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Formation reorganization by primitive operations on
directed graphs.

Julien M. Hendrickx, Baris Fidan, Changbin Yu, Brian D.O.d&nson and Vincent D. Blondel

Abstract— In this paper, we study the construction and trans- A. Formations and rigid graphs

formation of two-dimensional persistent graphs. Persistence is Manv apolications require the shape of a multi-agent
a generalization to directed graphs of the undirected notion y app a P g

of rigidity. Both notions are currently being used in various formation to be preserved F_Or examplez target IocalizaFion
studies on coordination and control of autonomous multi-agent by a group of unmanned airborne vehicles (UAVS) using
formations. In the context of mobile autonomous agent for- either angle of arrival data or time difference of arrival

mations, persistence characterizes the efficacy of a directedjnformation appears to be best achieved (in the sense of

formation structure with unilateral distance constraints seeking minimizing localization error) when the UAVs are located
to preserve the shape of the formation. Analogously to the g

powerful results about Henneberg sequences in minimal rigidity at the vertices of a regular polygon [5]. Other examples of
theory, we propose different types of directed graph operatios optimal placements for groups of moving sensors can be
allowing one to sequentially build any minimally persistent graph  found in [16]. This objective can be achieved by explicitly
(i.e. persistent graph with a minimal number of edges for a yeepingsomeinter-agent distances constant. In other words,
given number of vertices), each intermediate graph being also inter- t dist licitl intained tao
minimally persistent. We also consider the more generic problem some inter agen_ Istances ar_e explicitly ma_ln aine S
of obtaining one minimally persistent graph from another, which SO that all the inter-agent distances remain constant. The
corresponds to the on-line reorganization of the sensing and information structure arising from such a system can be
control architecture of an autonomous agent formation. We proe  efficiently modelled by a graph, where agents are abstracted

that we can obtain any minimally persistent formatiqn from any by vertices and actively constrained inter-agent distarime
other one by a sequence of elementary local operations such thatedges

minimal persistence is preserved throughout the reorganization

process. Finally, we briefly explore how such transformations can

be performed in a decentralized way. Such a graph is said to igid if the corresponding set

of distance constraints is sufficient to maintain the foiorat

l. INTRODUCTION shape._ In other words, a g_raph is rigiq if provio_led that all
) i prescribed distance constraints are satisfied during ancont

The recent progress in the field of autonomous agent sygs,s gisplacement, all inter-agent distances remain aost

tems has led to new problems in control theory [2], [4], [19g shown in Figure 1. This property depends indeed almost

and graph theory [6], [11], [17]. By autonomous agent, W&y on the graph of distance constraints, and not on the

mean here any human controlled or uqmanned vehicle ﬂﬂﬂrticular agents positions and inter-agents distance [®
can move by itself and has a local intelligence or computing, mqare details on this subject). Note that this notion of
capacity, such as ground robots, air vehicles or underwajgfiqity also represents the rigidity of a framework whehe t
vehicles. The results derived in this paper concern autousm , o rices correspond to joints and the edges to bars.

agents evolving in a two dimensional space.
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are working with agents in which optical sensors have blind
three dimensional cones. It can also be desired to ease the
trajectory control of the formation, as it allows so-called
leader follower formations [2], [7], [19]. In such a formatti,

one agent (leader) is free of inter-agent constraints and is (b)

only constrained by the_ desired trajgctory of th_e form":r[loltlig. 1. Representation of (a) a non-rigid and (b) a rigid gfeggmation. The
and a second agent (first follower) is responsible for onliid structure in (a) can indeed be deformed to the dotterttstre without
one distance constraint and can set the relative orientatio breaking any distance constraint.

the formation. The other agents have no decision power and

are forced by their distance constraints to follow the twstfir

2
agents. An example of such a formation is shown in Figure
2. Finally, it has been argued [2] that for some classes of

4

control law, having the distance constraints maintained by
both agents can lead to unstable behaviors in the presence
of measurement errors (It is however possible to avoid such
behavior by introducing dead-zones at the cost of limited

inaccuracy in the preservation of formation shape [9]).
Fig. 2. Representation of a persistent graph, i.e., a rigitstraint consistent

. . . raph. This graph corresponds also to a leader-followendtion, where 1
A structure of unilateral distance constraints can be reR-the leader and 2 the first follower.

resented using a directed graph, a vertex being connected to

another vertex by a directed edge if the agent corresponding

to the first vertex has to maintain its distance from the ageptth minimally rigid graphs. More particularlyve analyze
represented by the second vertex. The characterizationeof gifferent ways to sequentially build minimally persistent
directed information structures which can efficiently main graphs, analogously to the Henneberg sequences for the
the formation shape has begun to be studied under the namigimally rigid graphs[14], [20]. It has indeed long been
of “directed rigidity” or “rigidity of a directed graph” [1][2], known that every minimally rigid graph can be obtained from
[6]. These works included several conjectures about mihimée complete graph on two vertices by a sequence of two basic
directed rigidity, i.e., directed rigidity with a minimalumber operations, as detailed in Section Il. The natural extensio

of edges for a fixed number of vertices. In [11], Hendrickx @hese operations to directed graphs [7] daesallow one to

al. proposed a theoretical framework to analyze these sssusuild all minimally persistent graphs, as remarked in [14di a
where the name of “persistence” was used in preference 4o “giéviewed in Section IV-B. For reasons reviewed in Section
rected rigidity”, since the latter notion does not correspéo |[I-B it is however desirable to have a set of operations for
the immediate transposition of the undirected notion aflitg  the building of all minimally persistent graphs. Such a set
to directed graphs. The intuitive definition of persisterscthe is indeed needed to develop an efficient way to cope with
following: An information structure is persistent if, pided the loss of one or several agents, as it would allow adding
that each agent is trying to satisfy all the distance coim&a or removing an agent in a formation in a decentralized way.
for which it is responsible, all the inter-agent distanaa®ain A second quite different motivation is that in the presence
constant and as a result the formation shape is preservedsfltmeasurement errors, reorganization of a formation may
is shown in [11] that persistence is actually the conjumcticalso be needed to cope with some ill-conditioned system
of two distinct notions: rigidity of the underlying undied without modifying the relative positions of the agents. iBot
graph (i.e. the graph obtained by ignoring the directionhef t issues are especially relevant if one considers that a tiwma
edges), and constraint consistence. Constraint consésteh needs to evolve dynamically with the external conditions,
an information structure means that, provided that eachtageodifying for example its shape and or its leadership stmect

is trying to satisfy all its distances constraints, all thgemts

actually succeed in doing so. In other words, no agent has an

impossible task, as shown in the example in Figure 3. Observe 2 aed
that this last notion strongly depends on the directed strac *
of the graph, while rigidity only relies on its underlying 3 1 3 ?2? 1
undirected graph. An example of a persistent graph is pealvid =, i
in Figure 2. For agents evolving in a two-dimensional space, /
purely combinatorial criterion to decide persistence @/uted -
in [11]. 4 4
(a) (b)

Fig. 3. Representation of (a) a constraint consistent apd (on-constraint
consistent (in 2 dimension) graph/formation. One can indeedis (b) that

. o : r almost any uncoordinated continuous displacement of geaita 2 and 4
In this paper, we focus on mmlma”y persistent graph hich are unconstrained), the agent 3 is unable to move in aweay that it

i.e. persistent graphs having a minimal number of edggSintains its distances to all of 1,2 and 4 constant. Howeseh a situation
for a given number of vertices, and their connectiorguld not happen in graph (a).

C. Building formations with minimally persistent graphs
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We prove some characteristics of the operation sets algpwin -
one to build all minimally persistent graphs, and provide on
of the simplest sets achieving this goal (Another set, for /
which the number of operations required to build a minimally () '

persistent graph is uniquely determined by the number of
its vertices, can be found in [12], [13]). We also consider
the more generic problem of obtaining one persistent graph
from another. From an autonomous agent point of view, — i

this corresponds to an on-line reorganization of the agent

formation. Note that although the notion of persistence has

been also defined in three or higher dimensions [22], the

present analysis only concerns two-dimensional persisten (b)

i.e., the persistence of graphs representing the infoomatiFig. 4. Representation of (a) undirected vertex additioaration and (b)
structure of a formation evolving in a two-dimensional spac®d9e splitting operation.

Extension to the three dimensional case may be difficultn eve
for undirected graphs, three-dimensional Henneberg segse

- . Il. MINIMALLY RIGID GRAPHS AND UNDIRECTED
theory is indeed incomplete.

HENNEBERG SEQUENCES

In this section, all graphs are considered as undirected,
but in the rest of this paper, they are always assumed to
D. Outline of the paper be directed. Although all the definitions and results of this
section are given for undirected graphs, they can also be
In Section 1, we review the main properties of the Henapplied to directed graphs. { is a directed graph, we call
neberg sequences for minimally rigid graphs and of the twbe underlying undirected graplof G the undirected graph
operations - vertex addition and edge splitting - on whicbbtained by ignoring the directions of the edgescbf
it is based. Section Il briefly reviews minimal persistence
and details the different reasons for which a directed warsi The intuitive meaning of the undirected notion of rigidity
of Henneberg sequences is desirable. We consider in Seci®explained in the Introduction. For a more formal definitio
IV the natural extension of the vertex addition and edgke reader is referred to [11], [20]. IR?, there exists a
splitting to directed graphs, and show that although th@pmbinatorial criterion to check if a given graph is rigid
preserve minimal persistence, they are not sufficient tiillalli  (Laman’s theorem [15], [21]). Aminimally rigid graph is a
minimally persistent graphs, and do therefore not cortstitu rigid graph such that no edge can be removed without losing
complete generalization of Henneberg sequences to directigidity. A key intermediate result in Laman’s Theorem piroo
graphs. We also show that any set of directed operatioii®] is the following criterion:
based on the undirected vertex addition and edge splitting
operations and allowing one to build all minimally persigte  Proposition 1: A graph G = (V,E) (V] > 1) is
graphsmust contain non-confined operations. Non-confinethinimally rigid if and only if |[E| = 2|V| — 3 and for all
operations are operations reversing the directions ofettgg E” C E, E” # @, there holdgE”| < 2|[V(E")| — 3, where
are not affected by the corresponding operation for untéitec V (E”) is the set of vertices incident t&”.
graphs. In other words operations that, in addition to agldin
or removing vertices and edges, reverse the directions ®f onLet j, k& be two distinct vertices of a minimally rigid
or more edges. This analysis is done by reasoning on revegsaph G = (V, E). A vertex additionoperation consists in
construction of persistent graphs using reverse opemation adding a vertex, and connecting it tg and k, as shown in
Section V we introduce the simplest non-confined operatiofigure 4(a). It follows from Proposition 1 that this opeoati
edge reversal, and show how it can be used to reach fireserves minimal rigidity. Moreover, if a vertex has
goal of building all minimally persistent graphs. We seetthadegree 2 in a minimally rigid graph, one can always perform
unlike when building minimally rigid undirected graphs kit the inverse vertex addition operation by removing it (and
Henneberg sequences, the required number of operation#ssncident edges) and obtain a smaller minimally rigidpadra
not uniquely determined by the size of the graph. We also
explore the possibility of performing some of the operagiam Let 5, k, [ be three vertices of a minimally rigid graph such
a decentralized way, something which is of critical impoca that there is an edge betwegnand k. An edge splitting
from an application point of view. Finally, this paper endsperation consists in removing this edge, adding a veitex
with the concluding remarks of Section VI. Note that a morand connecting it tg, k£ and{, as shown in Figure 4(b). This
detailed explanation of the undirected and directed vessad operation provably preserves minimal rigidity [20]. Cafesi
the Henneberg operations can be found in [12], [13], togetheow a vertexi connected to three vertices £ and [. A
with an alternative set of four operations allowing one tteob reverse edge splitting consists in removingnd adding one
all minimally persistent graphs. edge amondj, k), (k,l) and (l, ), in such a way that the
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1

2 of this agent. In a two-dimensional space, an agent having

1
two or more distance constraints to satisfy (out-degreea®) h
only up to two possible positions. It has therefore no degree
of freedom. An agent having only one distance constraint to

6 6 6  satisfy (out-degree 1) can move on a circle centered on its

() (b) (c) neighbor, and has thus one degree of freedom. Finally an
Fig. 5. Example of unfortunate added edge selection in reveige splitting. agent having no distance constraint to satisfy (out-de@jee
Aft_er_ the removal of the vertex5from_the minimally rigid grag),(minimal  can move free|y in the plane and has therefore two degrees
gy can be presenied by I acdon of e edel) bt 1ol i {115 of freedom. The number of degrees of freedon of a vertex
by 1, 2, 3 and 6 contains indeed 6 edges and 4 vertises 2.4 — 3 =5), ¢ in a directed graph is thus given hyax (0,2 — d*(i))
and the edgé3, 4) is only fixed to the graph by one of its vertices. (where d* (i) and d~ (i) represent respectively the out- and
in-degree of the vertex). As a consequence of Proposition
2, the number of degrees of freedom of a vertexn a
inimally persistent graph i€ — d*(i). The total number
degree of freedom in a minimally persistent grapti/, E)
P v (2—dF (D) = 2V| = Ly dF () = 2|V - |E].
It follows then from Propositions 1 and 2 that this number
is always 3 in a minimally persistent graph. This result is
consistent with the intuition, there are indeed three degof
freedom to choose the position and orientation of a rigidybod
in a 2-dimensional space.

1 . - .
agent can choose its position when all the others positions
1 are fixed. It thus represents in some sense the decision power

graph obtained is minimally rigid This operation can be
performed on every vertex with degree 3 in a minimally rigi%
graph [15], [20], but one cannot freely choose the edge to

added as shown on the example in Figure 5.

A Henneberg sequenceis a sequence of graphs
G32,Gs,...,Gly| with Gy = K, being the complete
graph on two vertices and where each graph(: > 3) can
be obtained from#;_; by either a vertex addition operation
or an edge splitting operation. Since these operationgpes
minimal rigidity and since (s is minimally rigid, every graph B. Applications-type motivations for directed versiongieh-
in such a sequence is minimally rigid. neberg sequences

Th 1 1201 E inimally riaid h h Having a set of operations allowing one to sequentially
eorem 1: [20] Every minimally rigid graph on more t aNpyild all minimally persistent graphs in a systematic way

one vertex can be obt_alned as the result of a Henneberg gﬁélogously to Henneberg sequences for undirected graphs,
quence. Moreo_ve_r, all intermediate: graphs of such a Sequelt 1o reorganize any minimally persistent graph into anyeoth
are minimally rigid. is an interesting result from a theoretical point of view.tBu

it also has several practical implications, which we reviaw

IIl. M INIMALLY PERSISTENT GRAPHS this section.

A. Review of minimal persistence

Consider a group of autonomous agents represented byuch a set, if simple enough, could first provide a
vertices of a graph. To each of these agents, one assigesentralized way to add an agent to a formation. This
a (possibly empty) set of unilateral distance constrainggould for example be relevant in a situation where a few
represented by directed edges: the notatienj) for a additional agents are needed to help a formation to cope
directed edge connotes that the ageéritas to maintain its with unplanned task. The dual problem of an agent leaving
distance toj constant during any continuous move. Th#he formation is equally relevant. An agent may indeed
persistence of the directed graph means that provided theed to leave the formation once it has accomplished its
each agent is trying to satisfy its constraints, the distantask within the formation or to fulfill a particular tempoyar
between any pair of connected or non-connected agentamission out of the formation. Also, in a large formation the
maintained constant during any continuous move, and p&ssibility of losing an agent cannot be excluded, due to
a consequence the shape of the formation is preservedteshnical malfunctions or to an hostile action for example.
formal definition of persistence is given in [11]. This generally leads to a loss of persistence, and an efficien

method is thus needed to reconfigure the formation in order

A graph isminimally persistentf it is persistent and if no to recover persistence. This problem is known asdiosing
edge can be removed without losing persistence. The faligwiranks problemand happens to be a particular case of the
result provides a swift criterion to decide minimal persigte: splitting problemin which a formation is split in two or more

subsets, each of them potentially needing to reconfigure its

Proposition 2: [11] A graph is minimally persistent if and distance constraints in order to be persistent. These dssue
only if it is minimally rigid and no vertex has an out-degreare addressed in the undirected case by Eren et al. [6], and
larger than 2. the proposed solution relies on the undirected Henneberg

sequences (Actually, a modest extension of the underlying

We call thenumber of degrees of freedoai a vertexi theory is needed). Therefore it is reasonable to supposetha
the (generic) dimension of the set in which the correspandinlirected analogous to Henneberg sequences would be helpful
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3 U —
2 3 , 3 o<:$ o 3 <\$ 5
—) . 3 () (b)
4 €1 Fig. 8. Representation of two minimally persistent formatitvasing the
7777777777777, same undirected constraints. However (b) is much better tondd that (a)

has the smallest angle between two constraints for which aheesagent is
responsible is much larger than in (a).

(@)
3 3
2 2
>81 - >9 ‘ B
(b) /

Fig. 6. (a) Formation needing to reduce the width of its shaperder
to go through a narrow passage. As a result, the distancdraimts sets of

(a)
agents 3 and 4 become ill-conditioned. This can be solved bsgamizing
the structure of constraints without modifying the formatiirape (b).
. i
T e .
(b)

e Fig. 9. Representation of the directed vertex addition (&) edge splitting
ri (T, Tx) ().

Fig. 7. Representation of an agent with an ill-conditioneticf constraints.
Small positions variations or measurement erfoys-z;, £ — ) can cause pha the case for simple control reasons as in the example
large modifications of the desired position of . . . . .
represented in Figure 8. Or, it might happen that in the @urs
of the formation movement, some agents get an easier or more
in solving the directed version of the closing ranks problemaccuralte a_cc?ss to_mformatlon _that could or sh_ou!d ”.’f'e'e”C
the formation’s desired path. Without necessarily influegc
The goal of persistence is to maintain the shape ofﬂae “'.’“?"reﬂed structur_e of the f(_)rmanon, I VYO.UId then be
eneficial to provide this agent with some decision power or

formation during its displacement. This must however n ree of freedom. that is 1o have the agent activelv maintai
hide the possible need for this shape to be modified due 67 o 9 y
|giSS than two constraints.

a varying external environment. Suppose for example th
a formation has to traverse a narrow passage to avoid a
dangerous zone such as mountains or a fire, or to avoid the
detection range of some radars. The formation width needs
to be reduced as represented in Figure 6(a), but it might fe Definition of the operations
desirable to conserve its length. Such a shape modificatiorLet j, k be two distinct vertices of a minimally persistent
can lead to instabilities inside the formations. An agéntgraph G = (V,E). A directed vertex addition7], [10]
having distance constraints toward two agepitand £ has consists in adding a vertex and two directed edge§;, )
theoretically a position uniquely determined (up to an bxiand (i, k) as shown in Figure 9(a). A reverse (directed)
symmetry) by the positions of and k. But in a real and vertex addition consist in removing a vertex with an out-
noisy environment, determining the positioniotan become degree 2 and an in-degree 0 from a minimally persistent graph
an ill-conditioned problem if the anglﬁ'k becomes too small
as represented in Figure 7. Due to a shape modification arLemma 1: The directed vertex addition and reverse directed
initially sound formation can become ill-conditioned as iwertex addition operations preserve minimal persistence.
Figure 6(a). This problem could be prevented by imposing Proof: From an undirected point of view, both opera-
some stability ensuring conditions on the new agent redatitions preserve minimal rigidity. Moreover, the directedtez
positions. However, in several cases, a simple reorganizataddition operation adds a vertex with out-degree 2 without
of the distance constraint structure can re-improve thfecting other vertex out-degrees, and the reverse didect
conditioning of the formation systems without modifyingvertex addition operation removes a vertex without affegti
the relative positions of the agents as presented in Figime 6 other vertex out-degrees. It follows then from Propositibn
that both operations preserve minimal persistence

Finally, a shape modification or variation in the external [ ]
environment can also lead to the necessity of modifying Let (j,k) be a directed edge in a minimally persistent
the formation leadership without necessarily modifying thgraph and! a distinct vertex. Adirected edge splitting7],
undirected structure of the distance constraints. Thiddcol10] consists in adding a vertexan edg€, (), and replacing

IV. NATURAL EXTENSION OF THEHENNEBERG
OPERATIONS
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the edge(j, k) by (j,7) and (i, k), as shown in Figure 9(b). : .« 2 2
Let now i be a vertex with out-degree 2 and in-degree 1, v m
call j the vertex left by an edge arriving &t and k,! the -

other neighbors ofi. its neighborsj, &k and (. The reverse 3 5 2n-1
directed edge splitting operation consists in removingnd Fig. 10. Class of graphs on which no reverse vertex additiage splitting
its incident edges, and adding eithgt k) or (j,1) (k and! can be performed.

being interchangeablé) such a way that the graph obtained

is minimally rigid.

1 2n+1

Consider the graph in Figure 10 fer > 1. This graph is
dginimally rigid as its undirected structure can be obtained

edge splitting operations preserve minimal persistence. ~ [10M K2 by performing2n — 1 undirected vertex additions,
Proof: From an undirected point of view, the edg&Onnecting each new vertesxo i — 1 andi —2. Moreover, no
splitting operation preserves minimal rigidity. It follerom Vertex has an out-degree larger than 2; by Proposition 2 it is
its definition that the reverse directed edge splitting apen thus mlrjlmally persistent. If this graph cqu]d be obta|.n@d b
also does. Again, these operations add or remove a vertbx viEfOrming an operation i§f on a smaller minimally persistent
out-degree 2 without affecting the other vertex out—degreéJraph' then it would be possible to re-obtain this smallapgr

. " ) i ion ig—1
So it follows from Proposition 2 that both operations preser PY @PPlying an operation i$™~". Observe that no vertex has
minimal persistence. an in-degree 0; it is thus impossible to perform a reverstexer

m addition operation. Moreover, only the vertex satisfies the

We denote byS the set of operations containing thdequired condiFiqrjs about the in- and out-degree in orQQr to
directed vertex addition operation and the directed ed§der the possibility of removal by a reverse edge splitting
splitting operations and bg—! the operation set containingOperat_'O”- Applying _thls reverse operation would consist i
their reverse versions (the same convention is used 'fMOVing2n and adding either the edgen+1,2n—1) or the
the sequel for all operation sets). The smallest minimalfA9€(2n—2,2n—1). But the opposite edgegn —1,2n+1)
persistent graph on more than one vertex consists 39 (2n —1,2n —2) are already present in the graph, so that
two vertices connected by one directed edge, its minim@fding (2 +1,2n —1) or (2n —1,2n + 1) would create
persistence follows directly from Propositions 2 and 1. W cycle of length 2. It follows from a direct application of
refer to this graph as adeader-follower pair the leader Proposition 1 that a graph containing such a cycle is never
being the vertex with an out-degree 0. Since the operatiofdnimally rigid and therefore never minimally persisteNote
in S preserve minimal persistence, any graph obtained Bjt adding(2n — 2,2n + 1) or (2n + 1,2n — 2) would

performing a sequence of directed vertex addition or ed§feStore the graph rigidity, but the operation would then not
splitting operations on an initial leader-follower pair i€ & reverse directed edge splitting such as defined above and

minimally persistent. The following result establisheattto Would not be out-degree preserving for the vertices remgini
any minimally rigid graph corresponds a minimally persiste I the graph, and would then not necessarily preserve minima

graph that can be obtained in that way, as already arguedPgSistence. In the first case, the out-degreerof- 2 would
[11]. indeed be increased to 3, preventing the graph obtained from

being (minimally) persistent. The possibility of using Buc
Proposition 3: It is possible to assign directions to thePPerations is further explored in Section IV-C. Furtherenor
edges of any minimally rigid graph such that the obtained"ce this reasoning holds for amy> 1, we have an infinite
directed graph is minimally persistent and can be obtained ﬁlass of graphs on which none of the two reverse operations

performing a sequence of operationdnon an initial leader- N S~ can be performed. (A minimally persistent graph in
follower pair. Moreover, all intermediate graphs are miaiiy which one vertex has two degrees of freedom and another one

persistent. one degree of freedom and which cannot be obtained from

Proof: Let G be a minimally rigid (undirected) graph.@ smaller minimally persistent graph by an operationSin
By Theorem 1, it can be obtained by performing a sequeng@n be found in [11]) As a consequence, it is not possible
of undirected vertex additions and edge splittings &p. (0 build every minimally persistent graph by performing a
By performing the same sequence of the directed version$duence of operations ifi on some seed graph taken in
these operations on an initial leader-follower pair, ontaipls @ finite set of graphs. Observe also that unlike in the case
a directed graph having as underlying undirected graph.Of undirected reverse operations for minimally rigid greph
Moreover, since this initial seed is minimally persistentia there are vertices in minimally persistent graphs that oann
since the directed versions of both vertex addition and edg@ removed by a reverse (directed) edge splitting even thoug
splitting preserve minimal persistence, the obtainedlyapd  they satisfy the degree condition, i.e. they have an outeteg
all the intermediate graphs are minimally persistent. 2 and an in-degree 1.

n

Lemma 2:The directed edge splitting and reverse direct

C. Necessary involvement of external edges.

B. Insufficiency of the natural extension It is shown in the previous sections that the immediate
We now show that the operations & do not allow one generalizations to directed graphs of the undirected xerte
to grow all minimally persistent graphs from an initial seedaddition and edge splitting operations are not sufficient to



IEEE TRANSACTION ON AUTOMATIC CONTROL 7

version of this operation. One would then remove one of the
vertices with a label “+” and connect two of its neighbors
by a directed edge. Observe that among the three pairs of

+

neighbors of any vertex with a label “+”, two are already

+ * connected, and the last pair contains two vertices with an
out-degree 2. Adding an edge between a pair of neighbors

A + of the removed vertex without reversing the direction of any
% A other edge would thus imply the presence of either a vertex

+ 7‘ \ with out-degree 3 which by Theorem 2 is impossible in a

v / minimally persistent graph, or of a cycle of length 2 which

+ by Proposition 1 cannot appear in a minimally rigid graph.

This removal should therefore be performed hyoa-confined
Fig. 11. A minimally persistent graph no vertex of which can bmoved P

without losing persistence by a reverse (generalized)exesaddition or a reverse generallzed edge Spllttlng.
confined (generalized) reverse edge splitting. The symbbtepresents one |

degree of freedom. Vertices that are candidate to be removedl rigyerse Such a set of operations Containing non-confined edge

generalized edge splitting are labelled “+". L . . . .
splitting and allowing one to build all minimally persisten
graphs starting from a leader-follower seed can be found in

) . _ ) [12] and [13]. Since one vertex is added at each operatien, th
build all minimally persistent graphs. These operations anymper of operations required to obtain a graph= (V, E)

designed to preserve the out-degree of the already existjgqy/| — 2. The existence of confined operations that would
vertices, so that they can be performed (preserving minimgt pe equivalent to vertex addition or edge splitting, ittt
persistence) on any minimally persistent graph, regasdis yould however preserve minimal persistence and allow one
the out-degree of the vertices to which the added vertex s pyild all minimally persistent graphs witV’| vertices in
connected. But one could imagine other generalizations gf| _ 3 operations starting with a leader-follower seed remains

the undirected operations, which would for example in@eagn gpen question. Such operations would have to be proved
some out-degree and therefore could only be applied unggmyreserve minimal rigidity.

restricted conditions. For example one can contemplate
adding a vertex with in-degree and out-degree 1, and edges V. A PURELY DIRECTED OPERATION

(i,4) and (k,7). As a result, the out-degree &fis increased , .
: . e . . We have shown that unless we use operations which are
by 1. This operation preserves minimal persistence if and

ol f I hes a deee f fsecom before the addiion,that o Went 0 Hermebers seserce cperatons fom an
if the out-degree of is smaller than 2 before the addition, b ' P

In the sequel, we adopt the terrgeneralized vertex addition required to be gble to build all minimally persstent_grapdue .
; . : .. therefore now introduce the edge reversal operation, the si
and generalized edge splittindor any operation which is

. o . lest possible non-confined operation, which is neutrainfro
equivalent to a vertex addition or an edge splitting from an . : . : T

. . ; S . : an undirected point of view as it only reverses the directibn
undirected point of view. An operation is said to benfined

if it only affects edges that are involved in the correspogdi one edge. We then define two macro-operations which help

. ; S . us to prove two properties. First, edge reversal operations
undirected operation. In other words, an operation is cedfin n brop g P

if it only consists in addition or deletion of edges and \e&$, are sufficient to Obtam any minimally pgrsustent' graph from
. any other one having the same underlying undirected graph.

and not in the reversion of edges directions, these revessi . ) . .
. : . %econd, edge reversal operations combined with thosg in
having indeed no undirected counterparts. For example

both operations inS are confined. We now prove that itarka sufficient to obtain any minimally persistent graph fram

is impossible to obtain all minimally persistent graph b)l/Jnlque initial seed.

applying a sequence of confined generalized vertex addition q |
or edge splitting operations to an initial leader-follovesed. - Edge reversa
Let (,5) be an edge such thathas at least one degree

Proposition 4: If a set exists of generalized vertex addition8f freedom, i.e.d™(j) = 0 or d*(j) = 1. The edge reversal
and edge splittings allowing one to build all minimally per@Peration consists in replacing the ed@ej) by (j,4). As

sistent graphs from an initial leader-follower seed, suctein @ consequence, one degree of freedom is transferred from
must contain a non-confined edge splitting. to ¢. This operation is its auto-inverse and preserves minimal

IQ_ersistence since it does not affect the underlying unticec

Proof: Suppose that one wants to remove a vertex wit h and th v i q d ) :
out losing persistence from the provably minimally peesist graph and the only increased out-degese(j) remains n_o
qreater than 2. From an autonomous agent point of view

graph represented in Figure 11 using a generalized reve tors its decisi hphe
edge splitting or reverse vertex addition. The only ones thigansters its decision power or a part of itio

can be removed are those with (undirected) degree 2 or 3,

and they are shown with a label “+”. As they have undirectdd Path reversal

degree 3, a generalized reverse edge splitting operatioidwo Given a directed pathP between a vertex and a vertex
be needed. Suppose now that one wants to use a confifieslch thatj has a positive number of degrees of freedom,
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o—r—e <4 — 0 <o . . o)
> . Fig. 13. Implementation of cycle reversal. The “*” represemte degree of
freedom.
i k i
o <o < 4 < least one degree of freedom. In that case, the cycle revsrsal

*

just a particular case of the path reversal, with j. We now

Fig. 12. Implementation of the path reversal by a sequencegsf eversals. assume that no vertex in the cycle has a degree of freedom.
The symbol **” represents one degree of freedom. Let [ be a vertex in the cycle, anek a vertex that does not
belong to the cycle but has a degree of freedom. By Lemma

a path reversalconsists in reversing the directions of alﬁ" it follows that ther-e exists a d|rected- path frérto m. Let
the edges ofP. As a result,j loses a degree of freedom i be the last vertex in this path belonging to the cycle. There

i acquires one, and there is a directed path frono . is trivially a path P from i to m such that every other vertex

Moreover, the number of degrees of freedom of all the oth%1E ;h': E?ethr:\/c;erzarl]cg btehlfeneg tgt:lhfei:/}grﬂseail;—?se t':;ﬂ'?;nem:;iﬁn
vertices remain unchanged. Note thandj can be the same . Y y P P

1 H i " /
vertex, in which case the path either has a trivial lengibr in Figure 13. One begins by reversing the patinto P such

. L thati acquires a degree of freedom. As explained above, the

is a cycle. In both of these situations, the number of degrees . o .

of freedom is preserved for every vertex cycle can then. be reversed since it is a particular case bf pat
' reversal, and finally, one reverses the p&thback to P such

The path reversal can easily be implemented with tgatthe degree of freedom acquiredikig re-transmitted ton.

sequence of edge reversals: Sinckas a degree of freedom,

one can reverse the last edge of the path, (gay), such that Remark 1:Both cycle reversal and path reversal are their

. . auto-inverse, as is the case for edge reversal. Moreower, th
j loses one degree of freedom whiteacquires one. One can : .
fact that they can be implemented using only edge reversals

then iterate this operation along the path unfias shown in is another way to show that they preserve minimal persistenc
Figure 12. At the end; has an additional degree of freedom, y yp P

j has lost one, and all the edges of the paths have been

It follows from Lemma 3 that one can arbitrarily reposition
reversed. Note that the sequence of edge reversals caryusual : )
. o -~ degrees of freedom using path reversals. The followingltresu
not be performed in another order, for the condition reqgiri .

the availability of a degree of freedom would not be satisfie'cinplles .that twc_» minimally persistent graphs ha\{l_ng the sam
%lnderlymg undirected graph and the same positions for thei

The final result would be the same, but all the intermedia . .

raphs would not necessarily be minimally persistent egrees of .freedom (all vertices hav!ng therefore the same
g ' out-degree in the two graphs) can differ only by cycles of
pposite edges, and its proof provides a greedy algorithm to

The following lemma, which is a particular case of a resu
Ind such a cycle.

available in [22], implies that a path reversal operatidoves
the transfer of a degree of freedom from any vertex having atLemma ALlet Ga = (V.Ea) and Gy = (V, En) be two

least one degree of freedom to any other vertex having less X ) .
than two of them. graphs having the same underlying undirected graph and such

that every vertex has the same out-degree in both graphs. If
an edge ofG 4 has the opposite direction to that @iz, then
it belongs to a cycle of such edges@fy.
Proof: Suppose thatip,i1) € E4 and (i1,ip) € Ep
(i.e., this edge has opposite directionsGty and Gg); then
there exists at least one vertéx # iy such that(iy,is) €
C. Cycle reversal E4 and (i,i1) € Ep. For if the contrary holds, we would
A cycle reversalconsists in reversing all the edges of &ave d*(i1,Ga) = dt(i1,Gg) — 1, which contradicts our
directed cycle. This operation does not affect the numbkypothesis. Repeating this argument recursively, we plaai
of degrees of freedom of any vertex nor the underlyin@nfinite) sequence of verticesg, i1, is,... such that for each
undirected graph, and preserves therefore minimal persist j > 0, (i;,i;41) € E4 and (i;41,7;) € Ep. Since there are
only a finite number of vertices il, at least one of them will
A cycle reversal on a minimally persistent graph can beppear twice in this sequence. By taking the subsequence of
implemented by a sequence of edge reversals. Let us indeedices (and induced edges) appearing in the infinite segue
first suppose that there is a vertéin the cycle that has at between any two of its occurrences we obtain then a cycle

Lemma 3:Let G be a minimally persistent graph,and j
two vertices ofG with d* (i) > 1 andd™(j) < 1. Then, there
is a directed path from to j.



IEEE TRANSACTION ON AUTOMATIC CONTROL 9

of edges ofG 4 having opposite directions to those @Hg. and all the edges have then the same directions in both graphs

This cycle does not necessarily contéip, ;). But if it does

not, we can re-apply the same argumentitg, G’; obtained  The result of this proposition follows then from the fact

from G4 and G by removing the edges of the cycle foundthat both path reversal and cycle reversal can be implemente

(i0,71) has indeed an opposite directiond, to that inG’;, by a sequence of edge reversals, which preserves minimal

and these graphs satisfy the other hypotheses of the Lemersistence.

Moreover, they contain less edges th@n, G . Therefore by [ ]

doing this recursively, we eventually obtain a cycle camte From an autonomous agent formation perspective, suppose

(i0,11) since the number of edges in the graphs is finite. that a reorganization of the distance constraints digfobu

H needs to be performed, and that this reorganization preserv
the structure of constraints from an undirected point of
view, i.e., the reorganization only involves changes of som

) i i directions. Proposition 5 implies that this can be done by a

Using the results of the two previous subsections, we @R ,ence of local degree of freedom transfers, in such a way
now show the following proposition. that during all the intermediate stages, the formation sliap

. . guaranteed to be maintained.
Proposition 5: By applying a sequence of edge reversals to

a given minimally persistent graph, it is possible to oy Let 7 be the set of operations containing vertex addition,

other minimally persistent graph having the same undelyiny e spjitting, and edge reversal. We can now state our main
undirected graph. Moreover, all the intermediate graples 3|t that every minimally persistent graph can be okthin

then minimally persistent. . _ by performing operations i” on an initial leader-follower
Proof: Let G4 and Gg be two minimally persistent seed

graphs having the same underlying undirected graph. Seppos

that there is a vertex which has less degrees of freedom in 1 o5rem 2:Every minimally persistent graph can be ob-
G4 than in Gg. Since at most three vertices have POSitiVEined by applying a sequence of operationgito an initial

degree of freedom, there are at most three such veriice§e,qer-follower seed. Moreover, all the intermediate bsogre
And since the total number of degrees of freedom is 3 in inimally persistent.

minimally persistent graphs, _there exigts a vertexhich has Proof. Consider a minimally persistent gragi. This
more degree(sf) of freedom ifi, than inGp. In G4 i .has graph is also minimally rigid. By Proposition 3, there egist
thus necessarily less than two degrees of freedomjasd s a (possibly different) minimally persistent graph ihgv

at least one degree of freedom. It follows then from Lemmgy same underlying undirected graph that can be obtained
3 that there exists a directed path framto j in G4. The by performing a sequence of operationsSnc 7 on an
reversal of this path transfers a degree of freedom fPM;pjtia| jeader follower seed. By Proposition &, can then be

to ¢ without affectmg the number of degrees of frgedom btained by applying a sequence of edge reversals on this
the other vertices. Doing this at most two more times, thsst graph. Moreover, since all the operationsZinpreserve

two graphs will have the same positions for their degrees gfinima) persistence, all the intermediate graphs are naifiym
freedom. persistent.

D. Three primitive operations

. . . |
We now show that that the following _algorlthm, which uses To illustrate Theorem 2, consider the graghrepresented
only cycle reversals, transforms théfy into G'p: in the right hand side of Figure 14(c), which is the graph
of Figure 10 withn = 2. As explained in Section IV-B, it

while 3 e having opposite direction ifir4 to that inG's O annot be obtained by applying a vertex addition or an edge

Select a cycle”’ of such edges splitting on a smaller minimally persistent graph. However
ReverseC in G 4 by Theorem 2, it can be obtained by applying a sequence
end do of operations in7 on an initial leader-follower seed. Let us

takel and2 as respectively leader and follower of this initial
existence of C wherG4 # Gp : This is a direct seed. One can begin by addiig4 and5 using three vertex
consequence of Lemma 4 since both graphs have the sadditions as shown in Figure 14(a). The graph obtained has
underlying undirected graph and since all the vertices hathee same underlying undirected graphGasbut the degrees of
the same out-degrees in both of them. freedom are not allocated to the same vertices. By reversing
the path §,4,2,1) using a sequence of edge reversals, one
end of the algorithmAt each step of the loop, the numbercan then transfer one degree of freedom frbio 5 as shown
of edges having opposite directions@hy andGp is strictly in Figure 14(b) such that in the obtained graph, all vertices
reduced because all the edges for which directions drave the same number of degrees of freedom (and therefore
changed inG4 initially had an opposite direction iGg same out-degree) as (. As stated in Lemma 4 , any edge
(and because Proposition 1 forbids the presence of cyctdsthis graph that does not have the same direction a8 in
of length 2 in a minimally persistent graph). Since therBelongs to a cycle of such edges. The only such cycle here
are only a finite number of edges, the algorithm finishes C. By reversing it using a sequence of edge reversals, one
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Fig. 15. Implementation of the edge splitting by a vertex addiand an
edge reorientation. The vertexis first added with two out-going edges by
vertex addition, and the eddg, k) is then reoriented and becomes 7).

E. Transforming a formation in a decentralized way

The graph depicting a formation’s distance constraints
is by essence a non-local concept. Therefore, reorganizing
a formation into another formation requires a global view.
However, several more local modifications can be done in a
totally decentralized way.

Fig. 14. Example of obtaining of a minimally persistent graphalpyplying
a sequence of operations iA on a leader-follower seed. The gragh is . . .
obtained from the leader-follower seed by (a) three vertigitins, (b) the ~ Adding an agent by an operation corresponding to a vertex

reversal of the pati and (c) of the cycleC. addition in the underlying graph is the simplest of those. It
suffices for a new agent arriving in the neighborhood of a
formation to sense two agents and to maintain its distances
finally obtains the grapt@, as shown in Figure 14(c). Noteoward them constant. This agent can of course choose its
that consistently with Theorem 2, all the intermediate B&prelative position and its neighbors in such a way that its
are minimally persistent. system of constraints is not ill-conditioned.

Corollary 1: Every minimally persistent graph can be trans- The edge splitting operation can also be performed in a
formed into any other minimally persistent graph using onljecentralized way, as a combination of a vertex addition and
operations if7 U7 ", an edge reorientation (see Figure 15). Suppose that an agent

Proof: Let G4 and Gp be two minimally persistent ; has just joined a formation by means of a vertex addition
graphs. Sincéx 4 can be obtained by applying a sequence eind that another agent has sensed this new presence and
operations in7 on a leader-follower pair, the leader-followelis willing to redirect one of its present eddg, k) toward
pair can be re-obtained from4 by applying the reverse ;, i.e. to maintain constant its distance towardnstead of
versions of these operations (which are all4m!) in the jts distance toward one of its present neighbgrzan ask
reverse order. By Theorem 2 one can then ob@in from ; if k is one of its neighbors and redirect its constraints
this leader-follower pair by a sequence of operation§'in  once it receives a positive answer. Note that this requhres t

B ability for j ands to communicate and to identify (possibly

The method proposed in the proof of Corollary 1 isemporarily) other agents in a unique and common way.
generally not optimal in terms of the number of operations.

Note also that unlike in the case of undirected HennebergEdge reversal is an almost trivial operation if the agents

sequences, the number of operations to build a minimaliyave a 360 sensing range and if they are able to identify

persistent graph is not uniquely fixed by its number ahemselves in a unique way. It suffices for an agéernhat

vertices, although it is bounded i@(|V'|?) as explained in is connected to an agent having a degree of freedom to

[12] and [13]. ask this agentj to actively maintain the distance between
1 and j. Suppose now that some agenheeds to increase

Remark 2:Observe that the three operationsZimare basic its number of degrees of freedom. Lemma 3 guarantees
operations that can be performed locally. They can thudyeaghe existence of a directed path frointo all vertices with
be implemented in a local way on an autonomous agemasitive number of degrees of freedom. Such a path can be
formation. It might however be possible to improve this basfound and can be reversed in a decentralized way using a
character using for example an operations such agdge depth-first research on the graph. One has however to be
reorientation i.e., an operation consisting in changing theautious to select only one degree of freedom to bring back to
arrival vertex of an edge. As shown in Figure 15, a vertexand not all three of them. We propose the following simple
addition operation and an edge reorientation operation cdecentralized algorithm to demonstrate how this problem ca
indeed implement an edge splitting operation which couldthbe solved. Real applications would require more advanced
be discarded. However, this would require an efficient aradgorithms, in order for example to handle simultaneous
simple criterion to determine when such an edge reoriemtaticoncurrent demands or to choose “wisely” the degree of
operation can be performed, and no such criterion is prigserfteedom to be transferred. This degree of freedom could
available. for example be chosen according to a criterion such as its
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present localization, or numbers could be given to degréesanlditions or edge splittings. The existence of a set of cedfin
freedom to identify them in a unique way. operations not relying exclusively on Henneberg operation
and allowing one to build all minimally persistent graphs

We suppose that the agent initially issuing a demand fogmains however open. An improvement in the simplicity

a degree of freedom assigns a unique number to this @#-the proposed operation set could come from the use of

mand demand_I D, for example by juxtaposing its numberthe edge reorientation, which would consist in changing the

agent_I D and its local present time. For all agents except ttarival point of an edge. However, the conditions under Wwhic

one issuing the demantkceived(demand_I D) is initially set  minimal rigidity is preserved by this operation are not kmow

to FALSE. The agent issuing the demand just needs to applgt.

the following procedure with its own identification number a

second argument to one of its neighbors and then to the seconBrom an autonomous agent point of view, our results

one if the first demand is unsuccessful. provide a systematic approach to sequentially obtain or
reorganize a minimally persistent agent formation. We
agent.search_DOF (demand_I D, former_ag_1 D) explored briefly how such reorganization could be done in a

decentralized way.
if received(demand_ID), then Return FALSE, STOP

if #neighbors < 2, then Finally, one of the main motivations for obtaining a dirette
ReturnTRUE, version of Henneberg sequences was to develop tools for prac
reverse( former_ag_ID, agent_ID), tical issues such as the merging of formations and the dosin
STOP ranks problem. The undirected versions of these problems ar
end if indeed addressed using the undirected Henneberg theory. It
remains now to see how our results can be efficiently used to
fori=1:2do address their directed version.
found = neighbor(i).searcBOF(demand_I D,agent_I D)
if foundthen REFERENCES

Wait until (agent_I D, neighbor(i)) reversed,
( g ’ g ( )) [1] J. Baillieul. The Geometry of Sensor Information Utilization in Non-

ReturnTRUE, linear Feedback Control of Vehicle Formatigrnsages 1-24. Springer,
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endif IEEE Conf. on Decision and Controfolume 1, pages 556-563, Hawaii,
end for December 2003.
it ~found then Return FALSE [3] J.M. Borky. Payload technologies and applications fombabited air

vehicles (uavs). IfProceedings of the IEEE Aerospace Coufilume 3,
pages 267-283, Aspen (CO), USA, February 1997.

The algorithm should contain a procedure allowing ar4l A. Das, J. Spletzer, V. Kumar, and C. Taylor. Ad hoc netveoftar

ith diff b . | d d localization and control. IrProceedings of the 41st IEEE Conf. on
agent to cope with two different but simultaneous demands. Decision and Contrgl volume 3, pages 2978-2983, Las Vegas, NV,

Suppose that two agents agkfor a degree of freedom 2002.
(the demands having differentlemand_ID), i should [5] K. Dogancay. Optimal receiver trajectories for scandshsadar local-
h to decide f le t hich it id ization. InProceedings Information, Decision and Control Conference
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