = fi, f̃i = ei for i = 1, . . . , n.
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Thus, for nonzero x, y ∈ S, we have

b(x, y) =

{
1 if x = ỹ,

0 if x 6= ỹ,
and n(x) = 0.

Assuming the composition ? is monomial, as in Example 2.7, we obtain on S an
F1-algebra structure. We next show that (SC1)–(SC4) hold for this structure.
When x, y ∈ S are such that x?y 6= 0, the symmetry condition (3.4) with z = x̃ ? y
yields b(x, y ? z) 6= 0, hence

(3.9) x̃ = y ? (x̃ ? y).

Multiplying on the right by y and applying (3.5), we obtain

x̃ ? y =
(
y ? (x̃ ? y)

)
? y = n(y) x̃ ? y = 0.

Similarly, applying (3.4) with x = ỹ ? z yields

(3.10) (ỹ ? z) ? y = z̃ when y ? z 6= 0,

hence, by (3.5),

y ? z̃ = y ?
(
(ỹ ? z) ? y

)
= n(y) ỹ ? z = 0.

We have thus shown that if x?y 6= 0, then x̃ ?y = x? ỹ = 0, hence ˜̃x ? y = 0 = x? ỹ.
If x ? y = 0, the multiplicativity condition (3.3) yields

b(x ? v, u ? y) = b(x, u)b(y, v).

If u = x̃ 6= 0 and v = ỹ 6= 0, the right side is nonzero, hence we must have

b(x?ỹ, x̃?y) 6= 0. Therefore, x?ỹ 6= 0, x̃?y 6= 0, and ˜̃x ? y = x?ỹ. Conditions (SC1)
and (SC2) follow, and (SC3) follows from (3.9) and (3.10), in view of (SC1). Finally,
(SC4) is a consequence of (3.6).

We next record for later use some immediate consequences of the axioms of a
symmetric composition over F1. We use the following notation: for x ∈ S,

x ? S = {x ? y | y ∈ S} and S ? x = {y ? x | y ∈ S}.

Lemma 3.11. Suppose ? is a symmetric composition on a quadratic F1-space
(S, ˜).
(1) Let u, v, x ∈ S. If u ? x 6= 0, then

(u ? x) ? (x ? v) =

{
0 if v ∈ (u ? x)⊥,

x if v = ũ ? x.

In particular, we have

(S ? x) ? (x ? S) = {0, x}.
(2) For all x ∈ S we have x ? x = 0 or x̃.

Proof. To prove (1), observe that if v = ũ ? x 6= 0, then (SC3) yields (u?x)?(x?v) =
x. If v ∈ (u ? x)⊥, we have (u ? x) ? (x ? v) = 0 by (SC4).
Now, let x ∈ S, and assume x ? x 6= 0. For y = x ? x we have by (SC3)

x̃ ? y = x = y ? x̃,

hence

(y ? x̃) ? (x̃ ? y) = x ? x = y.

By (1), the left side is in {0, x̃}, which proves (2). �
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Examples 3.12. We claim that there is only one 2-dimensional symmetric com-
position algebra S = {x, x̃, 0} over F1, given by the multiplication table

? x x̃
x x̃ 0
x̃ 0 x

To see this, note that if x ? x 6= x̃, we must have x ? x = 0 by Lemma 3.11(2), but
then x ? x̃ 6= 0 by (SC2), hence x ? x̃ = x or x ? x̃ = x̃. If x ? x̃ = x, then, by (SC3),
x = x ? (x ? x̃) = x ? x = 0. Similarly the case x ? x̃ = x̃ can be excluded.
In dimension 4, the multiplication table

? x x̃ y ỹ
x x̃ 0 y 0
x̃ 0 x 0 ỹ
y 0 y 0 x̃
ỹ ỹ 0 x 0

defines a symmetric composition. One can verify that this is, up to isomorphism,
the unique symmetric composition in dimension 4.

Symmetric compositions in dimension 8. Classically, symmetric compositions
exist only in dimensions 1, 2, 4 and 8. Over an algebraically closed field, there is
one isomorphism class in dimensions 2 and 4, and two classes in dimension 8. These
algebras are called split symmetric compositions. We describe the two split classes
in dimension 8 and show that they lead to symmetric compositions over F1. We
use the representation of the split Cayley algebra Cs by Zorn matrices.

We let q denote the usual scalar product on F 3 = F × F × F , and × the vector
product: for a = (a1, a2, a3) and b = (b1, b2, b3) ∈ F 3,

a qb = a1b1 +a2b2 +a3b3 and a× b = (a2b3−a3b2, a3b1−a1b3, a1b2−a2b1).

The Zorn algebra (see [Zor30, p. 144]) is a representation of the split Cayley algebra
as the set of matrices

(3.13) Z =

{(
α a
b β

) ∣∣∣∣ α, β ∈ F, a, b ∈ F 3

}
with the product(

α a
b β

)
·
(
γ c
d δ

)
=

(
αγ + a q d αc+ δa− b× d

γb+ βd+ a× c βδ + b q c
)
,

the norm

n

(
α a
b β

)
= αβ − a q b,

and the conjugation (
α a
b β

)
7→
(
α a
b β

)
=

(
β −a
−b α

)
,

which is such that ξ · ξ = ξ · ξ = n(ξ) for all ξ ∈ Z.

The new product(
α a
b β

)
∗
(
γ c
d δ

)
=

(
α a
b β

)
·
(
γ c
d δ

)
=

(
βδ + a q d −βc− γa− b× d

−δb− αd+ a× c αγ + b q c
)
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defines on Z the structure of a symmetric composition algebra with a hyperbolic
norm (see [KMRT98]). We call (Z, n, ∗) the para-Zorn algebra. Its automorphism
group is isomorphic to the automorphism group of the split Cayley algebra.

Let (u1, u2, u3) be the standard basis of F 3. The set {ei, fi}4i=1 of Zorn matrices
given by

(3.14)
ei =

(
0 ui
0 0

)
, i = 1, 2, 3, and e4 =

(
1 0
0 0

)
fi =

(
0 0
ui 0

)
, i = 1, 2, 3, and f4 =

(
0 0
0 1

)
is a hyperbolic basis for the quadratic space (Z, n). We have

ei = −ei, fi = −fi for i = 1, 2, 3, and e4 = f4.

The multiplication table of the para-Zorn algebra is

(3.15)

∗ e1 f1 e2 f2 e3 f3 e4 f4
e1 0 e4 f3 0 −f2 0 −e1 0
f1 f4 0 0 −e3 0 e2 0 −f1
e2 −f3 0 0 e4 f1 0 −e2 0
f2 0 e3 f4 0 0 −e1 0 −f2
e3 f2 0 −f1 0 0 e4 −e3 0
f3 0 −e2 0 e1 f4 0 0 −f3
e4 0 −f1 0 −f2 0 −f3 f4 0
f4 −e1 0 −e2 0 −e3 0 0 e4

The second example of a split 8-dimensional symmetric composition is obtained by
another twist of the multiplication of Zorn matrices. Consider a Zorn matrix as
above, (

α a
b β

)
, where α, β ∈ F and a = (a1, a2, a3), b = (b1, b2, b3) ∈ F 3.

Let ϕ : a 7→ aϕ be the cyclic permutation (a1, a2, a3) 7→ (a2, a3, a1) and define(
α a
b β

)θ
=

(
α aϕ

bϕ β

)
.

The map θ is an automorphism of order 3 of the Zorn algebra Z. The algebra with
the new multiplication given by

x ? y = xθ · yθ
−1

is another symmetric composition, known as the pseudo-octonion algebra or split
Okubo algebra. Using the basis (3.14), we get the multiplication table:



10 M.-A. KNUS AND J.-P. TIGNOL

(3.16)

? e1 f1 e2 f2 e3 f3 e4 f4
e1 f1 0 −f3 0 0 e4 −e2 0
f1 0 −e1 0 e3 f4 0 0 −f2
e2 0 e4 f2 0 −f1 0 −e3 0
f2 f4 0 0 −e2 0 e1 0 −f3
e3 −f2 0 0 e4 f3 0 −e1 0
f3 0 e2 f4 0 0 −e3 0 −f1
e4 0 −f3 0 −f1 0 −f2 f4 0
f4 −e3 0 −e1 0 −e2 0 0 e4

Remark. Ignoring signs in the two multiplication tables given above, we obtain
algebras over F1, according to Example 2.7 and 3.8. We call them the para-Zorn
algebra, resp. the pseudo-octonion algebra over F1. As we shall see later (see Corol-
lary 4.26), every 8-dimensional symmetric composition over F1 is isomorphic to a
para-Zorn algebra or a pseudo-octonion algebra. Moreover symmetric compositions
over F1 occur only in dimensions 2, 4, and 8, see Corollary 3.21.

Remark. The conjugation of the split Cayley algebra induces an involution of the
para-Zorn algebra. As we shall see later, the pseudo-octonion algebra also admits
involutions, however the conjugation of the para-Zorn algebra commutes with the
automorphisms of the algebra, in contrast to the involutions of the pseudo-octonion
algebra (see Proposition 4.19 and Theorem 4.25).

Symmetric compositions and maximal solids. Let ? be a symmetric compo-
sition on a quadratic space (S, ˜) of dimension 2n over F1. In this subsection, we
show that the maximal isotropic subspaces of S can be described by means of the
composition ?. As a result, we prove that dimS = 2, 4, or 8.
For x ∈ S, let `x, rx be the linear maps S → S defined by

`x : y 7→ x ? y and rx : y 7→ y ? x, for y ∈ S,
so

Im `x = x ? S, Ker `x = {y ∈ S | x ? y = 0},
Im rx = S ?x, Ker rx = {y ∈ S | y ? x = 0}.

Lemma 3.17. For every nonzero x ∈ S, the spaces Im `x, Ker rx, Im rx, and Ker `x
are maximal isotropic. Moreover,

Im `x = Ker rx, Im rx = Ker `x,

and
S = (x ? S)⊕ (x̃ ? S) = (S ?x)⊕ (S ?x̃).

Proof. If z = x ? y 6= 0 for some y ∈ S, then by (SC3) we have z ? x̃ = y 6= 0, hence
z ? x = 0 by (SC2). Thus Im `x ⊂ Ker rx. For the reverse inclusion, observe that if
z ? x = 0, then z ? x̃ 6= 0 by (SC2), hence z = x ? (z ? x̃) by (SC3), which proves
z ∈ Im `x. The equality Im rx = Ker `x is proved by similar arguments.
Axiom (SC2) shows that (Ker `x) ∩ (Ker `x̃) = {0} and (Ker `x) ∪ (Ker `x̃) = S,
hence

(3.18) S = (Ker `x)⊕ (Ker `x̃) = (S ?x)⊕ (S ?x̃).
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On the other hand, we have Ker `x̃ = K̃er `x by (SC1), hence

(Ker `x) ∩ K̃er `x = {0}.
It follows that Ker `x is an isotropic subspace, and (3.18) shows that dim Ker `x = n.
Therefore, Ker `x is a maximal isotropic subspace. Likewise, Ker rx is a maximal
isotropic subspace. �

Lemma 3.17 shows that for all nonzero x ∈ S, the sets 〈x ? S〉 and 〈S ? x〉 are
maximal solids of the quadric 〈S〉.

Lemma 3.19. Let ω be a maximal solid and let y be a point in 〈S〉. If the maximal
solids ω and 〈S ? y〉 are incident, there exists x ∈ S such that ω = 〈x ? S 〉 and
x ? y = 0. Similarly, if ω and 〈 y ? S 〉 are incident, then there exists z ∈ S such
that ω = 〈 S ? z 〉 and y ? z = 0.

Proof. Let U ⊂ S be the maximal isotropic subspace such that ω = 〈 U 〉. Assuming
ω and 〈 S ?y 〉 are incident, we have n− 1 points in the intersection: let

ω ∩ 〈S ?y 〉 = {u1, . . . , un−1}
and let vi ∈ S be such that ui = vi ? y for i = 1, . . . , n− 1. Since dim(S ?y) = n,
there exists one element in 〈 S ?y 〉 that does not lie in ω. We write this element as
x̃ ? y for some nonzero x ∈ S, and show that U = x ? S. Note that x ? y = 0 since
x̃ ? y 6= 0.

Since U is maximal isotropic and does not contain x̃?y, it must contain ˜̃x ? y = x?ỹ.
To show that U = x ? S, it now suffices to prove ui ∈ x ? S for i = 1, . . . , n− 1, or,
equivalently by Lemma 3.17, that ui ? x = 0 for i = 1, . . . , n− 1. We have x̃ 6= vi,
hence vi ∈ x⊥ for i = 1, . . . , n − 1. Moreover, x ? y = 0 by (SC2) since x̃ ? y 6= 0.
Therefore, it follows from (SC4) that (vi ? y) ? x = 0. We have thus proved the first
claim. The proof of the last claim is similar. �

Proposition 3.20. Let ? be a symmetric composition on a quadratic space (S, ˜)
over F1. For any given nonzero x ∈ S, all the maximal isotropic subspaces of the
same kind as x?S are of the form y ?S, and all the maximal isotropic subspaces of
the opposite kind are of the form S ?y for some y ∈ S. In particular, every maximal
isotropic subspace of S is of the form y ? S or S ?y for some nonzero y ∈ S.

Note that a maximal isotropic subspace may be simultaneously of the form y ? S
and of the form S ?z: this occurs for the 2-dimensional composition algebra, see
Examples 3.12.

Proof. Let U ⊂ S be a maximal isotropic subspace and let ω = 〈 U 〉. By Lemma 2.5,
there exists a sequence of maximal solids ω0, . . . , ωs such that ω0 = 〈x?S 〉, ωs = ω,
and ωi−1 and ωi are incident for i = 1, . . . , s. Lemma 3.19 shows that there exist
y1, . . . , ys ∈ S such that

ωi =

{
〈 S ?yi 〉 if i is odd,

〈 yi ? S 〉 if i is even.

Moreover, by Lemma 2.5, s is even if and only if ω and 〈x ? S 〉 are of the same
kind. Thus

U =

{
S ?ys if U and x ? S are of opposite kinds,

ys ? S if U and x ? S are of the same kind.
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�

Let C(S) = C
(
〈 S 〉

)
t {0}. The structure map ˜ extends obviously to a structure

map (also denoted ˜) on C(S), so that C(S) is a quadratic space over F1 and the
linear maps

γ1, γ2 : S 7→ C(S), γ1(x) = x ? S, γ2(y) = S ? y

extend to a map of quadratic spaces

γ = γ1 ⊥ γ2 : S ⊥ S → C(S).

We have dimC(S) = 2
1
2 dimS .

Corollary 3.21. Let ? be a symmetric composition on a quadratic space (S, ˜)
over F1.

(1) The map γ : S ⊥ S → C(S) is surjective.
(2) dimS = 2, 4, or 8.
(3) If S has dimension 8, the map γ : S ⊥ S → C(S) is bijective. In particular,

if x ? S = y ? S or S ? x = S ? y for some x, y ∈ S, then x = y.

Proof. (1) readily follows from Proposition 3.20. Let dimS = 2n, so the set 〈C(S) 〉
of maximal isotropic subspaces of S has 2n elements. In view of (1) there are at
most 4n maximal isotropic subspaces of S. Thus we have 2n ≤ 4n, which implies
n ≤ 4. If n = 3, two maximal isotropic subspaces are of opposite kinds if and
only if their intersection has even dimension. Thus for all nonzero x ∈ S, the
subspaces x?S and x̃ ?S are of opposite kinds. By Proposition 3.20, it follows that
x ? S = S ?y for some y ∈ S. Therefore, the maps γ1 and γ2 are surjective. This is
a contradiction since dimS = 6 and dimC(S) = 8, so dimS = 6 is excluded, and
we have proved (2). Finally, (3) follows from the fact that 2n = 4n if n = 4. �

4. Geometric triality

Let Z be a 6-dimensional quadric over F1, with structure map ˜. From now on
we call the maximal solids of Z simply solids, so that the objects of the associated
geometry are points, lines, planes, and solids of two kinds on Z. As in Section 2,
we extend the incidence relation given by inclusion, by saying that two solids of
different kinds are incident if their intersection is a plane.

Classical triality in projective geometry permutes points and the two kinds of solids
on a 6-dimensional quadric over a field F (see for example [Stu13], [Car38], [Wei38],
[Che54], [Tit59] or [vdBS60]). We define a geometric triality on Z as a pair (τ, ∂),
where ∂ is an orientation C(Z) = C1 t C2 of Z and τ is a map

τ : Z t C1 t C2 → Z t C1 t C2

with the following properties:

(GT1) τ commutes with the structure map ˜ : x 7→ x̃;
(GT2) τ preserves the incidence relations;
(GT3) τ(Z) = C1, τ(C1) = C2, and τ(C2) = Z;
(GT4) τ3 = I.
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Note that the intersection of two solids ω, ω′ of the same kind is a line, unless
ω = ω′ or ω = ω̃′. Therefore, for any line {x, y} in Z, the intersection τ(x) ∩ τ(y)
is a line. We extend the definition of τ to the set L of lines by setting

τ{x, y} = τ(x) ∩ τ(y).

Thus extended, the map τ still preserves the incidence relations. It will be clear
from Theorems 4.7 and 4.10 that τ is determined by its action on L.

Remark. Although it is determined by τ , the orientation ∂ is part of the definition

of a triality. If ∂̂ is the opposite orientation, i.e., the composition of ∂ with the

transposition of 1 and 2, then every triality (τ, ∂) yields another triality (τ2, ∂̂). It
is convenient to call ∂ the orientation of the triality (τ, ∂).

Coordinates. We may identify the various elements of the geometry of the quadric
Z with vectors in R4, as follows. Let {ξ1, ξ2, ξ3, ξ4} be the standard basis of R4.
We set

Z = {±ξ1,±ξ2,±ξ3,±ξ4}
and define z̃ = −z for all z ∈ Z. Next, we identify each line {x, y} with x+ y ∈ R4

and each solid {u, v, x, y} ∈ C(Z) with 1
2 (u+ v + x+ y) ∈ R4. Thus we may fix an

orientation by setting

C1 =
{
± 1

2 (ξ1 + ξ2 + ξ3 + ξ4),± 1
2 (ξ1 + ξ2 − ξ3 − ξ4),

± 1
2 (ξ1 − ξ2 − ξ3 + ξ4),± 1

2 (ξ1 − ξ2 + ξ3 − ξ4)
}

and

C2 =
{
± 1

2 (ξ1 − ξ2 − ξ3 − ξ4),± 1
2 (ξ1 + ξ2 + ξ3 − ξ4),

± 1
2 (ξ1 + ξ2 − ξ3 + ξ4),± 1

2 (ξ1 − ξ2 + ξ3 + ξ4)
}
.

Incidence between points, lines, and solids occurs if and only if the usual scalar
product of the corresponding vectors u, v satisfies u · v > 0, and the intersection of
two solids ω, ω′ of the same type is the line ω + ω′.

The groups PGO(Z) = S4
2 o S4 and PGO+(Z) = S3

2 o S4 (see Lemma 2.2) are
identified with subgroups of O4(R) as follows. Let P be the subgroup of O4(R)
generated by all the permutations of the standard basis of R. Let D be the sub-
group of O4(R) consisting of all diagonal matrices Diag(ν1, ν2, ν3, ν4) with νi = ±1
and let D+ be the subgroup of D consisting of matrices Diag(ν1, ν2, ν3, ν4) with
the supplementary condition

∏
i νi = 1. Then PGO(Z) is the subgroup of O4(R)

generated by P and D and PGO+(Z) is the subgroup of O4(R) generated by P
and D+. The action of PGO(Z) on Z, C1 and C2 is given by the restriction of the
natural action of O4(R) on R4.

Proposition 4.1. Let Z = {±ξ1, . . . ,±ξ4} ⊂ R4 and let ∂ be the orientation
for which C1 and C2 are as above. There is a one-to-one correspondence between
trialities (τ, ∂) and orthogonal matrices T ∈ O4(R) such that T 3 = 1 and TZ = C1,
which associates to (τ, ∂) the matrix of τ in the basis (ξ1, . . . , ξ4).

Proof. For every triality (τ, ∂), the matrix T of τ satisfies TZ = C1 and T 3 = 1
since τ(Z) = C1 and τ3 = I. It is also orthogonal since any two vectors in C1 are
orthogonal unless they are equal or opposite. Conversely, given a matrix T ∈ O4(R)
such that T 3 = 1 and TZ = C1, we define a bijective map τ : Z → C1 by mapping
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ξi to the i-th column of T and −ξi to the opposite of the i-th column of T , for
i = 1, . . . , 4. Then τ(C1) = τ2(Z), so we need to show that τ2(Z) = C2. Since
T 3 = 1 and T is orthogonal, T 2 is the transpose T t. Since TZ = C1, all the entries
of T are ± 1

2 , hence the same holds for T 2. The vectors in R4 whose coordinates

are all ± 1
2 form the set C1 ∪ C2, so T 2Z ⊂ C1 ∪ C2. But (TZ) ∩ (T 2Z) = ∅ since

Z ∩ (TZ) = Z ∩C1 = ∅. Therefore, T 2Z = C2. Since T 3 = 1, we have τ(C2) = Z,
hence τ satisfies (GT3) and (GT4). It also satisfies (GT1) since multiplication by
T is a linear map, and (GT2) because T is orthogonal and incidence is equivalent
to positivity of the scalar product. �

Corollary 4.2. A geometric triality (τ, ∂) on Z is uniquely determined by its re-
striction τ |Z : Z → C1.

Trialities with absolute points. From now on, geometrical or combinatorial
methods will be used. Absolute points play a fundamental role.

Definition 4.3. An absolute point of a triality (τ, ∂) on Z is a point z ∈ Z such
that z ∈ τ(z), i.e., the point z and the solid τ(z) are incident. Then τ(z) and τ2(z)
are incident, and τ2(z) and z are incident, so the condition defining an absolute
point can be rephrased as

|τ(z) ∩ τ2(z)| = 3, or z ∈ τ2(z).

For any absolute point z of a triality τ , we let

π(z) = τ(z) ∩ τ2(z).

This is a plane in Z.

Lemma 4.4. If {x, y} is a line of Z fixed under some geometric triality (τ, ∂), then
x and y are absolute points and {x, y} = π(x) ∩ π(y).

Proof. Since {x, y} is fixed under τ we have

{x, y} = τ{x, y} = τ(x) ∩ τ(y) and {x, y} = τ2{x, y} = τ2(x) ∩ τ2(y),

hence

(4.5) {x, y} = τ(x) ∩ τ(y) ∩ τ2(x) ∩ τ2(y).

Thus |τ(x) ∩ τ2(x)| ≥ 2, which implies τ(x) and τ2(x) are incident and x is absolute.
Similarly, y is absolute, and (4.5) shows that {x, y} = π(x) ∩ π(y). �

Definition 4.6. An hexagon in a 6-dimensional quadric Z over F1 is a pair H =
(V,E) consisting of a set V ⊂ Z of six points stable under ˜ and a set E of six
lines between points of V such that the graph with vertex set V and edge set E is
a circuit.

Theorem 4.7. Suppose (τ, ∂) is a triality on Z for which there exists an absolute
point. Then the pair (V,E) where V is the set of absolute points of Z and E is the
set of lines fixed under τ is an hexagon. Moreover, for every hexagon (V,E) in Z
and any orientation ∂ there is a unique geometric triality (τ, ∂) on Z such that V
is the set of absolute points of τ and E is the set of fixed lines under τ .

Proof. Fix an absolute point a and let

π(a) = {a, b, c}.
Claim 1: The lines {a, b} and {a, c} are fixed under τ .
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To prove the claim, observe that by applying τ to the incidence relation b ∈ τ2(a)
we obtain a ∈ τ(b), hence

a ∈ τ(a) ∩ τ(b) = τ{a, b}.
Similarly, since b ∈ τ(a) we have a ∈ τ2(b), hence

a ∈ τ2(a) ∩ τ2(b) = τ2{a, b}.
Applying τ2, we obtain τ{a, b} ⊂ τ2(a), hence τ{a, b} ⊂ π(a). Thus τ{a, b} is a
line containing a in the plane π(a), which means that τ permutes the lines through
a in π(a). Since there are only two such lines and τ has order 3, the action of τ on
the lines through a in π(a) is trivial, and Claim 1 is proved.

Now, let

τ(a) = {a, b, c, d}.
Claim 2: The points b and c are absolute, and d is not absolute.
Claim 1 and Lemma 4.4 readily show that b and c are absolute. Now, suppose
d is absolute, hence d ∈ τ2(d). Since d ∈ τ(a), we also have a ∈ τ2(d), hence
{a, d} ⊂ τ2(d) and therefore applying τ we see that d ∈ τ{a, d}. But we have
{a, d} ⊂ τ(a), hence τ{a, d} ⊂ τ2(a). Therefore,

d ∈ τ{a, d} ⊂ τ2(a),

and it follows that d ∈ τ(a) ∩ τ2(a) = π(a), a contradiction.

From Claim 2 we derive that ã, b̃, c̃ also are absolute points, and d̃ is not an absolute

point. We have ã, b̃, c̃ /∈ {a, b, c} since {a, b, c} is a plane, hence

Z = {a, b, c, d, ã, b̃, c̃, d̃}
and the set of absolute points is

V = {a, b, c, ã, b̃, c̃}.

Claim 3: π(b) = {a, b, c̃} and π(c) = {a, b̃, c}.
By Claim 2, all the points in π(b) and π(c) are absolute. Claim 1 and Lemma 4.4
show that π(a) ∩ π(b) = {a, b}, hence

{a, b} ⊂ π(b) ⊂ V \ {c}.

The third point of π(b) cannot be ã nor b̃ since π(b) is a plane. Thus the only
possibility is π(b) = {a, b, c̃}. The argument for π(c) is similar.

From Claim 3 it follows that

π(̃b) = {ã, b̃, c} and π(c̃) = {ã, b, c̃}.

We also have π(ã) = {ã, b̃, c̃}, hence Claim 1 shows that the lines {a, b}, {a, c},
{b, c̃}, {b̃, c}, {ã, b̃}, {ã, c̃} are fixed under τ . To complete the proof of the first part
of Theorem 4.7, it remains to see that the other lines between the points in V are
not fixed. Suppose for instance that {b, c} is fixed. Then Lemma 4.4 shows that
π(b) ∩ π(c) = {b, c}, contradicting Claim 3. Similarly, from the determination of
π(x) for all x ∈ V it readily follows that the only fixed lines are those determined
above; they are the edge set of an hexagon with vertex set V .
To prove the second part, we show that the geometric triality can be uniquely
reconstructed from the hexagon of absolute points and fixed lines. Suppose there is
a geometric triality (τ, ∂) for which the hexagon of absolute points and fixed lines
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is as above. The neighbors of the vertex a in the hexagon yield π(a) = τ(a)∩τ2(a),
hence we have {

τ(a), τ2(a)
}

=
{
{a, b, c, d}, {a, b, c, d̃}

}
.

Of the two solids on the right side, one is in C1 and the other in C2, hence τ(a) and
τ2(a) are uniquely determined. Similarly, τ(x) and τ2(x) are uniquely determined

for all x ∈ V , and it only remains to determine τ(d), τ(d̃), and τ2(d), τ2(d̃). Of
the solids in C1, there are just two that are not of the form τ(x) for x ∈ V . The

one that contains d̃ must be τ(d), and the one that contains d must be τ(d̃); thus

τ(d) and τ(d̃) are uniquely determined and, similarly, τ2(d) and τ2(d̃) are uniquely
determined.
To complete the proof, we still have to show that, given an orientation ∂, for each
hexagon in Z there exists a geometric triality (τ, ∂) with the given hexagon as the
pair of absolute points and fixed lines. The uniqueness proof above is constructive;
it thus suffices to check that the maps τ : Z → C1 and τ2 : Z → C2 defined above
yield a triality, which can be done by direct computations. An alternative approach
is to use coordinates: suppose

Z = {a, b, c, d, ã, b̃, c̃, d̃},
the given hexagon is{

{a, b, c, ã, b̃, c̃},
{
{a, b}, {b, c̃}, {c̃, ã}, {ã, b̃}, {b̃, c} {c, a}

}}
,

and the orientation ∂ is such that {a, b, c, d} ∈ C1. We identify Z with a subset of

R4 by mapping a, b̃, c̃, d to the elements ξ1, ξ2, ξ3, ξ4 of the standard basis. The
map τ : Z → C1 constructed above is given by

τ(a) = {a, b, c, d}, τ(ã) = {ã, b̃, c̃, d̃},

τ(b) = {a, b, c̃, d̃}, τ (̃b) = {ã, b̃, c, d},

τ(c) = {a, b̃, c, d̃}, τ(c̃) = {ã, b, c̃, d},

τ(d) = {ã, b, c, d̃}, τ(d̃) = {a, b̃, c̃, d},

or, after the identification, by the linear map R4 → R4 with matrix

(4.8) T1 =
1

2


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
1 1 1 −1

 .

It is readily verified that this matrix is orthogonal with cube 1, mapping Z to C1,
hence it is a triality. �

Corollary 4.9. Let ∂ be a fixed orientation of Z. There are 16 trialities (τ, ∂) with
absolute points on Z. All these trialities are conjugate under PGO+(Z).

Proof. There are 16 hexagons in Z, and they are all permuted by PGO+(Z). �

Trialities without absolute points. We now turn to trialities without absolute
points.

Theorem 4.10. Let (τ, ∂) be a geometric triality on Z without absolute points.
There are four hexagons (V1, E1), . . . , (V4, E4) with disjoint edge sets such that
each edge set Ei is preserved under τ and E1 t E2 t E3 t E4 is the set of all lines
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in Z. Any one of these hexagons determines the triality uniquely if the order in
which the edges are permuted is given. More precisely, given an orientation ∂ of Z,
an hexagon (V,E) in Z and an orientation of the circuit of edges of E, there is a
unique triality (τ, ∂) on Z without absolute points that permutes the edges in E in
the prescribed direction.

Proof. Note that it is already clear from Lemma 4.4 that τ permutes the lines of Z
without leaving any of them fixed.

Claim 1: For any a ∈ Z, we have τ(a) ∩ τ2(a) = {ã}.
Indeed, τ(a) and τ2(a) each contains a or ã since they are solids, but they cannot
contain a, lest a be an absolute point for τ . Moreover, |τ(a) ∩ τ2(a)| = 1 since
otherwise τ(a) and τ2(a) are incident and a is absolute.

Claim 2: For any line {a, b} in Z, the line τ{a, b} intersects {ã, b̃} in one point.

If τ{a, b} = {ã, b̃}, then ã ∈ τ(b) and b̃ ∈ τ(a). This last incidence relation implies
ã ∈ τ2(b), hence ã ∈ τ(b) ∩ τ2(b). This is impossible in view of Claim 1.

We set {c, d̃} = τ{a, b} = τ(a) ∩ τ(b). If {c, d̃} is disjoint from {ã, b̃}, then since

ã ∈ τ(a) and b̃ ∈ τ(b) we derive that ã /∈ τ(b) and b̃ /∈ τ(a), hence

τ(a) = {ã, b, c, d̃} and τ(b) = {a, b̃, c, d̃}.

From Claim 1 it follows that

τ2(a) = {ã, b̃, c̃, d} and τ2(b) = {ã, b̃, c̃, d}.

Thus, τ2(a) = τ2(b), a contradiction. Claim 2 is thus proved.

Now, let {a, b} be an arbitrary line in Z. Interchanging a and b if necessary, we may

assume by Claim 2 that ã ∈ τ{a, b}. Let τ{a, b} = {c, ã} for some c ∈ Z \{a, ã, b, b̃}.
Claim 2 also shows that τ{c, ã} contains c̃ or a. In the latter case, we have

a ∈ τ{c, ã} = τ2{a, b} = τ2(a) ∩ τ2(b),

hence a is an absolute point, a contradiction. Therefore, τ{c, ã} = {z, c̃} for some
z ∈ Z. Repeating the same argument we see that τ{z, c̃} contains z̃. But

τ{z, c̃} = τ2{c, ã} = τ3{a, b},

so z̃ = a or b. If z̃ = a we have τ{c, ã} = {c̃, ã} hence ã ∈ τ(ã) and ã is an absolute
point. Since there is no such points, we must have z̃ = b, hence

(4.11) τ{a, b} = {c, ã}, τ{c, ã} = {b̃, c̃}, and τ{b̃, c̃} = {a, b}.

Applying ˜, we obtain

(4.12) τ{ã, b̃} = {c̃, a}, τ{c̃, a} = {b, c}, and τ{b, c} = {ã, b̃}.

Thus the set

E1 =
{
{a, b}, {b, c}, {c, ã}, {ã, b̃}, {b̃, c̃}, {c̃, a}

}
is stable under the action of τ . It is the edge set of the hexagon H1 = (V1, E1),
where

V1 = {a, b, c, ã, b̃, c̃}.
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Starting with lines that are not in E1, we obtain three more hexagons whose edge
sets are stable under τ :

H2 =
{
{a, c, d̃, ã, c̃, d},

{
{a, c}, {c, d̃}, {d̃, ã}, {ã, c̃}, {c̃, d}, {d, a}

}}
,

H3 =
{
{a, d̃, b, ã, d, b̃},

{
{a, d̃}, {d̃, b}, {b, ã}, {ã, d}, {d, b̃}, {b̃, a}

}}
,

H4 =
{
{b, d, c, b̃, d̃, c̃},

{
{b, d}, {d, c}, {c, b̃}, {b̃, d̃}, {d̃, c̃}, {c̃, b}

}}
.

To complete the proof, we show that for any orientation ∂ of Z, any given hexagon
(V,E) and any orientation on the circuit of edges E, there is a unique geometric
triality (τ, ∂) without absolute point that permutes the edges in E in the prescribed

direction. Let Z = {a, b, c, d, ã, b̃, c̃, d̃} and consider in Z the hexagon H1 = (V1, E1)
above. Suppose the orientation ∂ is such that {a, b, c, d} ∈ C1. We seek a triality
(τ, ∂) without absolute point that permutes the edges as in (4.11) and (4.12). Since
τ{a, b} = {c, ã} we know that ã, c ∈ τ(b). On the other hand, b /∈ τ(b) since b is

not an absolute point, hence b̃ ∈ τ(b). Thus τ(b) is either {ã, b̃, c, d} or {ã, b̃, c, d̃}.
For the orientation ∂, the first of these solids is in C1 and the second in C2, so

τ(b) = {ã, b̃, c, d}.
Similarly, from τ{c̃, a} = {b, c} we derive

τ(a) = {ã, b, c, d̃}

and from τ{b, c} = {ã, b̃} we derive

τ(c) = {ã, b̃, c̃, d̃}.

The solids τ(d) and τ(d̃) are uniquely determined by the conditions d̃ ∈ τ(d),

d ∈ τ(d̃), and

{τ(d), τ(d̃)} = C1 \ {τ(a), τ(ã), τ(b), τ (̃b), τ(c), τ(c̃)},
so that

τ(d) = {a, b̃, c, d̃}.
The map τ2 : Z → C2 is determined by τ in view of Claim 1. To see that τ is indeed
a geometric triality, we use coordinates, identifying Z with {±ξ1, . . . ,±ξ4} ⊂ R4 as
follows:

a = ξ1, b = −ξ2, c = −ξ3, d = ξ4.

Then τ is given by the matrix

(4.13)
1

2


−1 1 1 1
−1 −1 −1 1
−1 1 −1 −1
−1 −1 1 −1

 .

Computation shows that the corresponding linear map is an orthogonal transfor-
mation of R4 with cube 1 that maps Z to C1, hence τ is a triality. �

Proposition 4.14. Let (τ, ∂) be a triality without absolute points and with hexagons
{H1, H2, H3, H4}. For any proper isometry φ ∈ PGO+(Z) the set of hexagons of
the triality (φ ◦ τ ◦ φ−1, ∂) is {φ(H1), φ(H2), φ(H3), φ(H4)}.

Proof. The edge set of each hexagon is an orbit under the action of the group
generated by τ and the structure map ˜. The claim follows from the fact that the
orbits of φ ◦ τ ◦ φ−1 are the images under φ of the orbits of τ . �
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Corollary 4.15. Let ∂ be a fixed orientation on Z. There are 8 geometric trialities
(τ, ∂) on Z without absolute points. These trialities are conjugate under the group
PGO+(Z).

Proof. There are 4 hexagons in Z containing a given line as an edge, and each of
these hexagons can be oriented in two different ways. The 8 oriented hexagons
are permuted under the action of PGO+(Z). The last claim follows from Proposi-
tion 4.14. �

Automorphisms. Let Z be a 6-dimensional quadric and let (τ, ∂) be a triality on
Z. The proper isometries φ ∈ PGO+(Z) that conjugate (τ, ∂) to itself are called
automorphisms of (τ, ∂). We let Aut(τ, ∂) denote the group of automorphisms of
(τ, ∂). Obviously the structure map ˜ is contained in Aut(τ, ∂).

Theorem 4.16. If (τ, ∂) admits absolute points, then Aut(τ, ∂) is isomorphic to
the dihedral group D12 = S2 ×S3.
If (τ, ∂) does not admit absolute points, then Aut(τ, ∂) is isomorphic to the double

cover Ã4 (' SL2(F3)) of the alternating group A4.

Proof. Assume that (τ, ∂) admits absolute points. In view of Theorem 4.7 the
triality (τ, ∂) is uniquely determined by its hexagon of absolute points and fixed
lines. Thus the group of automorphisms of (τ, ∂) is isomorphic to the group D12

of automorphisms of the hexagon. Observe that an automorphism of the hexagon
extends to an automorphism of the quadric in such a way that the action on the
pair of non absolute points has to be such that the extension is a proper isometry.
Assume now that the triality (τ, ∂) does not admit absolute points. We set Z =

{a, b, c, d, ã, b̃, c̃, d̃} and assume τ is as in the proof of Theorem 4.10. It follows from
Proposition 4.14 that the automorphism φ induces a permutation of the hexagons.
Thus we have a group homomorphism ψ : Aut(τ, ∂)→ S4. The claim now follows
from the following lemma:

Lemma 4.17. The image of ψ is the group A4 and the sequence

1→ {I, ˜} → Aut(τ, ∂)
ψ→ A4 → 1

is non-split exact.

Proof. Consider the following transformation φ ∈ PGO+(Z):

(4.18) φ : a 7→ b 7→ c 7→ ã 7→ b̃ 7→ c̃ 7→ a, d↔ d̃.

It preserves the hexagon H1 and permutes its edges in the same direction as τ ,
hence φ ∈ Aut(τ, ∂). Inspection shows that φ permutes H2, H3, and H4 cyclically.
Similar transformations can be defined to preserve any of the hexagons and to
permute the others cyclically, hence the image of ψ contains A4. On the other
hand, any automorphism of (τ, ∂) that fixes H1 is a power of φ, hence the image of
ψ does not contain any transposition fixing H1, so the image of ψ is A4.

Now, assume θ ∈ Kerψ. Since it fixesH1, it must preserve the pair {d, d̃}. Similarly,

it must preserve each pair {a, ã}, {b, b̃}, {c, c̃}. If it is the identity on {a, ã}, then

it must also be the identity on {b, b̃} and on {c, c̃} since it fixes H1, hence it must
be the identity since it is a proper isometry. Similarly, we get θ = I if θ leaves any
element of Z fixed, hence Kerψ = {I, ˜}. Finally the fact that the 6-cycle (4.18)
maps to a 3-cycle in A4 shows that the sequence is not split. �
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Involutions. Given a geometric triality (τ, ∂) on a 6-dimensional quadric Z over
F1, let Gτ ⊂ PGO(Z) be the group of automorphisms of Z that conjugate to itself
the group {I, τ, τ2}. An element φ ∈ Gτ satisfies φ ◦ τ ◦ φ−1 = τ2 if and only if it
exchanges C1 and C2, hence

Gτ ∩ PGO+(Z) = Aut(τ, ∂).

An involution of (τ, ∂) is an element φ ∈ Gτ \Aut(τ, ∂) of order 2.

Proposition 4.19. If the geometric triality (τ, ∂) has absolute points, then the
map γ ∈ PGO(Z) that leaves all the absolute points fixed and exchanges the two
non-absolute points is an involution, and Gτ = Aut(τ, ∂)× {I, γ} ' D12 ×S2.
If the geometric triality (τ, ∂) has no absolute points, then Gτ is isomorphic to

the double cover S̃4 (' GL2(F3)) of the symmetric group S4 characterized by the
property that transpositions of S4 lift to elements of order 2, while products of
two disjoint transpositions lift to elements of order 4. In particular, Gτ contains
involutions.

Proof. In the first case, it is readily verified that γ is an involution. Every automor-
phism of (τ, ∂) preserves the absolute points, hence commutes with γ. Therefore,
Gτ is the direct product of Aut(τ, ∂) and {I, γ}.
Now, suppose (τ, ∂) has no absolute points. Set Z = {a, b, c, d, ã, b̃, c̃, d̃} and assume
(τ, ∂) is as in the proof of Theorem 4.10. The map φ that leaves a, d (hence also

ã and d̃) fixed and exchanges b and c̃ (hence also b̃ and c) preserves the hexagon
H1 and reverses the orientation of its circuit of edges, hence it conjugates τ into
τ2. It is thus an involution of (τ, ∂). Note that φ also preserves the hexagon H4

and exchanges H2 and H3. Since every even permutation of {H1, H2, H3, H4} can
be realized as an action of an automorphism of (τ, ∂), by Lemma 4.17, it follows
that the action of Gτ on the set of hexagons yields a surjective map Gτ → S4. As
observed in the proof of Lemma 4.17, the kernel of this map is the center {I, ˜} of
PGO(Z). �

Theorem 4.20. There are four proper isomorphism classes of geometric trialities
under the group PGO+(Z) and there are two isomorphism classes of geometric
trialities under the group PGO(Z).

Proof. The first claim follows from Corollaries 4.9 and 4.15, the second from the
existence of involutions for geometric trialities. �

Symmetric compositions and geometric trialities. In this subsection, we es-
tablish a one-to-one correspondence between symmetric compositions on a qua-
dratic space (S, ˜) of dimension 8 over F1 and geometric trialities on the corre-
sponding quadric Z = 〈 S 〉. Let ? be a symmetric composition on (S, ˜). The
bijection γ of Corollary 3.21 allows us to define an orientation ∂? of the quadric Z
by setting

(4.21) C1 = {〈x ? S 〉 | x ∈ S}, C2 = {〈 S ? y 〉 | y ∈ S}.
To describe the corresponding geometry on Z, it is useful to describe all possible
intersections of maximal solids of opposite kinds.

Proposition 4.22. For any nonzero x, y ∈ S, the following conditions are equiv-
alent:

(a) |〈x ? S 〉∩ 〈 S ?y 〉| = 3;
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(b) x ? y = 0.

Similarly, the following conditions are equivalent:

(a’) |〈x ? S 〉∩ 〈 S ?y 〉| = 1;
(b’) x ? y 6= 0.

When (a’) and (b’) hold, we have 〈x ? S 〉∩ 〈 S ?y 〉 = {x ? y} since clearly x ? y lies
in x ? S and S ?y.

Proof. Suppose (b) holds. We then have (z ? y) ? x = 0 for all z 6= x̃ by (SC4).
There are four elements z such that z ? y 6= 0 and one of them is x̃. Thus for the
three others we have (z ? y) ? x = 0, which means z ? y ∈ Ker rx = x ? S. Thus,

|〈x⊥ ? y 〉| = 3 and x⊥ ? S ⊂ (x ? S) ∩ (S ?y).

Since 〈x ? S 〉 and 〈 S ?y 〉 are solids of different kinds, |〈x ? S 〉∩ 〈 S ?y 〉| must be
odd. If x ? y = 0 we have (z ? y) ? x = 0 for all z 6= x̃. Therefore, we have (a).
Conversely, (a) implies (b) by Lemma 3.19. Now, (a’) is equivalent to the negation
of (a) since 〈x?S 〉 and 〈 S ?y 〉 are solids of different kinds, and (b’) is the negation
of (b), so (a’) and (b’) are equivalent. �

We next define a correspondence between geometric trialities and symmetric com-
positions.

Proposition 4.23. Let (S, ˜) be an 8-dimensional quadratic space over F1.

(1) For any symmetric composition ? on (S, ˜), the orientation (4.21) and the
map

τ? : x 7→ 〈x ? S 〉 7→ 〈 S ?x 〉 7→ x for x ∈ 〈S 〉
define a geometric triality (τ?, ∂?) on 〈 S 〉.

(2) Conversely, given a geometric triality (τ, ∂), the multiplication defined by

x ?τ 0 = 0 ?τ x = 0 for x ∈ S
and, for nonzero x, y ∈ S,

x ?τ y =

{
z if τ(x) ∩ τ2(y) = {z},
0 if |τ(x) ∩ τ2(y)| = 3

is a symmetric composition on (S, ˜).

Proof. (1) By definition, the map τ? satisfies (GT3) and (GT4). Moreover, it
satisfies (GT1) because (SC1) holds for ?. To prove (1), it remains to show that
(GT2) holds, i.e., that τ? preserves the incidence relations. For nonzero x, y ∈ S,
we have to see that

x ∈ y ? S ⇐⇒ |〈x ? S 〉∩ 〈 S ?y 〉| = 3 ⇐⇒ S ?x 3 y.
By Lemma 3.17 and Proposition 4.22, these conditions are all equivalent to x?y = 0.
(2) We show that τ? satisfies (SC1)–(SC4). Axiom (SC1) readily follows from (GT1).
Axiom (SC2) translates into the following condition on τ : for x, y ∈ 〈S 〉,

|τ(x) ∩ τ2(y)| = 3 ⇐⇒ |τ(x) ∩ τ2(ỹ)| = 1.

This equivalence holds because τ2(ỹ) = τ̃2(y). Likewise, (SC3) is equivalent to the
following condition on τ : for x, y, z ∈ 〈S 〉,
(4.24) τ(x) ∩ τ2(y) = {z} ⇒ τ(z) ∩ τ2(x̃) = {y} and τ(ỹ) ∩ τ2(z) = {x}.
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Assume τ(x)∩ τ2(y) = {z}. Since z ∈ τ(x) and τ preserves the incidence relations,
we have |τ(z) ∩ τ2(x)| = 3, hence |τ(z) ∩ τ2(x̃)| = 1. Similarly, since z ∈ τ2(y)
we have y ∈ τ(z), and since |τ(x) ∩ τ2(y)| = 1 we have y /∈ τ2(x), hence y ∈
τ2(x̃). Therefore, τ(z) ∩ τ2(x̃) = {y}. Applying the same argument after a cyclic
permutation of x, y, and z, we obtain

τ(z) ∩ τ2(x̃) = {y} ⇒ τ(y) ∩ τ2(z̃) = {x̃}.

Therefore, (4.24) holds. It only remains to prove (SC4), which translates to the
following statement: for x, y, u, v ∈ 〈S 〉 with u 6= x̃ and v 6= ỹ, if |τ(x)∩τ2(y)| = 3,
then

• either |τ(u) ∩ τ2(y)| = 3, or
• τ(u) ∩ τ2(y) = {z} for some z ∈ 〈S 〉, and |τ(z) ∩ τ2(x)| = 3,

and, likewise,

• either |τ(x) ∩ τ2(v)| = 3, or
• τ(x) ∩ τ2(v) = {z} for some z ∈ 〈S 〉, and |τ(y) ∩ τ2(z)| = 3.

Assume τ2(y) = {z1, z2, z3, z4} and τ(x) ∩ τ2(y) = {z1, z2, z3}. Since u 6= x̃, we
have τ(u)∩τ2(y) 6= {z4}, so either |τ(u)∩τ2(y)| = 3, or τ(u)∩τ2(y) = {zi} for some
i ∈ {1, 2, 3}. Then zi ∈ τ(x), so |τ(zi) ∩ τ2(x)| = 3 since τ preserves the incidence
relation. Likewise, if τ(x) = {z1, z2, z3, z5} and v 6= ỹ, then τ(x) ∩ τ2(v) 6= {z5},
so either |τ(x) ∩ τ2(v)| = 3, or τ(x) ∩ τ2(v) = {zi} for some i ∈ {1, 2, 3}. Then
zi ∈ τ2(y), so |τ(y) ∩ τ2(zi)| = 3. �

Theorem 4.25. Let (S, ˜) be an 8-dimensional quadratic space over F1. The
maps ? 7→ (τ?, ∂?) and (τ, ∂) 7→ ?τ are inverse one-to-one correspondences between
symmetric compositions on (S, ˜) and geometric trialities on 〈 S 〉. Isomorphic
(resp. properly isomorphic) symmetric compositions correspond to isomorphic (resp.
properly isomorphic) geometric trialities.

Proof. Let ? be a symmetric composition. By definition, we have for nonzero x,
y ∈ S

x ?τ? y =

{
z if 〈x ? S 〉∩ 〈 S ?y 〉 = {z},
0 if |〈x ? S 〉∩ 〈 S ?y 〉| = 3.

Proposition 4.22 shows that x ? y = 0 if |〈x ? S 〉∩ 〈 S ?y 〉| = 3 and that x ? y 6= 0
if |〈x ? S 〉∩ 〈 S ?y 〉| = 1. Since x ? y ∈ 〈x ? S 〉∩ 〈 S ?y 〉, we must have {x ? y} =
〈x ? S 〉∩ 〈 S ?y 〉 in the latter case, so ?τ? = ?.
Starting with a geometric triality (τ, ∂), we have 〈x ?τ S 〉 ⊂ τ(x) and 〈 S ?τx 〉 ⊂
τ2(x) for all x ∈ 〈S 〉, so in fact 〈x?τ S 〉 = τ(x) and 〈 S ?τx 〉 = τ2(x) since 〈x?τ S 〉
and 〈 S ?τx 〉 are solids. Therefore, (τ?τ , ∂?τ ) = (τ, ∂). We have thus shown that
the correspondences are inverse of each other. The last statement is clear. �

In view of the classification of geometric trialities in Theorem 4.20, we readily
derive from the preceding theorem the classification of symmetric compositions in
dimension 8:

Corollary 4.26. (1) There are four proper isomorphism classes of 8-dimensional
symmetric compositions over F1, given by the para-Zorn algebra, the pseudo-octonion
algebra and their opposites.
(2) There are two isomorphism classes of 8-dimensional symmetric compositions
over F1, given by the para-Zorn algebra and the pseudo-octonion algebra.
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It is also clear from the correspondence in Theorem 4.25 that automorphisms of
symmetric compositions are automorphisms of the corresponding geometric triali-
ties. Therefore, Theorem 4.16 readily yields:

Corollary 4.27. The group of automorphisms of the para-Zorn algebra over F1 is
a dihedral group D12. The group of automorphisms of the pseudo-octonion algebra

over F1 is isomorphic to the double cover Ã4.

Note that, according to Tits [Tit57], D12 is the exceptional group of type G2 over
F1. The description of groups of type G2 as automorphism groups of para-Zorn
algebras thus also holds over F1.

5. Trialitarian automorphisms

It is well known that the Weyl group S3
2 oS4 of type D4 admits outer automor-

phisms of order 3 (“trialitarian automorphisms”). Symmetric compositions over F1

or geometric trialities can be used to construct such automorphisms. We view
S3

2 oS4 as the group O+(S) for a quadratic space S or as the group PGO+(Z) of
a 6-dimensional quadric Z. Following Tits this group is the projective orthogonal
group PGO+

8 (F1). We need the following fact.

Lemma 5.1. If α, β are trialitarian automorphisms of PGO+
8 (F1), then α ◦ β−1

or α ◦ β−2 is an inner automorphism.

Proof. The claim is well known. A proof is for example in [Ban69] or [Fra01], see
also [FH03]. �

Geometric trialities and trialitarian automorphisms. The relation between
geometric trialities and trialitarian automorphisms is straightforward: let (τ, ∂) be
a geometric triality on a 6-dimensional quadric Z over F1. Assume the orientation
∂ is given by C(Z) = C1 t C2. For any element g ∈ PGO+(Z), we write C1(g) for
the permutation induced by g on C1, and set

ρτ (g) = τ |−1Z ◦ C1(g) ◦ τ |Z .

Proposition 5.2. The map ρτ is a trialitarian automorphism of PGO+(Z).

Proof. It is clear from the definition that ρτ is an automorphism of PGO+(Z). To
prove that ρτ is an outer automorphism and that ρ3τ = I, we use coordinates to
identify Z with the set of vectors in the standard basis of R4 and their opposites:

Z = {±ξ1, ±ξ2, ±ξ3, ±ξ4}.

As seen in §4, we may also identify C1 with a set of vectors in R4, and PGO+(Z)
embeds in O4(R): we have homomorphisms

µ : PGO+(Z) ↪→ O4(R) and µ′ : PGO(C1) ↪→ O4(R),

which assign to each isomorphism of Z or of C1 the matrix of the induced orthogonal
transformation of R4 in the standard basis. For g ∈ PGO+(Z) and ε1, . . . , ε4 ∈
{±1} such that ε1ε2ε3ε4 = 1, we have

C1(g)
(
1
2 (ε1ξ1 + ε2ξ2 + ε3ξ3 + ε4ξ4)

)
= 1

2

(
ε1g(ξ1) + ε2g(ξ2) + ε3g(ξ3) + ε4g(ξ4)

)
.
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Therefore, the following diagram commutes:

PGO+(Z)
µ //

C1

��

O4(R)

PGO(C1)
µ′ // O4(R).

Writing T for the matrix of τ in the standard basis of R4, as in Proposition 4.1, we
thus have

(5.3) µ
(
ρτ (g)

)
= T−1µ(g)T for g ∈ PGO+(Z).

Since T 3 = 1, it follows that ρ3τ = I, and since TZ = C1 we have T /∈ µ
(
PGO+(Z)

)
,

so ρτ is an outer automorphism. �

Lemma 5.4. Let (τ, ∂) be a geometric triality on Z and let f ∈ PGO+(Z). The
map τ◦f : Z → C1 extends to a triality (τ◦f, ∂) on Z if and only if ρ2τ (f)◦ρτ (f)◦f =
I. When this condition holds, we have ρτ◦f = Int(f−1) ◦ ρτ .

Proof. Using the same notation as in the proof of Proposition 5.2, we see that
Tµ(f) is the matrix representing the map τ ◦ f . By Proposition 4.1, it follows that

this map extends to a geometric triality (τ ◦ f, ∂) if and only if
(
Tµ(f)

)3
= 1. This

condition holds if and only if ρ2τ (f) ◦ ρτ (f) ◦ f = I. Assuming it holds, we have for
g ∈ PGO+(Z)

µ
(
ρτ◦f (g)

)
= µ(f)−1T−1µ(g)Tµ(f) = µ

(
f−1ρτ (g)f

)
,

which proves the last claim. �

Theorem 5.5. For any 6-dimensional quadric Z over F1, the map (τ, ∂) 7→ ρτ
is a bijection between geometric trialities on Z and trialitarian automorphisms of
PGO+(Z).

Proof. Suppose (τ, ∂) and (τ ′, ∂′) are geometric trialities such that ρτ = ρτ ′ . Using
the same notation as in the proof of Proposition 5.2 and letting T (resp. T ′) denote
the matrix of τ (resp. τ ′), it follows from (5.3) that T ′T−1 centralizes µ

(
PGO+(Z)

)
,

hence T ′ = ±T . Since T ′
3

= T 3 = 1, we must have T ′ = T , hence (τ, ∂) = (τ ′, ∂′).
Now, suppose ρ is an arbitrary trialitarian automorphism of PGO+(Z), and let
(τ, ∂) be a geometric triality on Z. By Lemma 5.1, we have

ρ = Int(f−1) ◦ ρτ or ρ = Int(f−1) ◦ ρ2τ for some f ∈ PGO+(Z).

In the latter case, we substitute (τ2, ∂̂) for (τ, ∂) (where ∂̂ is the opposite orientation
of ∂). Since ρτ2 = ρ2τ , we may thus consider only the first case. Since ρ3 = I, we
have ρ2τ (f) ◦ ρτ (f) ◦ f = I, hence Lemma 5.4 shows that (τ ◦ f, ∂) is a geometric
triality such that ρτ◦f = ρ. Therefore, the map (τ, ∂) 7→ ρτ is onto. �

Corollary 5.6. In the Weyl group of type D4, the subgroup fixed under a triali-
tarian automorphism is isomorphic to either the dihedral group D12 or the double

covering Ã4, depending on whether the trialitarian automorphism corresponds under
the bijection of Theorem 5.5 to a geometric triality with absolute points or without
absolute points.
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Proof. Let (τ, ∂) be a geometric triality. By definition, the subgroup fixed under
ρτ is the group of automorphisms of (τ, ∂). Therefore, the corollary follows from
Theorem 4.16. �

Corollary 5.6 was verified in [KT10] using the software program Magma.

Symmetric compositions and trialitarian automorphisms. Since symmet-
ric compositions are in bijection with geometric trialities and geometric trialities
are in bijection with trialitarian automorphisms of PGO+

8 (F1), symmetric composi-
tions and trialitarian automorphisms are in bijection. We describe such a bijection
directly.

Proposition 5.7. Let ? be a symmetric composition on an 8-dimensional quadratic
space (S, ˜) over F1.

(1) For every f ∈ O+(S), there are unique elements f1, f2 ∈ O+(S) such that

(5.8) f(x ? S) = f1(x) ? S and f(S ?x) = S ?f2(x) for all x ∈ S.

These maps satisfy the following identities for all x, y ∈ S:

f(x ? y) = f1(x) ? f2(y)
f1(x ? y) = f2(x) ? f(y)
f2(x ? y) = f(x) ? f1(y)

(2) For every f ∈ O(S) \O+(S), there are unique elements f1, f2 ∈ O(S) such
that

f(x ? S) = S ?f2(x) and f(S ?x) = f1(x) ? S for all x ∈ S.

These maps satisfy the following identities for all x, y ∈ S:

f(x ? y) = f1(y) ? f2(x)
f1(x ? y) = f2(y) ? f(x)
f2(x ? y) = f(y) ? f1(x)

Proof. Suppose f ∈ O+(S). Then f maps maximal isotropic subspaces of one kind
to maximal isotropic subspaces of the same kind, and since by Corollary 3.21 every
maximal isotropic subspace has a unique representation in the form x ? S or S ?x,
there are bijective maps f1, f2 : S → S defined by the property (5.8) (and by
f1(0) = f2(0) = 0). We have f1 ∈ O(S) since

f1(x̃) ? S = f(x̃ ? S) = ˜f(x ? S) = f̃1(x) ? S .
Similarly, f2 ∈ O(S).
To prove the identities in (1), we may assume x and y are nonzero. If x ? y 6= 0,
Proposition 4.22 implies that

{x ? y} = 〈x ? S 〉∩ 〈 S ?y 〉,
so that

{f(x ? y)} = 〈 f(x ? S) 〉 ∩ 〈 f(S ?y) 〉 = 〈 f1(x) ? S 〉∩ 〈 S ?f2(y) 〉 .
By Proposition 4.22 again, it follows that f1(x) ? f2(y) = f(x ? y). We thus get the
first identity of (1) when x ? y 6= 0. For the second, assuming x ? y 6= 0, we deduce
from (x ? y) ? x̃ = y that

(5.9) f
(
(x ? y) ? x̃

)
= f1(x ? y) ? f2(x̃) = f(y).
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Since f is an isometry, we have f(x̃) = f̃(x). Multiplying on the left (5.9) by
f2(x) gives the second formula when x ? y 6= 0. The proof of the third formula is
similar. If x ? y = 0, then x ? ỹ 6= 0 by (SC2), and the preceding arguments yield
f1(x) ? f2(ỹ) 6= 0, f2(x) ? f(ỹ) 6= 0, and f(x) ? f1(ỹ) 6= 0. Since f , f1, and f2 are
isometries, they commute with ˜, hence

f1(x) ? f2(y) = f2(x) ? f(y) = f(x) ? f1(y) = 0.

The identities in (1) thus hold for all x, y ∈ S.
From the second identity it follows that for all x, y ∈ S

f1(x ? S) = f2(x) ? S and f1(S ?y) = S ?f(y),

hence f1 preserves the types of maximal isotropic subspaces. Therefore, f1 ∈
O+(S). Likewise, the third identity shows that f2 ∈ O+(S). The proof of (1)
is thus complete. The proof of (2) is similar. �

Given a symmetric composition ? on (S, ˜), we use Proposition 5.7 to define a map
ρ? : O+(S)→ O+(S) by

ρ?(f) = f1 for f ∈ O+(S).

Proposition 5.10. Let (τ?, ∂?) be the geometric triality corresponding to the sym-
metric composition ? (see Proposition 4.23), and let ρτ? be the associated trialitarian
automorphism. We have ρ? = ρτ? .

Proof. Let f ∈ O+(S) = PGO+(〈 S 〉). By definition of ρτ? , we have for x ∈ 〈S 〉

ρτ?(f)(x) = τ−1?
(
C1(f)(τ?(x))

)
= τ−1? 〈 f(x ? S) 〉 = τ−1? 〈 f1(x) ? S 〉 = f1(x).

�

It readily follows from Proposition 5.10 that ρ? is a trialitarian automorphism.
Combining Theorems 4.25 and 5.5, we obtain:

Theorem 5.11. The map ? 7→ ρ? defines a bijection between the set of symmetric
compositions over the quadratic space (S, ˜) and the set of trialitarian automor-
phisms of PGO+

8 (F1).
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