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Formation reorganization by primitive operations on
directed graphs.

Julien M. Hendrickx, Barış Fidan, Changbin Yu, Brian D.O. Anderson and Vincent D. Blondel

Abstract— In this paper, we study the construction and trans-
formation of two-dimensional persistent graphs. Persistence is
a generalization to directed graphs of the undirected notion
of rigidity. Both notions are currently being used in various
studies on coordination and control of autonomous multi-agent
formations. In the context of mobile autonomous agent for-
mations, persistence characterizes the efficacy of a directed
formation structure with unilateral distance constraints seeking
to preserve the shape of the formation. Analogously to the
powerful results about Henneberg sequences in minimal rigidity
theory, we propose different types of directed graph operations
allowing one to sequentially build any minimally persistent graph
(i.e. persistent graph with a minimal number of edges for a
given number of vertices), each intermediate graph being also
minimally persistent. We also consider the more generic problem
of obtaining one minimally persistent graph from another, which
corresponds to the on-line reorganization of the sensing and
control architecture of an autonomous agent formation. We prove
that we can obtain any minimally persistent formation from any
other one by a sequence of elementary local operations such that
minimal persistence is preserved throughout the reorganization
process. Finally, we briefly explore how such transformations can
be performed in a decentralized way.

I. I NTRODUCTION

The recent progress in the field of autonomous agent sys-
tems has led to new problems in control theory [2], [4], [19]
and graph theory [6], [11], [17]. By autonomous agent, we
mean here any human controlled or unmanned vehicle that
can move by itself and has a local intelligence or computing
capacity, such as ground robots, air vehicles or underwater
vehicles. The results derived in this paper concern autonomous
agents evolving in a two dimensional space.
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A. Formations and rigid graphs

Many applications require the shape of a multi-agent
formation to be preserved For example, target localization
by a group of unmanned airborne vehicles (UAVs) using
either angle of arrival data or time difference of arrival
information appears to be best achieved (in the sense of
minimizing localization error) when the UAVs are located
at the vertices of a regular polygon [5]. Other examples of
optimal placements for groups of moving sensors can be
found in [16]. This objective can be achieved by explicitly
keepingsomeinter-agent distances constant. In other words,
some inter-agent distances are explicitly maintained constant
so that all the inter-agent distances remain constant. The
information structure arising from such a system can be
efficiently modelled by a graph, where agents are abstracted
by vertices and actively constrained inter-agent distances by
edges.

Such a graph is said to berigid if the corresponding set
of distance constraints is sufficient to maintain the formation
shape. In other words, a graph is rigid if provided that all
prescribed distance constraints are satisfied during a contin-
uous displacement, all inter-agent distances remain constant,
as shown in Figure 1. This property depends indeed almost
only on the graph of distance constraints, and not on the
particular agents positions and inter-agents distance (see [20]
for more details on this subject). Note that this notion of
rigidity also represents the rigidity of a framework where the
vertices correspond to joints and the edges to bars.

B. Formations with unilateral distance constraints

Unlike in the case of frameworks where distance
constraints are guaranteed by the presence of bars between
joints, constraints on inter-agent distances in formations have
to be maintained by means of measurements and control
actions. A distance between two agents can be cooperatively
maintained by the two agents, in which case the rigidity
theory can directly be applied. But one can also give the
full responsibility of maintaining the constraint to one agent,
which has to maintain its distance from the other constant,
this latter agent being unaware of that fact and taking
therefore no specific action helping to satisfy the distance
constraint. This unilateral character can be a consequenceof
the technological limitations of the autonomous agents. Some
UAV’s can for example not efficiently sense objects that are
behind them or have an angular sensing range smaller than
360◦ [3], [8], [18]. Also, some of the authors of this paper
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are working with agents in which optical sensors have blind
three dimensional cones. It can also be desired to ease the
trajectory control of the formation, as it allows so-called
leader follower formations [2], [7], [19]. In such a formation,
one agent (leader) is free of inter-agent constraints and is
only constrained by the desired trajectory of the formation,
and a second agent (first follower) is responsible for only
one distance constraint and can set the relative orientation of
the formation. The other agents have no decision power and
are forced by their distance constraints to follow the two first
agents. An example of such a formation is shown in Figure
2. Finally, it has been argued [2] that for some classes of
control law, having the distance constraints maintained by
both agents can lead to unstable behaviors in the presence
of measurement errors (It is however possible to avoid such
behavior by introducing dead-zones at the cost of limited
inaccuracy in the preservation of formation shape [9]).

A structure of unilateral distance constraints can be rep-
resented using a directed graph, a vertex being connected to
another vertex by a directed edge if the agent corresponding
to the first vertex has to maintain its distance from the agent
represented by the second vertex. The characterization of the
directed information structures which can efficiently maintain
the formation shape has begun to be studied under the name
of “directed rigidity” or “rigidity of a directed graph” [1], [2],
[6]. These works included several conjectures about minimal
directed rigidity, i.e., directed rigidity with a minimal number
of edges for a fixed number of vertices. In [11], Hendrickx et
al. proposed a theoretical framework to analyze these issues,
where the name of “persistence” was used in preference to “di-
rected rigidity”, since the latter notion does not correspond to
the immediate transposition of the undirected notion of rigidity
to directed graphs. The intuitive definition of persistenceis the
following: An information structure is persistent if, provided
that each agent is trying to satisfy all the distance constraints
for which it is responsible, all the inter-agent distances remain
constant and as a result the formation shape is preserved. It
is shown in [11] that persistence is actually the conjunction
of two distinct notions: rigidity of the underlying undirected
graph (i.e. the graph obtained by ignoring the direction of the
edges), and constraint consistence. Constraint consistence of
an information structure means that, provided that each agent
is trying to satisfy all its distances constraints, all the agents
actually succeed in doing so. In other words, no agent has an
impossible task, as shown in the example in Figure 3. Observe
that this last notion strongly depends on the directed structure
of the graph, while rigidity only relies on its underlying
undirected graph. An example of a persistent graph is provided
in Figure 2. For agents evolving in a two-dimensional space,a
purely combinatorial criterion to decide persistence is provided
in [11].

C. Building formations with minimally persistent graphs

In this paper, we focus on minimally persistent graphs,
i.e. persistent graphs having a minimal number of edges
for a given number of vertices, and their connections

(a) (b)

Fig. 1. Representation of (a) a non-rigid and (b) a rigid graph/formation. The
solid structure in (a) can indeed be deformed to the dotted structure without
breaking any distance constraint.
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Fig. 2. Representation of a persistent graph, i.e., a rigid constraint consistent
graph. This graph corresponds also to a leader-follower formation, where 1
is the leader and 2 the first follower.

with minimally rigid graphs. More particularlywe analyze
different ways to sequentially build minimally persistent
graphs, analogously to the Henneberg sequences for the
minimally rigid graphs [14], [20]. It has indeed long been
known that every minimally rigid graph can be obtained from
the complete graph on two vertices by a sequence of two basic
operations, as detailed in Section II. The natural extension of
these operations to directed graphs [7] doesnot allow one to
build all minimally persistent graphs, as remarked in [11] and
reviewed in Section IV-B. For reasons reviewed in Section
III-B it is however desirable to have a set of operations for
the building of all minimally persistent graphs. Such a set
is indeed needed to develop an efficient way to cope with
the loss of one or several agents, as it would allow adding
or removing an agent in a formation in a decentralized way.
A second quite different motivation is that in the presence
of measurement errors, reorganization of a formation may
also be needed to cope with some ill-conditioned system
without modifying the relative positions of the agents. Both
issues are especially relevant if one considers that a formation
needs to evolve dynamically with the external conditions,
modifying for example its shape and or its leadership structure.
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Fig. 3. Representation of (a) a constraint consistent and (b) a non-constraint
consistent (in 2 dimension) graph/formation. One can indeed see in (b) that
for almost any uncoordinated continuous displacement of the agents 2 and 4
(which are unconstrained), the agent 3 is unable to move in such a way that it
maintains its distances to all of 1,2 and 4 constant. However,such a situation
could not happen in graph (a).
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We prove some characteristics of the operation sets allowing
one to build all minimally persistent graphs, and provide one
of the simplest sets achieving this goal (Another set, for
which the number of operations required to build a minimally
persistent graph is uniquely determined by the number of
its vertices, can be found in [12], [13]). We also consider
the more generic problem of obtaining one persistent graph
from another. From an autonomous agent point of view,
this corresponds to an on-line reorganization of the agent
formation. Note that although the notion of persistence has
been also defined in three or higher dimensions [22], the
present analysis only concerns two-dimensional persistence,
i.e., the persistence of graphs representing the information
structure of a formation evolving in a two-dimensional space.
Extension to the three dimensional case may be difficult; even
for undirected graphs, three-dimensional Henneberg sequences
theory is indeed incomplete.

D. Outline of the paper

In Section II, we review the main properties of the Hen-
neberg sequences for minimally rigid graphs and of the two
operations - vertex addition and edge splitting - on which
it is based. Section III briefly reviews minimal persistence,
and details the different reasons for which a directed version
of Henneberg sequences is desirable. We consider in Section
IV the natural extension of the vertex addition and edge
splitting to directed graphs, and show that although they
preserve minimal persistence, they are not sufficient to build all
minimally persistent graphs, and do therefore not constitute a
complete generalization of Henneberg sequences to directed
graphs. We also show that any set of directed operations
based on the undirected vertex addition and edge splitting
operations and allowing one to build all minimally persistent
graphsmust contain non-confined operations. Non-confined
operations are operations reversing the directions of edges that
are not affected by the corresponding operation for undirected
graphs. In other words operations that, in addition to adding
or removing vertices and edges, reverse the directions of one
or more edges. This analysis is done by reasoning on reverse
construction of persistent graphs using reverse operations. In
Section V we introduce the simplest non-confined operation,
edge reversal, and show how it can be used to reach the
goal of building all minimally persistent graphs. We see that,
unlike when building minimally rigid undirected graphs with
Henneberg sequences, the required number of operations is
not uniquely determined by the size of the graph. We also
explore the possibility of performing some of the operations in
a decentralized way, something which is of critical importance
from an application point of view. Finally, this paper ends
with the concluding remarks of Section VI. Note that a more
detailed explanation of the undirected and directed versions of
the Henneberg operations can be found in [12], [13], together
with an alternative set of four operations allowing one to obtain
all minimally persistent graphs.
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Fig. 4. Representation of (a) undirected vertex addition operation and (b)
edge splitting operation.

II. M INIMALLY RIGID GRAPHS AND UNDIRECTED

HENNEBERG SEQUENCES

In this section, all graphs are considered as undirected,
but in the rest of this paper, they are always assumed to
be directed. Although all the definitions and results of this
section are given for undirected graphs, they can also be
applied to directed graphs. IfG is a directed graph, we call
the underlying undirected graphof G the undirected graph
obtained by ignoring the directions of the edges ofG.

The intuitive meaning of the undirected notion of rigidity
is explained in the Introduction. For a more formal definition,
the reader is referred to [11], [20]. Inℜ2, there exists a
combinatorial criterion to check if a given graph is rigid
(Laman’s theorem [15], [21]). Aminimally rigid graph is a
rigid graph such that no edge can be removed without losing
rigidity. A key intermediate result in Laman’s Theorem proof
[15] is the following criterion:

Proposition 1: A graph G = (V,E) (|V | > 1) is
minimally rigid if and only if |E| = 2|V | − 3 and for all
E′′ ⊆ E,E′′ 6= ∅, there holds|E′′| ≤ 2|V (E′′)| − 3, where
V (E′′) is the set of vertices incident toE′′.

Let j, k be two distinct vertices of a minimally rigid
graph G = (V,E). A vertex additionoperation consists in
adding a vertexi, and connecting it toj and k, as shown in
Figure 4(a). It follows from Proposition 1 that this operation
preserves minimal rigidity. Moreover, if a vertexi has
degree 2 in a minimally rigid graph, one can always perform
the inverse vertex addition operation by removing it (and
its incident edges) and obtain a smaller minimally rigid graph.

Let j, k, l be three vertices of a minimally rigid graph such
that there is an edge betweenj and k. An edge splitting
operation consists in removing this edge, adding a vertexi

and connecting it toj, k and l, as shown in Figure 4(b). This
operation provably preserves minimal rigidity [20]. Consider
now a vertexi connected to three verticesj, k and l. A
reverse edge splitting consists in removingi and adding one
edge among(j, k), (k, l) and (l, j), in such a way that the
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Fig. 5. Example of unfortunate added edge selection in reverse edge splitting.
After the removal of the vertex 5 from the minimally rigid graph (a), minimal
rigidity can be preserved by the addition of the edge(1, 4) but not of(1, 6),
as shown respectively on (b) and (c). In the latter case, the subgraph induced
by 1, 2, 3 and 6 contains indeed 6 edges and 4 vertices (6 > 2.4 − 3 = 5),
and the edge(3, 4) is only fixed to the graph by one of its vertices.

graph obtained is minimally rigid. This operation can be
performed on every vertex with degree 3 in a minimally rigid
graph [15], [20], but one cannot freely choose the edge to be
added as shown on the example in Figure 5.

A Henneberg sequenceis a sequence of graphs
G2, G3, . . . , G|V | with G2 = K2 being the complete
graph on two vertices and where each graphGi (i ≥ 3) can
be obtained fromGi−1 by either a vertex addition operation
or an edge splitting operation. Since these operations preserve
minimal rigidity and sinceK2 is minimally rigid, every graph
in such a sequence is minimally rigid.

Theorem 1: [20] Every minimally rigid graph on more than
one vertex can be obtained as the result of a Henneberg se-
quence. Moreover, all intermediate graphs of such a sequence
are minimally rigid.

III. M INIMALLY PERSISTENT GRAPHS

A. Review of minimal persistence

Consider a group of autonomous agents represented by
vertices of a graph. To each of these agents, one assigns
a (possibly empty) set of unilateral distance constraints
represented by directed edges: the notation(i, j) for a
directed edge connotes that the agenti has to maintain its
distance toj constant during any continuous move. The
persistence of the directed graph means that provided that
each agent is trying to satisfy its constraints, the distance
between any pair of connected or non-connected agents is
maintained constant during any continuous move, and as
a consequence the shape of the formation is preserved. A
formal definition of persistence is given in [11].

A graph isminimally persistentif it is persistent and if no
edge can be removed without losing persistence. The following
result provides a swift criterion to decide minimal persistence:

Proposition 2: [11] A graph is minimally persistent if and
only if it is minimally rigid and no vertex has an out-degree
larger than 2.

We call the number of degrees of freedomof a vertex i

the (generic) dimension of the set in which the corresponding

agent can choose its position when all the others positions
are fixed. It thus represents in some sense the decision power
of this agent. In a two-dimensional space, an agent having
two or more distance constraints to satisfy (out-degree 2) has
only up to two possible positions. It has therefore no degree
of freedom. An agent having only one distance constraint to
satisfy (out-degree 1) can move on a circle centered on its
neighbor, and has thus one degree of freedom. Finally an
agent having no distance constraint to satisfy (out-degree0)
can move freely in the plane and has therefore two degrees
of freedom. The number of degrees of freedom of a vertex
i in a directed graph is thus given bymax (0, 2 − d+(i))
(where d+(i) and d−(i) represent respectively the out- and
in-degree of the vertexi). As a consequence of Proposition
2, the number of degrees of freedom of a vertexi in a
minimally persistent graph is2 − d+(i). The total number
of degree of freedom in a minimally persistent graphG(V,E)
is

∑
i∈V (2 − d+(i)) = 2|V | −

∑
i∈V d+(i) = 2|V | − |E|.

It follows then from Propositions 1 and 2 that this number
is always 3 in a minimally persistent graph. This result is
consistent with the intuition, there are indeed three degrees of
freedom to choose the position and orientation of a rigid body
in a 2-dimensional space.

B. Applications-type motivations for directed versions ofHen-
neberg sequences

Having a set of operations allowing one to sequentially
build all minimally persistent graphs in a systematic way
analogously to Henneberg sequences for undirected graphs,
or to reorganize any minimally persistent graph into any other
is an interesting result from a theoretical point of view. But
it also has several practical implications, which we reviewin
this section.

Such a set, if simple enough, could first provide a
decentralized way to add an agent to a formation. This
would for example be relevant in a situation where a few
additional agents are needed to help a formation to cope
with unplanned task. The dual problem of an agent leaving
the formation is equally relevant. An agent may indeed
need to leave the formation once it has accomplished its
task within the formation or to fulfill a particular temporary
mission out of the formation. Also, in a large formation the
possibility of losing an agent cannot be excluded, due to
technical malfunctions or to an hostile action for example.
This generally leads to a loss of persistence, and an efficient
method is thus needed to reconfigure the formation in order
to recover persistence. This problem is known as theclosing
ranks problemand happens to be a particular case of the
splitting problemin which a formation is split in two or more
subsets, each of them potentially needing to reconfigure its
distance constraints in order to be persistent. These issues
are addressed in the undirected case by Eren et al. [6], and
the proposed solution relies on the undirected Henneberg
sequences (Actually, a modest extension of the underlying
theory is needed). Therefore it is reasonable to suppose that a
directed analogous to Henneberg sequences would be helpful



IEEE TRANSACTION ON AUTOMATIC CONTROL 5

1

2
3

4

14

2
3

(a)

14

2
3

14

2
3

(b)

Fig. 6. (a) Formation needing to reduce the width of its shape in order
to go through a narrow passage. As a result, the distance constraints sets of
agents 3 and 4 become ill-conditioned. This can be solved by reorganizing
the structure of constraints without modifying the formationshape (b).

xi(x̂j , x̂k)

xi(xj , xk)

xk

x̂k
x̂j

xj

Fig. 7. Representation of an agent with an ill-conditioned set of constraints.
Small positions variations or measurement errorsx̂j −xj , x̂k −xk can cause
large modifications of the desired position ofi.

in solving the directed version of the closing ranks problem.

The goal of persistence is to maintain the shape of a
formation during its displacement. This must however not
hide the possible need for this shape to be modified due to
a varying external environment. Suppose for example that
a formation has to traverse a narrow passage to avoid a
dangerous zone such as mountains or a fire, or to avoid the
detection range of some radars. The formation width needs
to be reduced as represented in Figure 6(a), but it might be
desirable to conserve its length. Such a shape modification
can lead to instabilities inside the formations. An agenti

having distance constraints toward two agentsj and k has
theoretically a position uniquely determined (up to an axial
symmetry) by the positions ofj and k. But in a real and
noisy environment, determining the position ofi can become
an ill-conditioned problem if the anglêjik becomes too small
as represented in Figure 7. Due to a shape modification an
initially sound formation can become ill-conditioned as in
Figure 6(a). This problem could be prevented by imposing
some stability ensuring conditions on the new agent relative
positions. However, in several cases, a simple reorganization
of the distance constraint structure can re-improve the
conditioning of the formation systems without modifying
the relative positions of the agents as presented in Figure 6(b).

Finally, a shape modification or variation in the external
environment can also lead to the necessity of modifying
the formation leadership without necessarily modifying the
undirected structure of the distance constraints. This could
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(a) (b)

Fig. 8. Representation of two minimally persistent formationshaving the
same undirected constraints. However (b) is much better conditioned that (a)
has the smallest angle between two constraints for which the same agent is
responsible is much larger than in (a).
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Fig. 9. Representation of the directed vertex addition (a) and edge splitting
(b).

be the case for simple control reasons as in the example
represented in Figure 8. Or, it might happen that in the course
of the formation movement, some agents get an easier or more
accurate access to information that could or should influence
the formation’s desired path. Without necessarily influencing
the undirected structure of the formation, it would then be
beneficial to provide this agent with some decision power or
degree of freedom, that is to have the agent actively maintain
less than two constraints.

IV. NATURAL EXTENSION OF THEHENNEBERG

OPERATIONS

A. Definition of the operations

Let j, k be two distinct vertices of a minimally persistent
graph G = (V,E). A directed vertex addition[7], [10]
consists in adding a vertexi and two directed edges(i, j)
and (i, k) as shown in Figure 9(a). A reverse (directed)
vertex addition consist in removing a vertex with an out-
degree 2 and an in-degree 0 from a minimally persistent graph.

Lemma 1:The directed vertex addition and reverse directed
vertex addition operations preserve minimal persistence.

Proof: From an undirected point of view, both opera-
tions preserve minimal rigidity. Moreover, the directed vertex
addition operation adds a vertex with out-degree 2 without
affecting other vertex out-degrees, and the reverse directed
vertex addition operation removes a vertex without affecting
other vertex out-degrees. It follows then from Proposition2
that both operations preserve minimal persistence

Let (j, k) be a directed edge in a minimally persistent
graph andl a distinct vertex. Adirected edge splitting[7],
[10] consists in adding a vertexi, an edge(i, l), and replacing
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the edge(j, k) by (j, i) and (i, k), as shown in Figure 9(b).
Let now i be a vertex with out-degree 2 and in-degree 1,
call j the vertex left by an edge arriving ati, and k, l the
other neighbors ofi. its neighborsj, k and l. The reverse
directed edge splitting operation consists in removingi and
its incident edges, and adding either(j, k) or (j, l) (k and l

being interchangeable)in such a way that the graph obtained
is minimally rigid.

Lemma 2:The directed edge splitting and reverse directed
edge splitting operations preserve minimal persistence.

Proof: From an undirected point of view, the edge
splitting operation preserves minimal rigidity. It follows from
its definition that the reverse directed edge splitting operation
also does. Again, these operations add or remove a vertex with
out-degree 2 without affecting the other vertex out-degrees.
So it follows from Proposition 2 that both operations preserve
minimal persistence.

We denote byS the set of operations containing the
directed vertex addition operation and the directed edge
splitting operations and byS−1 the operation set containing
their reverse versions (the same convention is used in
the sequel for all operation sets). The smallest minimally
persistent graph on more than one vertex consists in
two vertices connected by one directed edge, its minimal
persistence follows directly from Propositions 2 and 1. We
refer to this graph as aleader-follower pair, the leader
being the vertex with an out-degree 0. Since the operations
in S preserve minimal persistence, any graph obtained by
performing a sequence of directed vertex addition or edge
splitting operations on an initial leader-follower pair is
minimally persistent. The following result establishes that to
any minimally rigid graph corresponds a minimally persistent
graph that can be obtained in that way, as already argued in
[11].

Proposition 3: It is possible to assign directions to the
edges of any minimally rigid graph such that the obtained
directed graph is minimally persistent and can be obtained by
performing a sequence of operation inS on an initial leader-
follower pair. Moreover, all intermediate graphs are minimally
persistent.

Proof: Let G be a minimally rigid (undirected) graph.
By Theorem 1, it can be obtained by performing a sequence
of undirected vertex additions and edge splittings onK2.
By performing the same sequence of the directed version of
these operations on an initial leader-follower pair, one obtains
a directed graph havingG as underlying undirected graph.
Moreover, since this initial seed is minimally persistent and
since the directed versions of both vertex addition and edge
splitting preserve minimal persistence, the obtained graph and
all the intermediate graphs are minimally persistent.

B. Insufficiency of the natural extension

We now show that the operations inS do not allow one
to grow all minimally persistent graphs from an initial seed.

2

3

4

51 2n+12n−1

2n2n−2

Fig. 10. Class of graphs on which no reverse vertex addition or edge splitting
can be performed.

Consider the graph in Figure 10 forn > 1. This graph is
minimally rigid as its undirected structure can be obtained
from K2 by performing2n − 1 undirected vertex additions,
connecting each new vertexi to i−1 andi−2. Moreover, no
vertex has an out-degree larger than 2; by Proposition 2 it is
thus minimally persistent. If this graph could be obtained by
performing an operation inS on a smaller minimally persistent
graph, then it would be possible to re-obtain this smaller graph
by applying an operation inS−1. Observe that no vertex has
an in-degree 0; it is thus impossible to perform a reverse vertex
addition operation. Moreover, only the vertex2n satisfies the
required conditions about the in- and out-degree in order to
offer the possibility of removal by a reverse edge splitting
operation. Applying this reverse operation would consist in
removing2n and adding either the edge(2n+1, 2n−1) or the
edge(2n−2, 2n−1). But the opposite edges(2n−1, 2n+1)
and(2n− 1, 2n− 2) are already present in the graph, so that
adding (2n + 1, 2n − 1) or (2n − 1, 2n + 1) would create
a cycle of length 2. It follows from a direct application of
Proposition 1 that a graph containing such a cycle is never
minimally rigid and therefore never minimally persistent.Note
that adding(2n − 2, 2n + 1) or (2n + 1, 2n − 2) would
restore the graph rigidity, but the operation would then not
be a reverse directed edge splitting such as defined above and
would not be out-degree preserving for the vertices remaining
in the graph, and would then not necessarily preserve minimal
persistence. In the first case, the out-degree of2n − 2 would
indeed be increased to 3, preventing the graph obtained from
being (minimally) persistent. The possibility of using such
operations is further explored in Section IV-C. Furthermore
since this reasoning holds for anyn > 1, we have an infinite
class of graphs on which none of the two reverse operations
in S−1 can be performed. (A minimally persistent graph in
which one vertex has two degrees of freedom and another one
one degree of freedom and which cannot be obtained from
a smaller minimally persistent graph by an operation inS
can be found in [11]) As a consequence, it is not possible
to build every minimally persistent graph by performing a
sequence of operations inS on some seed graph taken in
a finite set of graphs. Observe also that unlike in the case
of undirected reverse operations for minimally rigid graphs,
there are vertices in minimally persistent graphs that cannot
be removed by a reverse (directed) edge splitting even though
they satisfy the degree condition, i.e. they have an out-degree
2 and an in-degree 1.

C. Necessary involvement of external edges.

It is shown in the previous sections that the immediate
generalizations to directed graphs of the undirected vertex
addition and edge splitting operations are not sufficient to
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Fig. 11. A minimally persistent graph no vertex of which can be removed
without losing persistence by a reverse (generalized) vertex addition or a
confined (generalized) reverse edge splitting. The symbol “*” represents one
degree of freedom. Vertices that are candidate to be removed bya reverse
generalized edge splitting are labelled “+”.

build all minimally persistent graphs. These operations are
designed to preserve the out-degree of the already existing
vertices, so that they can be performed (preserving minimal
persistence) on any minimally persistent graph, regardless of
the out-degree of the vertices to which the added vertex is
connected. But one could imagine other generalizations of
the undirected operations, which would for example increase
some out-degree and therefore could only be applied under
restricted conditions. For example one can contemplate
adding a vertexi with in-degree and out-degree 1, and edges
(i, j) and (k, i). As a result, the out-degree ofk is increased
by 1. This operation preserves minimal persistence if and
only if k has a degree of freedom before the addition, that is
if the out-degree ofk is smaller than 2 before the addition.
In the sequel, we adopt the termsgeneralized vertex addition
and generalized edge splittingfor any operation which is
equivalent to a vertex addition or an edge splitting from an
undirected point of view. An operation is said to beconfined
if it only affects edges that are involved in the corresponding
undirected operation. In other words, an operation is confined
if it only consists in addition or deletion of edges and vertices,
and not in the reversion of edges directions, these reversions
having indeed no undirected counterparts. For example,
both operations inS are confined. We now prove that it
is impossible to obtain all minimally persistent graph by
applying a sequence of confined generalized vertex addition
or edge splitting operations to an initial leader-followerseed.

Proposition 4: If a set exists of generalized vertex additions
and edge splittings allowing one to build all minimally per-
sistent graphs from an initial leader-follower seed, such aset
must contain a non-confined edge splitting.

Proof: Suppose that one wants to remove a vertex with-
out losing persistence from the provably minimally persistent
graph represented in Figure 11 using a generalized reverse
edge splitting or reverse vertex addition. The only ones that
can be removed are those with (undirected) degree 2 or 3,
and they are shown with a label “+”. As they have undirected
degree 3, a generalized reverse edge splitting operation would
be needed. Suppose now that one wants to use a confined

version of this operation. One would then remove one of the
vertices with a label “+” and connect two of its neighbors
by a directed edge. Observe that among the three pairs of
neighbors of any vertex with a label “+”, two are already
connected, and the last pair contains two vertices with an
out-degree 2. Adding an edge between a pair of neighbors
of the removed vertex without reversing the direction of any
other edge would thus imply the presence of either a vertex
with out-degree 3 which by Theorem 2 is impossible in a
minimally persistent graph, or of a cycle of length 2 which
by Proposition 1 cannot appear in a minimally rigid graph.
This removal should therefore be performed by anon-confined
reverse generalized edge splitting.

Such a set of operations containing non-confined edge
splitting and allowing one to build all minimally persistent
graphs starting from a leader-follower seed can be found in
[12] and [13]. Since one vertex is added at each operation, the
number of operations required to obtain a graphG = (V,E)
is |V | − 2. The existence of confined operations that would
not be equivalent to vertex addition or edge splitting, but that
would however preserve minimal persistence and allow one
to build all minimally persistent graphs with|V | vertices in
|V |−2 operations starting with a leader-follower seed remains
an open question. Such operations would have to be proved
to preserve minimal rigidity.

V. A PURELY DIRECTED OPERATION

We have shown that unless we use operations which are
not equivalent to Henneberg sequence operations from an
undirected point of view, the use of non-confined operationsis
required to be able to build all minimally persistent graphs. We
therefore now introduce the edge reversal operation, the sim-
plest possible non-confined operation, which is neutral from
an undirected point of view as it only reverses the directionof
one edge. We then define two macro-operations which help
us to prove two properties. First, edge reversal operations
are sufficient to obtain any minimally persistent graph from
any other one having the same underlying undirected graph.
Second, edge reversal operations combined with those inS
are sufficient to obtain any minimally persistent graph froma
unique initial seed.

A. Edge reversal

Let (i, j) be an edge such thatj has at least one degree
of freedom, i.e.,d+(j) = 0 or d+(j) = 1. The edge reversal
operation consists in replacing the edge(i, j) by (j, i). As
a consequence, one degree of freedom is transferred fromj

to i. This operation is its auto-inverse and preserves minimal
persistence since it does not affect the underlying undirected
graph and the only increased out-degreed+(j) remains no
greater than 2. From an autonomous agent point of viewj

transfers its decision power or a part of it toi.

B. Path reversal

Given a directed pathP between a vertexi and a vertex
j such thatj has a positive number of degrees of freedom,
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i k j

*

i k j

*

i k j

*

i k j

*

Fig. 12. Implementation of the path reversal by a sequence of edge reversals.
The symbol “*” represents one degree of freedom.

a path reversalconsists in reversing the directions of all
the edges ofP . As a result,j loses a degree of freedom,
i acquires one, and there is a directed path fromj to i.
Moreover, the number of degrees of freedom of all the other
vertices remain unchanged. Note thati andj can be the same
vertex, in which case the path either has a trivial length0 or
is a cycle. In both of these situations, the number of degrees
of freedom is preserved for every vertex.

The path reversal can easily be implemented with a
sequence of edge reversals: Sincej has a degree of freedom,
one can reverse the last edge of the path, say(k, j), such that
j loses one degree of freedom whilek acquires one. One can
then iterate this operation along the path untili, as shown in
Figure 12. At the end,i has an additional degree of freedom,
j has lost one, and all the edges of the paths have been
reversed. Note that the sequence of edge reversals can usually
not be performed in another order, for the condition requiring
the availability of a degree of freedom would not be satisfied.
The final result would be the same, but all the intermediate
graphs would not necessarily be minimally persistent.

The following lemma, which is a particular case of a result
available in [22], implies that a path reversal operation allows
the transfer of a degree of freedom from any vertex having at
least one degree of freedom to any other vertex having less
than two of them.

Lemma 3:Let G be a minimally persistent graph,i and j

two vertices ofG with d+(i) ≥ 1 andd+(j) ≤ 1. Then, there
is a directed path fromi to j.

C. Cycle reversal

A cycle reversalconsists in reversing all the edges of a
directed cycle. This operation does not affect the number
of degrees of freedom of any vertex nor the underlying
undirected graph, and preserves therefore minimal persistence.

A cycle reversal on a minimally persistent graph can be
implemented by a sequence of edge reversals. Let us indeed
first suppose that there is a vertexi in the cycle that has at

i

l

m
*

P

i

l

m

*
P’

i

l

m

*
P’

i

l

m
*

P

Fig. 13. Implementation of cycle reversal. The “*” representsone degree of
freedom.

least one degree of freedom. In that case, the cycle reversalis
just a particular case of the path reversal, withi = j. We now
assume that no vertex in the cycle has a degree of freedom.
Let l be a vertex in the cycle, andm a vertex that does not
belong to the cycle but has a degree of freedom. By Lemma
3, it follows that there exists a directed path froml to m. Let
i be the last vertex in this path belonging to the cycle. There
is trivially a pathP from i to m such that every other vertex
of this path does not belong to the cycle. The implementation
of a cycle reversal by three path reversals is then represented
in Figure 13. One begins by reversing the pathP into P ′ such
that i acquires a degree of freedom. As explained above, the
cycle can then be reversed since it is a particular case of path
reversal, and finally, one reverses the pathP ′ back toP such
that the degree of freedom acquired byi is re-transmitted tom.

Remark 1:Both cycle reversal and path reversal are their
auto-inverse, as is the case for edge reversal. Moreover, the
fact that they can be implemented using only edge reversals
is another way to show that they preserve minimal persistence.

It follows from Lemma 3 that one can arbitrarily reposition
degrees of freedom using path reversals. The following result
implies that two minimally persistent graphs having the same
underlying undirected graph and the same positions for their
degrees of freedom (all vertices having therefore the same
out-degree in the two graphs) can differ only by cycles of
opposite edges, and its proof provides a greedy algorithm to
find such a cycle.

Lemma 4:Let GA = (V,EA) and GB = (V,EB) be two
graphs having the same underlying undirected graph and such
that every vertex has the same out-degree in both graphs. If
an edge ofGA has the opposite direction to that inGB , then
it belongs to a cycle of such edges inGA.

Proof: Suppose that(i0, i1) ∈ EA and (i1, i0) ∈ EB

(i.e., this edge has opposite directions inGA and GB); then
there exists at least one vertexi2 6= i0 such that(i1, i2) ∈
EA and (i2, i1) ∈ EB . For if the contrary holds, we would
have d+(i1, GA) = d+(i1, GB) − 1, which contradicts our
hypothesis. Repeating this argument recursively, we obtain an
(infinite) sequence of verticesi0, i1, i2, . . . such that for each
j ≥ 0, (ij , ij+1) ∈ EA and (ij+1, ij) ∈ EB . Since there are
only a finite number of vertices inV , at least one of them will
appear twice in this sequence. By taking the subsequence of
vertices (and induced edges) appearing in the infinite sequence
between any two of its occurrences we obtain then a cycle
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of edges ofGA having opposite directions to those inGB .
This cycle does not necessarily contain(i0, i1). But if it does
not, we can re-apply the same argument toG′

A, G′
B obtained

from GA andGB by removing the edges of the cycle found.
(i0, i1) has indeed an opposite direction inG′

A to that inG′
B ,

and these graphs satisfy the other hypotheses of the Lemma.
Moreover, they contain less edges thanGA, GB . Therefore by
doing this recursively, we eventually obtain a cycle containing
(i0, i1) since the number of edges in the graphs is finite.

D. Three primitive operations

Using the results of the two previous subsections, we can
now show the following proposition.

Proposition 5: By applying a sequence of edge reversals to
a given minimally persistent graph, it is possible to obtainany
other minimally persistent graph having the same underlying
undirected graph. Moreover, all the intermediate graphs are
then minimally persistent.

Proof: Let GA and GB be two minimally persistent
graphs having the same underlying undirected graph. Suppose
that there is a vertexi which has less degrees of freedom in
GA than in GB . Since at most three vertices have positive
degree of freedom, there are at most three such verticesi.
And since the total number of degrees of freedom is 3 in all
minimally persistent graphs, there exists a vertexj which has
more degree(s) of freedom inGA than in GB . In GA i has
thus necessarily less than two degrees of freedom andj as
at least one degree of freedom. It follows then from Lemma
3 that there exists a directed path fromi to j in GA. The
reversal of this path transfers a degree of freedom fromj

to i without affecting the number of degrees of freedom of
the other vertices. Doing this at most two more times, the
two graphs will have the same positions for their degrees of
freedom.

We now show that that the following algorithm, which uses
only cycle reversals, transforms thenGA into GB :

while ∃ e having opposite direction inGA to that inGB do
Select a cycleC of such edges
ReverseC in GA

end do

existence of C whenGA 6= GB : This is a direct
consequence of Lemma 4 since both graphs have the same
underlying undirected graph and since all the vertices have
the same out-degrees in both of them.

end of the algorithm:At each step of the loop, the number
of edges having opposite directions inGA andGB is strictly
reduced because all the edges for which directions are
changed inGA initially had an opposite direction inGB

(and because Proposition 1 forbids the presence of cycles
of length 2 in a minimally persistent graph). Since there
are only a finite number of edges, the algorithm finishes,

and all the edges have then the same directions in both graphs.

The result of this proposition follows then from the fact
that both path reversal and cycle reversal can be implemented
by a sequence of edge reversals, which preserves minimal
persistence.

From an autonomous agent formation perspective, suppose
that a reorganization of the distance constraints distribution
needs to be performed, and that this reorganization preserves
the structure of constraints from an undirected point of
view, i.e., the reorganization only involves changes of some
directions. Proposition 5 implies that this can be done by a
sequence of local degree of freedom transfers, in such a way
that during all the intermediate stages, the formation shape is
guaranteed to be maintained.

Let T be the set of operations containing vertex addition,
edge splitting, and edge reversal. We can now state our main
result, that every minimally persistent graph can be obtained
by performing operations inT on an initial leader-follower
seed.

Theorem 2:Every minimally persistent graph can be ob-
tained by applying a sequence of operations inT to an initial
leader-follower seed. Moreover, all the intermediate graphs are
minimally persistent.

Proof: Consider a minimally persistent graphG. This
graph is also minimally rigid. By Proposition 3, there exists
thus a (possibly different) minimally persistent graph having
the same underlying undirected graph that can be obtained
by performing a sequence of operations inS ⊂ T on an
initial leader follower seed. By Proposition 5,G can then be
obtained by applying a sequence of edge reversals on this
last graph. Moreover, since all the operations inT preserve
minimal persistence, all the intermediate graphs are minimally
persistent.

To illustrate Theorem 2, consider the graphG represented
in the right hand side of Figure 14(c), which is the graph
of Figure 10 withn = 2. As explained in Section IV-B, it
cannot be obtained by applying a vertex addition or an edge
splitting on a smaller minimally persistent graph. However,
by Theorem 2, it can be obtained by applying a sequence
of operations inT on an initial leader-follower seed. Let us
take1 and2 as respectively leader and follower of this initial
seed. One can begin by adding3, 4 and5 using three vertex
additions as shown in Figure 14(a). The graph obtained has
the same underlying undirected graph asG, but the degrees of
freedom are not allocated to the same vertices. By reversing
the path (5, 4, 2, 1) using a sequence of edge reversals, one
can then transfer one degree of freedom from1 to 5 as shown
in Figure 14(b) such that in the obtained graph, all vertices
have the same number of degrees of freedom (and therefore
same out-degree) as inG. As stated in Lemma 4 , any edge
of this graph that does not have the same direction as inG

belongs to a cycle of such edges. The only such cycle here
is C. By reversing it using a sequence of edge reversals, one
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5

2 *

1 **
3

4

(a)

2 * 4

51 ** 3

P 2 * 4

5 *1 * 3

(b)
2 * 4

5 *1 * 3

C

2 * 4

5 *1 * 3

G

(c)

Fig. 14. Example of obtaining of a minimally persistent graph byapplying
a sequence of operations inT on a leader-follower seed. The graphG is
obtained from the leader-follower seed by (a) three vertex additions, (b) the
reversal of the pathP and (c) of the cycleC.

finally obtains the graphG, as shown in Figure 14(c). Note
that consistently with Theorem 2, all the intermediate graphs
are minimally persistent.

Corollary 1: Every minimally persistent graph can be trans-
formed into any other minimally persistent graph using only
operations inT ∪ T −1.

Proof: Let GA and GB be two minimally persistent
graphs. SinceGA can be obtained by applying a sequence of
operations inT on a leader-follower pair, the leader-follower
pair can be re-obtained fromGA by applying the reverse
versions of these operations (which are all inT −1) in the
reverse order. By Theorem 2 one can then obtainGB from
this leader-follower pair by a sequence of operations inT .

The method proposed in the proof of Corollary 1 is
generally not optimal in terms of the number of operations.
Note also that unlike in the case of undirected Henneberg
sequences, the number of operations to build a minimally
persistent graph is not uniquely fixed by its number of
vertices, although it is bounded inO(|V |2) as explained in
[12] and [13].

Remark 2:Observe that the three operations inT are basic
operations that can be performed locally. They can thus easily
be implemented in a local way on an autonomous agent
formation. It might however be possible to improve this basic
character using for example an operations such as anedge
reorientation, i.e., an operation consisting in changing the
arrival vertex of an edge. As shown in Figure 15, a vertex
addition operation and an edge reorientation operation can
indeed implement an edge splitting operation which could thus
be discarded. However, this would require an efficient and
simple criterion to determine when such an edge reorientation
operation can be performed, and no such criterion is presently
available.

j

k

l

j

k

l

i

j

k

l

i

Fig. 15. Implementation of the edge splitting by a vertex addition and an
edge reorientation. The vertexi is first added with two out-going edges by
vertex addition, and the edge(j, k) is then reoriented and becomes(j, i).

E. Transforming a formation in a decentralized way

The graph depicting a formation’s distance constraints
is by essence a non-local concept. Therefore, reorganizing
a formation into another formation requires a global view.
However, several more local modifications can be done in a
totally decentralized way.

Adding an agent by an operation corresponding to a vertex
addition in the underlying graph is the simplest of those. It
suffices for a new agent arriving in the neighborhood of a
formation to sense two agents and to maintain its distances
toward them constant. This agent can of course choose its
relative position and its neighbors in such a way that its
system of constraints is not ill-conditioned.

The edge splitting operation can also be performed in a
decentralized way, as a combination of a vertex addition and
an edge reorientation (see Figure 15). Suppose that an agent
i has just joined a formation by means of a vertex addition
and that another agentj has sensed this new presence and
is willing to redirect one of its present edge(j, k) toward
i, i.e. to maintain constant its distance towardi instead of
its distance toward one of its present neighbors.j can ask
i if k is one of its neighbors and redirect its constraints
once it receives a positive answer. Note that this requires the
ability for j and i to communicate and to identify (possibly
temporarily) other agents in a unique and common way.

Edge reversal is an almost trivial operation if the agents
have a 360◦ sensing range and if they are able to identify
themselves in a unique way. It suffices for an agenti that
is connected to an agentj having a degree of freedom to
ask this agentj to actively maintain the distance between
i and j. Suppose now that some agenti needs to increase
its number of degrees of freedom. Lemma 3 guarantees
the existence of a directed path fromi to all vertices with
positive number of degrees of freedom. Such a path can be
found and can be reversed in a decentralized way using a
depth-first research on the graph. One has however to be
cautious to select only one degree of freedom to bring back to
i and not all three of them. We propose the following simple
decentralized algorithm to demonstrate how this problem can
be solved. Real applications would require more advanced
algorithms, in order for example to handle simultaneous
concurrent demands or to choose “wisely” the degree of
freedom to be transferred. This degree of freedom could
for example be chosen according to a criterion such as its
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present localization, or numbers could be given to degrees of
freedom to identify them in a unique way.

We suppose that the agent initially issuing a demand for
a degree of freedom assigns a unique number to this de-
mand demand ID, for example by juxtaposing its number
agent ID and its local present time. For all agents except the
one issuing the demand,received(demand ID) is initially set
to FALSE. The agent issuing the demand just needs to apply
the following procedure with its own identification number as
second argument to one of its neighbors and then to the second
one if the first demand is unsuccessful.

agent.search DOF(demand ID,former ag ID)

if received(demand ID), then ReturnFALSE, STOP
if #neighbors < 2, then

ReturnTRUE,
reverse(former ag ID, agent ID),
STOP

end if

for i = 1 : 2 do
found = neighbor(i).searchDOF(demand ID,agent ID)
if found then

Wait until (agent ID, neighbor(i)) reversed,
ReturnTRUE,
reverse edge(former ag ID, agent ID),
STOP

endif
end for
if ∼found then Return FALSE

The algorithm should contain a procedure allowing an
agent to cope with two different but simultaneous demands.
Suppose that two agents aski for a degree of freedom
(the demands having differentdemand ID), i should
have a way to decide for example to which one it provides
the degree of freedom and to which agent it denies this service.

The problem of removing an agent is more intricate. An
agent having out-degree 2 and in degree 0 can leave the
formation without affecting its persistence, but this already
requires each agent to know in which directed constraint it is
involved. If the agent has an in-degree 1, it cannot leave the
formation without warning the agent of which it is a neighbor
and verifying if rigidity and persistence of the formation would
be preserved after its departure. Since rigidity is a global
notion, this cannot be easily done in a decentralized way.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have extended the Henneberg sequence
concept to directed graphs using three operations allowing
the building of all minimally persistent graphs. We also
exposed some natural restrictions to these extensions, the
main one being the impossibility of building all minimally
persistent graphs using only confined generalized vertex

additions or edge splittings. The existence of a set of confined
operations not relying exclusively on Henneberg operations
and allowing one to build all minimally persistent graphs
remains however open. An improvement in the simplicity
of the proposed operation set could come from the use of
the edge reorientation, which would consist in changing the
arrival point of an edge. However, the conditions under which
minimal rigidity is preserved by this operation are not known
yet.

From an autonomous agent point of view, our results
provide a systematic approach to sequentially obtain or
reorganize a minimally persistent agent formation. We
explored briefly how such reorganization could be done in a
decentralized way.

Finally, one of the main motivations for obtaining a directed
version of Henneberg sequences was to develop tools for prac-
tical issues such as the merging of formations and the closing
ranks problem. The undirected versions of these problems are
indeed addressed using the undirected Henneberg theory. It
remains now to see how our results can be efficiently used to
address their directed version.
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