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Chapter 1

Introduction

Thin film applications are increasingly prevalent in engineering applications.
They are crucial components in a wide range of multilayer microelectronic and
optical devices and are also desirable candidates for micro-actuators in micro-
electro-mechanical devices. In the design of such devices, Interfacial adhesion
is a critical parameter governing the mechanical behavior and reliability of a
thin film on a substrate. Understanding the possible propagation of the delam-
ination cracks along the interface between the thin film and the substrate and
extracting the interface failure properties are therefore important.

Various experimental techniques have been proposed to extract delamina-
tion properties of thin films. The most common are the scratch test [1] [2] [3],
peel test [4] [5], pull test [3] [6] [7], blister test [8] [9], and indentation test [10]
[11]. One of the most successful recent additions to this list is the laser-induced
spallation test shown schematically in Figure 1.1 for the tensile delamination
case [12]. A laser pulse is sent on a metallic absorbing layer sandwiched be-
tween a confining layer and the substrate. This results in the emission from the
metallic layer of a compressive stress wave of rise time comparable to that of
the laser pulse. This stress wave then propagates towards the film/substrate
interface, is reflected off the traction free surface of the thin film and loads the
interface in tension. This technique load thus the interface in a precise and non-
contacting manner. A mode II shear loading can be obtained using a reflection
off an oblique surface, as shown in Figure 1.2. Figure 1.3 shows an example of
the obtained damage after the spallation of a thin aluminium film deposited on
a silica substrate.

The analysis supporting these laser induced spallation experiments has so
far been based on the propagation of 1-D waves [12]. However, this assump-
tion breaks down as soon as the initial failure takes place, since the problem
then becomes 2-D. More advanced tools are thus needed and the development
of such a tool is the primary objective of this work. In the simulation of fracture
propagation in infinite media, the spectral formulation has prove to be one of
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Figure 1.1: Experimental setup used in [12] to analyze the delamination of a
thin film in mode I.

Figure 1.2: Experimental setup used in [12] to analyze the delamination of a
thin film under shear.
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Figure 1.3: Damage observed for 1.2 µm thick aluminium film deposited on 600
µm thick silicon substrate. Taken from [12].

the most efficient tools. It was used to analyze the behavior of a fracture prop-
agating in an infinite 2-D medium under an anti-plane shear loading [13], or at
the interface between two different semi-infinite materials [14]. It also provides
a way to analyze propagation of crack in a 3-D infinite material [15] or at the
interface between two semi-infinite materials [16]. The objective of this project
is to propose a spectral formulation for the thin film delamination problem. In
this initial “feasibility study”, we only consider the mode III problem, i.e., the
case of an anti-plane shear loading. This problem is chosen because, although
it captures most of the wave propagation characteristics of the in-plane cases,
its mathematical treatment is somewhat simpler.

In Chapter 2, we present the problem description and derive the spectral for-
mulation of the elastodynamic relations for the thin film and the substrate. Two
formulations are considered for the thin film, the first involves two convolutions
with the applied load and the interface displacement. However, in this formula-
tion, the convolution kernels do not decay to zero and contain an infinite number
of discontinuities. The second formulation involves an additional convolution
with the traction stress at the interface. Despite the additional computational
work that this formulation implies, it is attractive because it involves smoother,
decaying convolution kernels that are much easier to manipulate. We then an-
alyze the stability and accuracy of our formulation in Chapter 3, and address
instability issues in Chapter 4. This analysis is done by comparing the results of
our simulations with the analytical solution for the single-mode case, for which

8



there is no fracture, and the loading has only one mode, and by analyzing some
simple thin film fracture cases. We also derive in Chapter 5 a spectral scheme
able to analyze the behavior of the external boundary of the thin film where
measurements are made in the laser induced spallation experiments. We apply
then our spectral scheme to some practical situations involving a fused silica
substrate and an aluminium thin film. In Chapter 6, we treat the case of a
non-propagating crack and analyze the evolution stress intensity factor (SIF)
characterizing the near-tip stress field, while we consider in Chapter 7 the case
of a propagating crack. To show the effect of large differences between the ma-
terial properties, we also consider systems involving aluminium and steel thin
films and substrates. Finally, we extend our scheme to the case of materials of
finite length in Chapter 8, and we show that this extended scheme is able to
capture some very interesting boundary effects.

9



Chapter 2

Formulation and
implementation

2.1 Description and general solution

As indicated earlier, our main goal is to analyze the behavior of a dynamic
fracture event that takes place at the interface between a semi-infinite linearly
elastic substrate and a linearly elastic thin film of thickness H subjected to
a time- and space-dependent anti-plane shear load τH(x, t) along its external
boundary (Figure 2.1). To reach this goal, our approach is similar to the inde-
pendent formulation used in [14] to solve interface fracture problems: we derive
a relation between the traction stress and the displacement along the interface
for both materials, and then bind these relations with a cohesive failure model.
To derive this relation, we use a Fourier transform in space and a Laplace trans-
form in time to turn the elastodynamic partial differential equation (PDE) into
an ordinary differential equation (ODE). Its solution gives us a way to link the
Laplace transform of the Fourier transform of the traction stress and the dis-
placement at the interface. We then perform the inverse transforms back in the
space and time domains.

Let us define a Cartesian coordinate system such that the interface is given
by y = 0 (Figure 2.1). Inside both materials, following the anti-plane shear-
assumption, the only non-vanishing displacement component uz(x, y, t) is inde-
pendent of the z -coordinate and satisfies the scalar wave equation

c2
s (uz,xx + uz,yy) = üz. (2.1)

where a superposed dot means a derivation with respect to the time, and ∗,α

means ∂∗
∂α . The shear wave speed cs that appears in the previous equation is

given by

cs =
√

µ

ρ
,
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Figure 2.1: Geometry of the mode III interface fracture problem.

where µ denotes the shear modulus and ρ the density. Since these parameters
are material-dependent, we use (µ+, ρ+, c+

s ) for the thin film, (µ−, ρ−, c−s ) for
the substrate, and (µ, ρ, cs) when the equation can be applied to both of them.
The same convention is used for the displacements and stresses.

If Ω(y, t; q) is the Fourier transform of uz(x, y, t) with respect to the x -
coordinate, we get

Ω̈ = c2
s

(
−q2Ω + Ω,yy

)
.

Taking a Laplace transform with respect to time, we rewrite the wave equation
as

Ω̂,yy = q2α2
sΩ̂, (2.2)

where Ω̂ = L (Ω) and

αs =

√

1 +
p2

q2c2
s

.

The general solution of this linear ODE is given by

Ω̂(y; p, q) = Â(p, q)e|q|αsy + B̂(p, q)e−|q|αsy. (2.3)

Since, as we mentioned before, we are mainly interested in the behavior along
the interface plane, let us define the interface displacement u(x, t) and traction
stress τ(x, t) as {

u(x, t) = uz(x, y = 0, t),
τ(x, t) = µ uz,y(x, y = 0, t).
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In the Fourier/Laplace domain, these quantities are expressed as
{

Û(q, p) = Ω̂(y = 0; q, p),
T̂ (q, p) = µ Ω̂,y(y = 0; q, p),

so that, using (2.3), we get
{

Û = Â + B̂
T̂ = µ |q|αsÂ − µ |q|αsB̂ .

(2.4)

Since we want to link T̂ and Û , we need one more relation, which is provided
by the boundary condition at y → −∞ for the substrate and at y = H for the
thin film, as described in the next two sections.

2.2 Solution in the substrate

Since the substrate is a semi-infinite medium, we need to keep the value of uz

bounded when y → −∞, which translates to B̂ = 0 in (2.3). We can then
eliminate Â in (2.4) to obtain

T̂− = µ− |q|α−
s Û−,

which can be reformulated by extracting the so-called radiation term [15] as

T̂− =
µ−

c−s
p Û− + µ− |q|

(
α−

s − p

|q| c−s

)
Û−. (2.5)

We have now a relation between the traction stress and the displacement along
the interface, which, in the time domain, takes the form

T−(t; q) =
µ−

c−s
U̇−(t; q) + F−(t; q),

where F− denotes the result of the convolution of U− and the inverse Laplace
transform of the term in parenthesis in (2.5),

F−(t; q) = µ− |q|
∫ t

−∞
C∞(|q| c−s t′)U−(t − t′; q) |q| c−s dt′. (2.6)

The introduced convolution kernel is plotted Figure 2.2 and is defined by

C∞(T ) = L −1
(√

1 + s2 − s
)

=
J1(T )

T
, (2.7)

where J1 denotes de Bessel function of the first kind.

Finally, an inverse Fourier transform back in the space domain yields the
desired relation between u− and τ−,

τ−(x, t) − µ−

c−s
u̇−(x, t) = f−(x, t), (2.8)

where f−(x, t) = F−1 (F−(t; q)) denotes the convolution term.

12
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Figure 2.2: Convolution kernel for the substrate C∞(T ).

2.3 Solution in the thin film

The solution in the thin film can be expressed by two formulations. The first
one is similar to the solution in the substrate and involves two convolutions. It is
therefore referred to as the two-convolution approach. However the convolution
kernels involved in this approach do not decay to zero and their complexity in-
crease with time. In the second formulation, referred to as the three-convolution
approach, an additional convolution is introduced on the traction stress history.
The convolution kernels involved in this approach are however much simpler
and decay to zero as time increases. This formulation is therefore preferred to
the first one.

2.3.1 Two-convolution approach

As described in Section 2.1, an anti-plane shear traction τH(x, t) is applied at
y = H. The corresponding boundary condition is thus

τH(x, t) = µ+u+
z,y(x, y = H, t).

Taking again a Fourier transform with respect to the x-coordinate and then a
Laplace Transform with respect to time, we obtain

T̂H(q, p) = µ+Ω̂,y(y = H; p, q).
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Introducing the solution derived in (2.3), we get

T̂H(q, p) = µ+ |q|α+
s Â(p, q)e|q|α

+
s H − µ+ |q|α+

s B̂(p, q)e−|q|α+
s H . (2.9)

We can use this last relation to eliminate Â and B̂ in (2.4),

T̂+ = −µ+ |q|α+
s tanh(aα+

s )Û+ +
1

cosh(aα+
s )

T̂H , (2.10)

where the non-dimensional wave number a is defined by

a = |q|H.

Back in the time and space domain, relation (2.10) yields (see Appendix A.4)

τ+(x, t) + µ+

c+
s

u̇+(x, t) = +2µ+

c+
s

∑∞
n=1(−1)n−1u̇+

(
x, t − 2n H

c+
s

)
+f+(x, t)

+2
∑∞

n=0(−1)nτH
(
x, t − (2n + 1) H

c+
s

)
+h+(x, t),

where the Fourier transform of the convolution terms are





F+(t; q) = F (f+(x, t)) = µ+ |q|
∑∞

n=1(−1)nnaU+
(
t − 2n H

c+
s

; q
)

H(t − 2n H
c+

s
)

−µ+ |q|
∫ t
0 {C∞(|q| c+

s t′) + CH2(|q| c+
s t′)}U+(t − t′; q) |q| c+

s dt′,

H+(t; q) = F (h+(x, t)) = −
∫ t
0 E2(|q| c+

s t′)TH(t − t′; q) |q| c+
s dt′.

(2.11)
The kernel C∞ entering (2.11) has been defined in (2.7). The two other kernels
are given by





CH2(T ) = 2
∑∞

n=1(−1)n

(
J1(

√
T 2−4n2a2)√

T 2−4n2a2 + 4n2a2 J2(
√

T 2−4n2a2)
T 2−4n2a2

)
H(T − 2na),

E2(T ) = 2
∑∞

n=0(−1)n(2n + 1)a
J1

(√
T 2−(2n+1)2a2

)

√
T 2−(2n+1)2a2

H (T − (2n + 1)a) ,

(2.12)
where H(t) denotes the Heaviside step function.

Looking at the two kernels defined by (2.12), we can see that new terms
are added with a periodicity 2 H

c+
s

and, as shown in Figure 2.3, each new term
produces a discontinuity. This period corresponds to the time needed by a wave
to cross the thin film, to be reflected off its upper boundary, and to come back
to the interface. Moreover, because E2 is convoluted with the anti-plane shear
load applied along y = H, all its terms appear with a delay H

c+
s

, since it is the
time needed for the information to reach the interface from the upper applied
along the upper boundary of the thin film.

This periodic addition of new terms implies that the complexity of the ker-
nels increases with time and that we need to keep in memory the whole history

14
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Figure 2.3: Convolutions kernels appearing in the two-convolution formulation
of the thin film solution for two values of the non-dimensional wave number a:
(a) CH2(T ), (b) E2(T ). Unlike C∞(T ), they do not decay to zero, present an
infinite number of discontinuities, and their complexity increases with time.

of the velocity, displacement and traction stress. In order to be efficiently im-
plemented, this formulation needs thus to be improved. This can be done by
transforming (2.10). A convolution with the applied shear stress is then in-
troduced, but the three kernels are less complex and decay to zero when time
increases.

2.3.2 Three-convolution approach

Since the cause of the infinite sum in (2.11) and (2.12) is the presence of a
sum containing exponential functions of p in the denominators of (2.10), let us
multiply this equation by

(
1 + e−2α+

s a
)

to get

(
1 + e−2α+

s a
)

T̂+ = µ+ |q|α+
s

(
e−2α+

s a − 1
)

Û+ + 2e−α+
s aT̂H . (2.13)

Back in the time and space domain (see Appendix A.5), this yields

µ+

c+
s

u̇+(x, t) + τ+(x, t) = µ+

c+
s

u̇+(x, t − 2 H
c+

s
) + f+(x, t)

− τ+(x, t − 2 H
c+

s
) − g+(x, t)

+ 2τH(x, t − H
c+

s
) + h+(x, t)

.= l+(x, t),
(2.14)
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Figure 2.4: Convolution kernels CH3(T ),D3(T ) and E3(T ) specific to the three-
convolution formulation for the thin film for three values of a. These kernels
decay to zero and present only one discontinuity.
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where the convolution terms are given in the Fourier domain by





F+(t; q) = −µ+ |q| aU+
(
t − 2 H

c+
s

; q
)

+µ+ |q|
∫ t
0 {−C∞(|q| c+

s t′) + CH3(|q| c+
s t′)}U+(t − t′; q) |q| c+

s dt′,

G+(t; q) = −
∫ t
0 D3(|q| c+

s t′)T+(t − t′; q) |q| c+
s dt′,

H+(t; q) = −
∫ t
0 E3(|q| c+

s t′)TH(t − t′; q) |q| c+
s dt′.

(2.15)
The newly introduced kernels are






CH3(T ) =
(

J1(
√

T 2−4a2)√
T 2−4a2 + 4a2 J2(

√
T 2−4a2)

T 2−4a2

)
H(T − 2a),

D3(T ) = 2aJ1(
√

T 2−4a2)√
T 2−4a2 H(T − 2a),

E3(T ) = 2aJ1(
√

T 2−a2)√
T 2−a2 H(T − a).

(2.16)

As shown in Figure 2.4, these kernels behave much better than those appearing
in (2.11): they contain only one jump and decrease to zero when the value of T
increases. One can also see that E3 and CH3(T ) are similar to E2 and CH2(T )
with only one reflection (i.e. with only the first two values of n).

2.4 Cohesive model

We have so far derived a relation between the traction stress τ±(x, t) and the
displacement u±(x, t) along the interface and their history, for each material
independently. We now need to link these two solutions by a cohesive failure
model, in a way similar to the independent formulation used in [14]. Since there
is no external load applied on the interface, τ+ is necessary equal to τ−. If the
two materials are connected, this results from the continuity of the traction, and
if they are not, both surfaces are traction free. We designate thus τ+ = τ− by τ .

To model the cohesive behavior of the interface, let us introduce the strength
τstr representing the maximal traction stress that can take place along the in-
terface. In general, τstr could depend on current and previous values of the slip
between de two materials and its rate, and on space for non-uniform models. In
the following, we adopt a simple linearly decreasing model illustrated in Figure
2.5:

τstr = τstr0

(
1 − |δ|

δc

)
H (δc − |δ|) , (2.17)

where δ(x, t) = u+(x, t)− u−(x, t) denotes the displacement jump or slip across
the fracture plane, and the value of the critical slip δc and the initial strength
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Figure 2.5: Cohesive strength τstr versus slip δ = |u+ − u−|. The grey zone
represents the set of the possible (δ, |τ |) with a non-null values of the norm
of the traction stress. The area under the curve corresponds to the fracture
toughness Gc.

τstr0 characterize the failure properties of the interface. Note that, to prevent
the fracture surfaces from re-adhering, the strength should only be allowed to
decrease. For this model, the fracture toughness Gc is given by 1

2τstr0δc

The traction stress along the interface can thus be determined by resolving
the linear system provided by (2.8) and (2.14)

{
τ(x, t) − µ−

c−s
u̇−(x, t) = f−(x, t),

τ(x, t) + µ+

c+
s

u̇+(x, t) = l+(x, t),
(2.18)

assuming first that u̇−(x, t) = u̇+(x, t). If the computed traction stress is larger
than the strength given by (2.17), one replaces τ(x, t) by τstr(x, t) and reintro-
duces this value in (2.18) to compute u̇−(x, t) and u̇+(x, t).

2.5 Implementation issues

To implement the spectral formulation derived in the previous sections, we need
to discretize and limit the space and the frequencies. We consider thus the be-
havior of the interface on a length X represented by N + 1 equidistant points.
The gap between two consecutive points is thus ∆x = X

N .

To link the space domain and the frequencies domain, we use a Discrete
Fourier Transform and Inverse Transform,

X = DFT(x) → X(k) =
∑N

n=1 x(n)e−2πi(k−1)(n−1)/N

x = DFT−1(X) → x(n) = 1
N

∑N
k=1 X(k)e2πi(k−1)(n−1)/N .
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This automatically sets the discretization of the frequency domain,

q0 =
2π

X
, qj = jq0, j = 1, ..., N/2, qmax =

2π

∆x
,

where qmax is the maximal frequency and q0 is the smallest frequency and the
discretization gap. Since all the used frequencies are integers multiple of q0, the
use of a discrete Fourier transform also implies that the problem that is really
solved is periodic and results of the infinite juxtaposition of domains of length
X. The last point behaves then exactly as the first one and needs therefore to
have the same initial condition.

The time is also discretized with an uniform time step size ∆t. The inte-
gration of the velocity used to compute the displacement is performed with an
explicit first order scheme. As explained in [17], we need thus to satisfy the
CFL condition β < 1, where

β∆x = max
(
c+
s , c−s

)
∆t. (2.19)

We are now able to compute f− and l+. The main idea of the remainder
of the spectral scheme is represented in the algorithm listed below, where ∗(j,i)

denotes ∗(xj , ti), and ∗(j;k) denotes ∗(xj , qk)

for each i do (loop over time steps)

Perform FFT on (u+, u−)(∗,i), τ(∗,i), τ
H
(∗,i)

for each k do (loop over space modes)

Compute L+
(j;k), F

−
(j;k) (sum of all the convolutions and

the additional terms in the Laplace-Fourier domain)

end do
(l+, f−)(j;∗) = FFT−1(L+, F−)(j,∗)
for each j do (loop over space steps)

Solve (2.18) assuming u̇+
(j,i) = u̇−

(j,i)

if
∣∣τ(j,i)

∣∣ > τstr

(
u+

(j,i) − u−
(j,i)

)
then

τ(j,i) := τstr

(
u+

(j,i) − u−
(j,i)

)

compute (u̇+, u̇−)(j,i) using (2.18)
end if
Update (u+, u−)(j,i+1) = (u+, u−)(j,i) +(u̇+, u̇−)(j,i).∆t

end do

end do
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Chapter 3

Modal analysis

In this chapter, we consider the case of a single-mode loading for which an
analytical solution is available under certain conditions as explained Section
3.1. This allows us to understand the behavior of each mode, and also provides
a tool to evaluate the precision and stability of our spectral scheme by comparing
the numerical results to an exact solution.

3.1 Analytical solution

Let us consider the case of a perfect interface (τstr = ∞, u+ = u− = u) between
materials having different stiffness (µ+ '= µ−) but the same shear wave speed
(c+

s = c−s = cs). In the absence of fracture, all the equations are linear. If the
applied load is

τH(x, t) = τH
0 eiqxH(t),

the interface displacement and the traction stress have the same x -dependence,
and are expressed as

(u(x, t), τ(x, t)) = (U(t), T (t)) eiqx.

Considering the linear system made by the juxtaposition of (2.5) and (2.10),




T̂ = −µ+ |q|αs tanh(aαs)Û + 1

cosh(aα+
s )

τH
0
p

T̂ = µ−

cs
p Û + µ− |q|

(
αs − p

|q|cs

)
Û ,

and eliminating T̂ leads to

τH
0 = pqÛ

(
µ−αs cosh(αsa) + µ+αs sinh(αsa)

)
.

An analytical expression of the velocity is thus

U̇ =
τH
0

q
L −1

(
1

µ−αs sinh(αsa) + µ+αs cosh(αsa)

)
, (3.1)
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which, after the Laplace inversion (see Appendix A.3), can be written as

U̇(t) =
2τH

0 cs

µ+ + µ−

∞∑

n=0

((
µ+ − µ−

µ+ + µ−

)n

J0

(√
(qcst)2 − (2n + 1)2a2

)
H (|q| cst − (2n + 1)a)

)
.

(3.2)
Let us now introduce the non-dimensional velocity

r(t) =
U̇(t)
U̇(H

cs
)
,

where U̇(H
cs

) is the velocity of the interface when the shear wave reaches it for
the first time. Replacing U in (3.2) yields

r(t) =
∞∑

n=0

((
µ+ − µ−

µ+ + µ−

)n

J0

(√
(qcst)2 − (2n + 1)2a2

)
H (|q| cst − (2n + 1)a)

)
.

(3.3)

3.2 Non-dimensional parameters

Using t = i∆t, the normalized time-discretized velocity along the interface can
be rewritten as

r(i) =
∞∑

n=0



∆n
µJ0



a

√(
i

η

)2

− (2n + 1)2



 H

(
i

η
− (2n + 1)

)

 , (3.4)

where we have (re-)introduced the three non-dimensional parameters entering
this problem.

The first one is the relative stiffness mismatch ∆µ

∆µ =
(

µ+ − µ−

µ+ + µ−

)
.

By definition, ∆µ ∈ [−1, 1]. A positive value means that the thin film is stiffer
than the substrate, while a negative one denotes a more compliant thin film.
Looking at (3.4), we can see that this parameter quantifies the decrease rate of
the importance of the terms of the sum, and therefore of the amplitude of the
jumps at each reflection.

The second parameter is the aforementioned non-dimensional wave number
a

a = |q|H,
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that influences the shape of the terms of the sum and thus the behavior of the
solution between the jumps. For small values of the non-dimensional wave num-
ber, the solution is essentially flat; but for large values, it keeps oscillating.

The last parameter is the time-discretization factor η

η =
H

cs∆t
,

that represents the number of time steps needed for a wave to cross the thin film.
Its value does not influence the shape of the solution, but only the precision of
the discretiszation. Furthermore, for a same number of shear wave reflections,
its value determines the total number of time steps.

3.3 Analytical solution for special cases

Before beginning an error analysis, let us look at the analytical solution (3.3)
for some particular values of ∆µ and for different values of a. To facilitate the
discussion, we consider first the case q = 0 (i.e., a = 0) for which the problem is
reduced to the well-known problem of the 1-D propagation of a shear wave and
its reflection off an interface. The exact solution (3.3) for the non-dimensional
velocity of the interface becomes

r(t) =
ñ(t)∑

n=0

∆n
µ, (3.5)

where ñ(t) is the number of reflections that have already occurred

ñ(t) = (1
2

(
qcst

a
− 1

)
),

with (z) denoting the largest integer lower or equal to z. If ∆µ '= 1, (3.5) can
be rewritten as

r(t) =
1 − ∆ñ(t)+1

µ

1 − ∆µ
,

and, in the particular case where ∆µ = 1, r(t) = ñ(t) + 1.

3.3.1 Traction free interface ∆µ = 1

∆µ = 1 implies that µ− = 0, which means that the lower boundary of the
thin film is traction free. In this case, the solution for q = 0 is a sum of step
functions of same amplitude, which average rate of increase is the one predicted
by the rigid body approximation Ü = τH

0 /ρ+H, or ṙ = cs/2H (Figure 3.1). The
jump in velocities occurs at each reflection of the initial shear wave off the lower
boundary. Since this boundary is traction free, there is no energy loss, which
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Figure 3.1: Exact solution of the single mode problem: evolution of the non-
dimensional interface velocity r(t) for various values of a when ∆µ = 1. When
a = 0, the velocity increases indefinitely at the rate predicted by the rigid body
approximation.

explains the constant amplitudes of these jumps. For q '= 0, the solution also
has a constant amplitude jump at each reflection of the velocity wave off the
lower boundary. However, the velocity does not increase indefinitely anymore.

3.3.2 Stiffer thin film ∆µ ∈ (0, 1)

As indicated earlier, ∆µ ∈ (0, 1) implies that µ+ > µ−. When the wave reaches
the interface a part is transmitted to the substrate and the rest is reflected. Since
the thin film is stiffer than the substrate, the reflected velocity wave has the same
sign as the incident one. Thus, when the wave comes back after being reflected
off the upper boundary, it still has the same sign. Note that the transmitted
wave never comes back since the thickness of the substrate is assumed infinite.
But, since a part of the wave was transmitted to the substrate, the amplitude
decreases at each reflection, following a geometric progression (Figure 3.2). The
velocity converges thus monotonically to τH

0
µ− cs. We can notice that the stress

converges to the stress applied on the upper boundary, in accordance to the
static limit. The same behavior can be observed for the jumps when q '= 0.

3.3.3 ∆µ = 0

The case ∆µ = 0 corresponds to the special situation where the thin film and
the bottom material have the same properties (µ+ = µ−). Since no fracture
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Figure 3.2: Exact solution of the single mode problem: evolution of the non-
dimensional interface velocity r(t) for various values of a when ∆µ = 2

3 . For
a = 0, the velocity converges monotonically to τH

0
cs
µ− .
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Figure 3.3: Exact solution of the single mode problem: evolution of the non-
dimensional interface velocity r(t) for various values of a when ∆µ = 0. There
is only one discontinuity corresponding to the arrival of the shear wave at y = 0,
and, if a = 0, the velocity reaches immediately its limiting value τH

0
cs
µ .
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takes place along the interface, its position is purely arbitrary. When the wave
reaches it, it continues to propagate without any reflection. There is thus only
one jump in the velocity, that occurs at t = H

cs
(Figure 3.3). When a '= 0, the

velocity varies with time but presents only one discontinuity corresponding to
the arrival of the shear wave at y = 0.

3.3.4 More compliant thin film ∆µ ∈ (−1, 0)

2 4 6 8 10 12 14
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0
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0.8

1
a =  0
a =0.2
a =  4

cst/H

r(
t)

Figure 3.4: Exact solution of the single mode problem: evolution of the non-
dimensional interface velocity r(t) for various values of a when ∆µ = − 2

3 . For
a = 0, the velocity converges to τH

0
cs
µ− , but this convergence is not monotonous.

In this case, µ+ < µ−. The behavior is similar to that observed in Section
3.3.2 except that since the thin film is more compliant than the substrate the
reflected velocity wave has a sign opposite to that of the incident one. This
implies the velocity jumps have alternating signs and that the convergence is
not monotonous (Figure 3.4).

3.4 Error analysis

Having established the exact solution of the single-mode problem, we now turn
our attention to quantifying the precision and stability of the three-convolution
scheme described in Chapter 2. Figure 3.5 shows two examples of comparison
between the analytical solution and numerical results and illustrates how insta-
bilities may rise for small values of η, i.e., for large time step values ∆t.
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Figure 3.5: Results for the evolution of the non-dimensional interface velocity
r(t) for the single mode problem, with a = 4.995. (a) ∆µ = 1, (b) ∆µ = − 2

3 .
Note the instabilities appearing when η = 20 for ∆µ = 1.
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To quantify the error, we use the internal mean square error computed on
each period of time n corresponding to the time between the nth and the (n+1)th

reflections of the wave off the interface,

E2
X(n) =

c+
s

2X(1 − ζ)H

∫

X

∫ (1−ζ+2n) H

c+s

(−1+ζ+2n) H

c+s

∣∣u̇(x, t) − ˜̇u(x, t)
∣∣2 dt.dx, (3.6)

where u̇(x, t) is the exact interface velocity and ˜̇u(x, t) is the velocity computed
by the numerical simulation. The purpose of the parameter ζ ∈ [0, 1] is to avoid
the influence of some large errors taking place just after or before the reflections,
due for example to a small delay between the jump in the analytical solution
and the jump in the result of the numerical simulation. In the single mode case,
this expression becomes

ε2(n) =
1

2(1 − ζ) H
c+

s

∫ (1−ζ+2n) H

c+s

(−1+ζ+2n) H

c+s

(r(t) − r̃(t))2 dt, (3.7)

where r̃(t) is the non-dimensional velocity computed by the simulation. The
main advantage of this error measure appears in the case of a constant loading
(in time) of the thin film with a perfect (i.e., non-failing) interface or in the
limiting case of a free-standing thin film. In this case, the relative importance
of each mode is constant and the velocity can thus be expressed as

u̇(x, t) =
∑

q

eiqxr(t; q)U̇
(

H

c+
s

; q
)

. (3.8)

So, neglecting the errors produced by the discrete Fourier transform, we have

E2
X(n) =

1
2(1 − ζ) H

c+
s

∫ (1−ζ+2n) H

c+s

(−1+ζ+2n) H

c+s

∣∣∣∣∣
∑

q

eiqx (r(t) − r̃(t)) U̇

(
H

c+
s

; q
)∣∣∣∣∣

2

dt, (3.9)

and, since the discrete mode numbers qj are always multiple of the fundamental
mode q0 = 2π

X ,

E2
X(n) =

∑

q

∣∣∣∣U̇
(

H

c+
s

; q
)∣∣∣∣

2

ε2(n). (3.10)

We can thus obtain an approximation of the error at each period by performing
a discrete Fourier transform on u̇

(
xi,

H
c+

s

)
.

If we consider the propagation of a crack, the zones of the interface that have
not been reached yet by the crack behave as if the interface is perfect, while,
inside the crack, the boundary of the thin film is traction free. We consider thus
two limiting cases in our error analysis, the traction free case (∆µ = 1) and an
example of perfect interface (∆µ = − 2

3 ).
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Figure 3.6: Evolution of the internal mean square error of the third period ε(3)
with respect to η, for different values of a. (a) ∆µ = 1, (b) ∆µ = − 2

3 . For a
large set of values of the parameters the error ε varies as 1/η.

As shown in Figure 3.6, for a large set of values of the parameters (a, η), the
evolution of the error is linear with η−1; the evolution of ε2 is thus quadratic.
We can also see that larger values of a or ∆µ usually imply a larger error
(Figure 3.7), but this effect is hard to characterize and the dependance is not
always monotonous. However, it is interesting to notice that the case ∆µ = 0,
corresponding to two materials with the same properties for the film and the
substrate, is not optimal from the point of view of the error analysis.

It is also observed in Figure 3.8 that the error often increases geometrically
with the period. This fact is true for any value of ∆µ, but the rate of this pro-
gression is more important for large values of ∆µ as shown in Figures 3.7 and
3.8, especially in the limiting case of the traction free interface (∆µ=1). This
result is expected since this special case is physically unstable.

For large values of a, the solution becomes unstable after a few periods and
eventually diverges totally, as shown in Figures 3.5, 3.6 and 3.8. It is obvious
that increasing η delays the apparition of these instabilities, but it is not clear
if one can always find a value of η such that the problem is always stable, or if
one can always find a number of periods after which the simulation diverges.
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Figure 3.7: Evolution of the internal mean square error ε2(n) with respect to
∆µ, for different periods n: (a) a = 50, η = 5000, (b) a = 10, η = 500. Note
that the error increases with the number of reflections n, and that ∆µ = 0 is
not optimal from the error analysis point of view.

1 2 3 4 5
10−10

10−5

100

105

1010

d = 59560
        4737
          376
            29

n

ε2
(n

)

1 2 3 4 5
10−10

10−8

10−6

10−4

10−2

100

102

104

d = 59560
        4737
          376
            29

n

ε2
(n

)

(a) (b)

Figure 3.8: Evolution of the internal mean square error ε2(n) with respect to the
number of reflections n for different values of η, showing a progressive increase
of the error at each reflection: (a) ∆µ = 1, (b) ∆µ = − 2

3 .
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Chapter 4

Stability and precision
analysis

4.1 Origin of the instabilities

As shown in Figures 3.5, 3.7 and 3.8, during the first period (i.e. for H
c+

s
≤ t ≤

3 H
c+

s
), the simulation matches the analytical solution very well even when this

solution oscillates a lot. Furthermore, for small values of a, the errors are kept
relatively small. This result seems to show that the source of the problem is to
be found in the convolution terms F+ or G+ defined in (2.15). Note that the
term H+ could also be problematic, but since τH is constant in this analysis,
its value is basically proportional to the mean value of E3 on [0, t

|q|c+
s

]. This
term has thus here no influence on the instabilities. Furthermore, for a varying
τH , the behavior of H+ would be similar to that of G+.

Among the convolution terms, the term involving C∞ does not lead to in-
stability as long as the chosen time step does not violate the Courant condition,
as in [13] and [14]. The four only terms that can lead to instability are thus, in
the Fourier domain,

#1 = −µ+ |q| aU+
(
t − 2 H

c+
s

)
,

#2 = µ+q
∫ t
2 H

c+s

J1

(√
(qc+

s t)2−4a2
)

√
(qc+

s t)2−4a2
U(t − t′)qc+

s dt′,

#3 = µ+q
∫ t
2 H

c+s

4a2
J2

(√
(qc+

s t)2−4a2
)

(qc+
s t)2−4a2 U(t − t′)qc+

s dt′,

#4 = 2a
∫ t
2 H

c+s

J1

(√
(qc+

s t)2−4a2
)

√
(qc+

s t)2−4a2
T (t − t′)qc+

s dt′,

that appear in the expression of F+ and G+ in (2.15) and (2.16). For a constant
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η, these terms can be expressed as

#1 = −µ+

H a2U
(

H
c+

s
(z − 2)

)
,

#2 = µ+

H a
∫ z
2

J1(a
√

z′2−4)√
z′2−4

U
(

H
c+

s
(z − z′)

)
dz′,

#3 = µ+

H 4a2
∫ z
2

J2(a
√

z′2−4)
z′2−4 U

(
H
c+

s
(z − z′)

)
dz′,

#4 = 2a
∫ z
2

J1(a
√

z′2−4)√
z′2−4

T
(

H
c+

s
(z − z′)

)
dz′,

(4.1)

where z = t
η∆t = c+

s t
H . It can be shown (see Appendices B.1 and B.2) that for

large values of a, the asymptotic behavior of these terms is

#1 = −µ+

H a2 U
(
t − 2 H

c+
s

)

#2 + µ+

H U
(
t − 2 H

c+
s

)

#3 + µ+

H a2 U
(
t − 2 H

c+
s

)

#4 + T
(
t − 2 H

c+
s

)
,

(4.2)

It seems thus that the instabilities are mainly caused by the terms #1 and #3.
Furthermore, when a → ∞, the terms #1 and #3 tend to cancel each other (see
Appendix B.1), but their absolute values tend to infinity. So, when a increases,
we have to perform a difference between two large numbers that are close to
each other, which can lead to large numerical errors. Note that this convergence
has to be considered very carefully since it implicitly assumes that U does not
vary as quickly as the convolution kernels.

4.2 Low-pass filter

Since the global problems are unstable due to the high frequencies, we choose
to damp these using a low-pass filter. In order to chose a convenient filter, let
us consider the worst possible distribution of frequencies, i.e., the slowest de-
creasing rate of the importance of the modes in the Fourier series, and find a
filter that would keep the stability for this distribution.

Since Dirac δ-functions are unlikely to appear in the displacement distri-
bution, the worst distribution would correspond to a spatial discontinuity and
could be represented here by

u(x, t) =
∑

j

eiqjx k(t)
qj

=
∑

j

e±iajx/H ǩ(t)
aj

.

The importance of terms #1 and #3 in (4.1) would in this case be proportional
to a/H = q. In order to prevent the increase of this importance for high
frequencies, we decide thus to apply a filter of the first-order to the function l+
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defined in (2.14). So, instead of using l+(x, t) = F−1 (L+(t; q)) in (2.18), we
use l̃+(x, t) = F−1

(
L̃+(t; q)

)
, where

L̃+(t; q) = L+(t; q)
1

1 + q
qc

= L+(t; q)
1

1 + a
ac

. (4.3)

The critical frequency qc has to be chosen empirically and is the result of a
trade-off between the stability and the accuracy of the simulation. Since there is
no theoretical way to evaluate the accuracy, we compare the solutions obtained
with different critical values with those obtained without filter before the begin-
ning of the instabilities. Note that we do not discuss in this section some very
interesting phenomena involving wave propagations and reflections appearing in
the results of these tests as this discussion is the purpose of Chapters 6 and 7 for
more realistic material systems. The emphasis of the test problems described
hereafter is placed solely on assessing the accuracy and stability of the spectral
scheme described in Chapter 2.

4.2.1 First test: crack propagation and arrest

f

Initial crack

τstr0 = 0τstr0 = µ+ > 0 τstr0 = ∞

A B
H = 0.1X

τH = 3
4µ+H(t)

Lc = 101
1024X

Lτ = 250
1024XLτ

X

Figure 4.1: First test problem.
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For this first stability and precision test, we study the problem of a crack that
is allowed to propagate up to a certain point and is then arrested (Figure 4.1).
The characteristics of the material are µ+ = µ−, c+

s = 2c−s . The thickness of
the thin film is H = 0.1X. Since we use 1024 dicretization points and β = 0.05,
where β is defined in (2.19), we have η = 2048 and a ∈ [0, 102.4π + 321.7] with
a non-dimensional frequency discretization step a0 = 0.2π + 0.63. The applied
stress is 0.75µ+. The initial crack (τstr0 = 0) has a length of Lc = 101∆x
and is located between two zones of initial strength τstr0 = µ+, critical distance
δc = 0.05X, and of length 251∆x, as shown in Figure 4.1. The other points have
a virtually infinite initial strength, which prevents the crack from propagating,
i.e., arrests it.

In our tests, we considered a point located at the arrested crack tip (point
A in Figure 4.1), where the stress takes large values, and a point located in
the zone were the crack is allowed to propagate (point B in Figure 4.1). The
tested critical frequencies ac/a0 entering the first-order low-pass filter in (4.3)
are 160, 320 and 480, which correspond respectively to ac + 100, 200 and 300
since we use X = 1.

As we can see in Figures 4.2 and 4.3, the filter removes all the instabilities on
the interface displacements u+ and u− while affecting the displacement values
very little.
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Figure 4.2: Effect of the critical non-dimensional frequency ac on the evolution
of the displacement u (a) and traction stress τ (b) at a point A, located at
the arrested crack tip for the first test problem described in Figure 4.1. The
results show how the low-pass filtering eliminates the instabilities present in the
unfiltered solution (a = ∞).
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Figure 4.3: Effect of the critical non-dimensional frequency ac on the evolution
of the displacement u+, u− (a) and traction τ (b) at point B on the path of
propagating crack in the first test problem described in Figure 4.1. Figures (c)
and (d) present zoomed-in features. The results show how the low-pass filtering
eliminates the spurious oscillations present in the unfiltered solution (ac = ∞)
without affecting the displacement and traction evolution.
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Figure 4.4: Effect of the critical non-dimensional frequency ac on the evolution
of the velocity at point A located at the final crack tip (a), and at point B on the
path of propagating crack (b), for the first test problem described Figure 4.1.
Figures (4.5a),(4.5c) and (4.5b),(4.5d) present zoomed-in features of respectively
(a) and (b). These plots show how the low-pass filtering eliminates the spurious
oscillations present in the unfiltered solution (ac = ∞) without affecting the
velocity evolution.

The filter also removes the visible instabilities on the stress, even if some
very small oscillations can still be seen for ac/a0 = 480. But, if the stress at B
is not influenced very much by the filter except at the beginning of the transi-
tion, the stress error at A is relatively large. This is because the stress at this
point takes very large values (theoretically there is a singularity) which are the
results of constructive interferences of the high frequencies.

The error on the velocity caused by the filter is relatively small except when
there are some large accelerations or sharp transitions (see Figures 4.4 and 4.5).
We can also see that for ac/a0 = 320 and 480, there are still some instabilities
after c+

s t/H = 7. An interesting observation is that the displacement does not
seem to be affected by the first instabilities in the velocity. This tends to show
that the error they cause is symmetric.

4.2.2 Second test

As a second test, we consider the problem of a non-propagating crack. In this
case, if xc is the crack tip location, it can be shown that the traction stress
ahead of the crack is given asymptotically by

lim
x→xc

τ(x, t) =
KIII(t)√
2π |x − xc|

, (4.4)
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Figure 4.5: Figures (a) and (c) present zoomed-in features of Figure (4.4a),
while Figures (b) and (d) present zoomed-in features of Figure (4.4b).
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Figure 4.6: Second test problem : non propagating crack.

where KIII(t) is the time-dependant stress intensity factor (SIF) that quantifies
the intensity of the near-tip singular stress field, and |x − xc| denotes the dis-
tance from x to the crack tip. This constant can also be expressed with respect
to the slip inside the crack,

KIII(t) = lim
x→xc

√
π

2 |x − xc|

(
1

µ+
+

1
µ−

)−1 (
u+(x, t) − u−(x, t)

)
. (4.5)

In this section, we test the effect of the filter on the evolution of the SIF that
we compute using (4.5). For this test, we use the same parameters as in the
first test, except that Lc = 250∆x, and that outside of the crack, the strength
is virtually infinite, as shown in Figure 4.6.

As we can see in Figure 4.7, the error caused by the filter is not to be ne-
glected, especially when ac/a0 = 160. This is mainly due to the fact that, in the
neighborhood of the crack tip, many high frequencies are involved. Moreover,
even if the biggest part of the instabilities is removed, some small oscillations
are still visible when ac/a0 = 480.
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Figure 4.7: (a) Effect of the critical non-dimensional frequency ac on the evo-
lution of the stress intensity factor KIII(t) defined in (4.5) for the second test
problem described in Figure 4.6. Figure (b) presents zoomed-in features.

4.3 Conclusion

The results of these tests show us that applying a low-pass filter on the function
l+(x, t) remove efficiently the spurious oscillations and does in the majority of
the cases not affect the rest of the solution, as shown in Figure 4.8. However, if
chosen to small, the critical frequency can lead to non negligible errors in some
particular situations involving many high frequencies (see Figure 4.7).

Due to the number of different intervening parameters, it is hard to de-
termine, given a physical problem, the optimal critical frequency. However,
based on the previous tests and several similar ones, it seems that the value
qc = 1250/X gives usually good results, since it is the highest value that re-
moves all oscillations. We therefore use this value in the following chapters.
Note that with, this value of qc, the numerical simulation is usually stable for
β < 0.35, but, to be more accurate, we prefer to use values close to 0.05.
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Right (X/2 < x ≤ X): qc = 1250/X. This plot shows that the filter removes
all the spurious oscillations without affecting the rest of the solution.
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Chapter 5

Motion of thin film surface

In the laser-induced spallation experiments described in Chapter 1, interfero-
metric measurements of the velocity history are made at discrete locations along
the thin film surface. It is therefore useful to extend the spectral formulation
to compute the displacement an velocity histories along y = H.

Let us remember from (2.3) that

Ω̂(y; p, q) = Â(p, q)e|q|αsy + B̂(p, q)e−|q|αsy,

where Ω = L (F (uz)). So, if

uH(x, t) = uz (x, y = H, t) ,

and ÛH = L
(
F (uH)

)
, we have

ÛH(p, q) = Â(p, q)e|q|α
+
s H + B̂(p, q)e−|q|α+

s H .

Using (2.9) and the first line of (2.4) to eliminate Â and B̂ in this last relation,
we get

ÛH |q|α+
s

(
1 + e−2aα+

s

)
= 2 |q|α+

s Ûe−aα+
s +

1
µ+

T̂H
(
1 − e−2aα+

s

)
. (5.1)

Back in the time and space domains, we obtain (see Appendix A.6)

1
c+

s
u̇H(x, t) = 2

c+
s

u̇
(
x, t − H

c+
s

)
+ fH(x, t)

+ 1
µ+τH(x, t) − 1

µ+τH
(
x, t − 2H

c+
s

)
+ hH(x, t)

− 1
c+

s
u̇H

(
x, t − 2H

c+
s

)
− gH(x, t)

= lH(x, t)
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where the convolution terms are expressed in the Fourier domain as

FH = F (fH) = − |q| aU
(
t − H

c+
s

)
+2 |q|

∫ t
H

c+s

C ′
H3(|q| c+

s t′)U(t − t′) |q| c+
s dt′

HH = F (hH) = 1
µ+

∫ t
2H

c+s

D3(|q| c+
s t′)TH(t − t′) |q| c+

s dt′

GH = F (gH) = − |q| aUH
(
t − 2H

c+
s

)
+ |q|

∫ t
0 (C∞(|q| c+

s t′) + CH3(|q| c+
s t′)) UH(t − t′) |q| csdt′.

The convolution kernels D3(T ), CH3(T ), C∞(T ) have been defined in (2.7) and
(2.16), and

C ′
H3(T ) =

(
J1

(√
T 2 − a2

)
√

T 2 − a2
+ a2 J2

(√
T 2 − a2

)

T 2 − a2

)
H(T − 2a).

As in Section 3.1, an analytical solution can be found in the case of a perfect
interface for a single mode loading τH

0 eiqxH(t), and when c+
s = c−s = cs. In this

case, (5.1) becomes

pÛH cosh(aαs) = pÛ +
τH
0

µ+qαs
sinh(aαs).

Reintroducing the analytical expression of pÛ from (3.1) in this equation, and
performing an inverse Laplace transform as described in Appendix A.7 yields

U̇H(i∆t) =
τH
0 cs

µ+



J0

(
a

i

η

)
+ 2

∞∑

n=1

(∆µ)nJ0



a

√(
i

η

)2

− 4n2



 H

(
i

η
− 2n

)

 .

Note that in the case a = 0, both U̇ and U̇H converge to the same limit
velocity

U̇∞ =
τH
0 cs

µ− , (5.2)

which does not depend on any characteristic of the thin film.

Using this analytical solution, we can perform an error analysis similar to
what is done Chapter 3. As it is expected, the numerical behavior of this
scheme is similar to that of the scheme derived in Chapter 2 to compute the
displacement and the traction stress at the interface. It is therefore needed to
apply on lH(x, t) the same filter as on l+(x, t), as described in Chapter 4.
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Chapter 6

Non propagating crack

f

2
1 Al

Si

τstr0 = 0τstr0 = ∞

H = 0.1215X

τH = τH
0 H(t)

Lc = 7
32X

X

Figure 6.1: Description of the non-propagating crack problem. Node 2 is located
above the center of the crack while node 1 is at 1.125Lc from node 2. Typical
values :H = 100µm, Lc = 180µm, X = 823µm and H/c+

s = 32.28ns.

In this chapter, we analyze the behavior of a non-propagating crack located
between a substrate made of fused silica and an aluminium thin film (see Figure
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6.1) as in the experiments described in [12]. In order to keep the formulations
derived in Chapters 2 and 5 valid, we assume the deformations to be small,
and both material to be homogeneous and linearly elastic. The properties of
the two materials are listed Table 6.1. For these materials, we consider the
behavior of the interface, and the evolution of the stress intensity factor, for
the case Lc = 1.8H (Figure 6.1). We also look at the evolution of the velocity
and the displacement of two points located at the surface of the thin film. One
is just above the center of the crack, while the other is outside the crack zone,
at a distance 1.125Lc from the first one. The discretization parameters of the
solved problem are Lc/X = 7/32, η = H/c+

s ∆t = 2048 ∆x = X/1024, and thus
β = 0.07, which satisfies the Courant condition (β < 1).

Material µ (GPa) ρ (kg/m3) cs (m/s)
Fused Silica 30.8 2200 3741.7
Aluminium 26.0 2710 3097.4

Table 6.1: Material properties [12].

As shown in Figure 6.2, our spectral scheme is able to capture the stress
concentration at the crack tips. Figures 6.3 and 6.4 show the evolution of the
displacement along the interface. One can observe that each reflection of the
initial plane wave correspond to an increase of the velocity, followed by a deceler-
ation until the next wave reflection. However, this is mainly visible in the crack
zone and for the thin film; this effect can thus also be seen on the slip at the
interface, as shown in Figure 6.5. One can also observe Figures 6.6 and 6.7 the
influence of the crack on the surface displacement uH beginning at t = 2H/c+

s .
This time is indeed needed by a wave to cross the film, to be reflected off the
crack, and to propagates to the film surface. Note that the zone of the surface
influenced by the crack grows with time, but that the difference of displacement
between the nodes located above the crack (x ≥ 25/64X) and the other nodes
(x < 25/64X) diminish with time, even if a sharp acceleration takes place above
the crack at each reflection of the initial wave at t = 2H/c+

s . In the zone far
from the crack, we can also see Figure 6.7 the very small influence of the wave
resulting from the reflection of the initial plane wave off the interface reaching
the film surface at t = 2H/c+

s . The reasons of the small amplitude of this wave
are discussed Section 7.1. Figure 6.8 shows the evolution of the displacement
and the velocity for a point above the center of the crack and a point located
outside of the crack. This is the kind of evolution measured by [12]. The be-
havior of node 1 seems complex, but for node 2 located above the center of
the crack, we can see again at each reflection of the initial wave the important
discontinuous augmentations of the velocity followed by decelerations.
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Figure 6.3: Evolution between t = 0 and t ≈ 6.5H/c+
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the interface (time period between the lines: H/16c+
s ): (a) thin film interface

displacement u+ showing a variation in the velocity at each reflection of the
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influence of each reflection on the velocity for node 2, while the behavior of node
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We now turn our attention to the evolution of the time-dependant stress
intensity factor KIII(t) characterizing the near-tip singularity and defined by
(4.4) and (4.5).

As it can be observed in Figure 6.9, there are various angular points in the
evolution of the stress intensity factor. These points correspond to the reflections
of waves off the crack tips. To each angular point (except the first one which
correspond to the initial plane wave reaching the interface) corresponds thus
a path between one crack tip and either itself or the other crack tip. These
different paths are represented in Figure 6.10 and described hereafter.

• Path O corresponds to the initial plane wave propagating from the exter-
nal boundary of the thin film to the interface and thus to the crack tips.
The time to needed by a wave to follow this path is

c+
s

H
to = 1.

• Path A corresponds to a wave that propagates from one of the crack tips
to itself after being reflected off the surface. The time ta needed by a wave
to follow this path is

c+
s

H
ta = 2.

• Path B corresponds to a wave propagating along the crack in the thin
film from one crack tip to the other one. The time tb needed by a wave to
follow this path is

c+
s

H
tb =

Lc

H
= 1.8.

• Path C corresponds to a wave propagating along the crack in the substrate
from one crack tip to the other one. The time tc needed by a wave to follow
this path is

c+
s

H
tb =

c+
s

c−s

Lc

H
+ 1.5.

• Path D corresponds to a wave that propagates from one of the crack tips
to the other one after being reflected off the surface of the film. The time
td needed by a wave to follow this path can be expressed as

c+
s

H
td =

√
4H2 + L2

c

H
= 2.6907.
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Figure 6.9: Evolution of the stress intensity factor KIII(t). Figures (b) and
(c) present zoomed-in features of Figure (a), showing different angular points
corresponding to wave reflection on the crack tips.
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O (1)A (2)

B (1.8)

C (1.5)

D (2.69)

H

Lc = 1.8H

Figure 6.10: Wave trajectories between the crack tips and from the external
boundary. The bracketed numbers represent the time (normalized by H/c+

s )
needed for a wave to follow the corresponding path.

point 0 1 2 3 4 5 6 7
time (c+

s t/H) 1 2.5 2.8 3 3.69 4.5 4.8 5
path O OC OB OA OD OAC OAD OAA

Table 6.2: Correspondence table between the angular points appearing in the
evolution of KIII(t) (Figure 6.9) and the wave propagation paths shown in
Figure 6.10.

Comparing the time needed to follow each trajectory to the time at which
the different angular points occur, we can deduce the different paths followed
by the waves that cause the angular points (see Table 6.2). Note that any per-
mutation of the paths that we propose is also acceptable, as soon as it begins
by O. In fact, each angular point is caused by the sum of the contributions of
each of these permutations.

Some combinations of path give no visible angular point, for example OBC
(c+

s t/H = 4.3) and OCC (c+
s t/H = 4.6). This is mainly due to the fact that

the amplitude of the waves decreases with every reflection. The corresponding
jump in the derivative of the stress intensity factor can then become so small
that it cannot be seen.
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Chapter 7

Propagating crack

In this chapter, we analyze different cases of propagating interfacial cracks. We
begin in Section 7.1 by a problem similar to that studied in Chapter 6, but
where the crack is allowed to propagate. In Section 7.3, we consider a system
with no loading on the thin film, but with a shear plane wave coming from the
substrate, as in the experiments of [12], and see that in that case the crack
propagation decelerates until a complete arrest. Finally, we show in Section
7.4 two systems where the mismatch between the materials properties leads to
interesting effects involving spallation.

7.1 Dynamic delamination along Al/Si interface
with a loading on the film

As indicated before, we consider in this section the dynamic response of a crack
located at the interface between a fused silica substrate and an aluminium thin
film (see table 6.1 for material properties) as in the experiments of [12]. We look
at two different situations: a weak interface where it can be observed that the
finite thickness of the film does not influence the propagation, and a stronger
interface where the propagation is accelerated due to the waves coming back on
the interface after being reflected off the film surface.

Before discussing these two cases, let us consider the dynamic response of
the interface in the absence of fracture. The problem is then reduced to a 1-D
problem, and one can show using (2.8) and (2.14) that the traction stress and
the velocity at the interface are (see Appendix C.1)

τ(t) = τH
0

(
1 − kn(t)

)
, u̇(t) = τH

0
c−s
µ−

(
1 − kn(t)

)
, (7.1)
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where n(t) = ( c+
s t+H
2H ) and k denotes the impedance mismatch

k =
µ+

µ− − c+
s

c−s
µ+

µ− + c+
s

c−s

=
µ+

c+
s
− µ−

c−s
µ+

c+
s

+ µ−

c−s

. (7.2)

Note that the limiting values of the traction stress and the velocity do not de-
pend on the properties of the thin film, which only affect the transitory response.

For the AL/Si system studied here, k = 0.0098. So, when the initial shear
wave reaches the interface, the traction stress and the velocity take a value close
to their limiting value and the further variations are then relatively negligible.
Therefore, the plane reflections of the initial shear wave virtually do thus not
influence the propagation of the crack. In Section 7.4, we present systems with
more interesting value of k.

7.1.1 Weak interface

In this first problem, we apply a shear stress τH = .8τsH(t) along the boundary
of the thin film, whose thickness is 1.6 times larger than the initial crack length
Lc as shown in Figure 7.1. Outside of the initial crack, the cohesive properties
of the interface are τstr0 = τs and δc = δc0 = 0.052 τs

µ+ X. Using τs = 500MPa

(from [12]) and the typical length presented in Figure 7.1, this gives δc ≈ 1µm
and τH = 400MPa. Since the thin film is mode of aluminium, the time needed
for a wave to cross the film is H/c+

s = 32.28ns. Note that the used discretization
parameters are ∆x = X/1024,η = 2048 and thus β = 0.06.

As we can see in Figure 7.2, at t = 3H/c+
s , the plane reflection of the ini-

tial wave off the surface and then on the interface causes an acceleration in the
zone where the crack was initially located. However this effect does not affect
the propagation of the crack, since due to the weak interface, the crack prop-
agates at an intersonic speed as shown in Figure 7.3. No wave propagating in
the thin film from the original crack location can thus reach the crack tip and
influence the propagation. We can see in Figure 7.5 that the shape of the stress
concentration around the crack tip does not vary when the crack propagates,
and that in the zones not yet reached by the crack, it takes the value predicted
by (7.1). Figure 7.4 shows that after t = 2H/c+

s , the displacement of the film
surface is influenced by the interface crack. Since, in this case, the crack propa-
gates, the influence is more important than it was in Figure 6.6. However, there
is no visible influence of the other wave reflections off the surface at t = 2nH/c+

s .

Figure 7.6 shows the traction stress rise just before the arrival of the crack
for nodes 1 and 2 on the way of the crack (as shown in Figure 7.1). One can also
observe the small size of the traction stress variation at t = 3H/c+

s , as predicted
by (7.1).
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τstr0 = 0τstr0 = τs > 0

H = 0.1X

τH = τH
0 H(t)

Lc = 1
16X

X

Figure 7.1: Dynamic failure of a weak interface. The nodes locations are x/X =
0 for node 0, x/X = 25/128 for node 1 and x/X = 50/128 for node 2. The
distances to the initial crack are thus respectively 7.5Lc, 4.375Lc and 1.25Lc.
Note that typical values are H = 100µm, Lc = 62.5µm, X = 1mm and H/c+

s =
32.28ns.

The evolution of the velocities and displacements at the interface and the
surface of the film are shown in Figure 7.7 for a surface point located above
node 2. After the large variations following the separation of the two sides of
the interface at this point, the velocity of the substrate side seems to keep a
quasi-constant value. On the other hand, the velocity of the thin film side of
the interface seems then to increase at a constant rate on average, similar to
the acceleration of the point located at the surface of the film. This results in
a constant acceleration of the slip across the interface, as shown in Figure 7.8.
One can also observe that the difference between the displacement at the surface
of the film and at the interface is strongly reduced just after the separation of
the two sides of the interface.
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Figure 7.2: Evolution between t = 0 and t ≈ 5H/c+
s of the displacement at the

interface for the weak interface delamination problem: (a) displacement of thin
film at the interface u+ , (b) displacement of the substrate at the interface u−,
and (c) is a combination of (a) and (b). The time period between the lines is
.1465H/c+

s .

55



0 1 2 3 4 5 6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

coz
crz
cs

+

cs
−

c+
s t/H

x
/X

Figure 7.3: Evolution of the tips of the cohesive zone (coz ) and the crack tip
(crz ) for the weak interface delamination problem. c+

s and c−s denote the propa-
gation of elastic waves in the film and substrate, respectively. Note the intersonic
crack motion.

Due to the small value of k in (7.1), the reflection of the initial plane wave
does almost not cause any variation of the traction stress. Moreover, due to the
large propagation speed, no wave coming from the crack can be reflected off the
film surface an then reach the crack tips. From the point of view of the location
of the crack, there is thus no difference between the fracture event presented in
this section and a similar one that would take place between two semi-infinite
media as in [14]. However, the behavior of the part of the thin film located
between the crack tips is strongly influenced by the different waves reflected off
the film surface.
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s of the displacement at the

surface of the thin film uH for the weak interface delamination problem. The
time period between the lines is .1465H/c+

s . This plot shows the influence of
the crack on the surface displacement beginning at t = 2H/c+

s . One can also see
that the further reflections do not have a visible influence on this displacement.
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the interface τ for the weak interface delamination problem, showing the stress
concentration in the neighborhood of the propagating crack tip.
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Figure 7.6: Evolution of the stress at the interface for nodes 1 and 2 defined
in Figure 7.1 for the weak interface delamination problem, showing the small
influence of the wave reflection at t = 3H/c+

s and the rise of the stress just
before the crack reaches the nodes.
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Figure 7.7: Evolution of the interface and external boundary displacements (a)
and velocity (b) for a node 2 defined in Figure 7.1. Note that while the velocity
of the substrate side stays almost constant after the large variation following the
separation of the two sides, the velocity of the thin film side seems to increase
at an on-average constant rate, and that the behavior of the interface side of
the thin film becomes close to that of its surface.
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Figure 7.8: Evolution of the slip across the interface for the weak interface
delamination problem, showing a continuous propagation of the crack and aug-
mentation of the slip at the center of the crack.
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7.2 Strong interface

In order to detect the influence of waves coming from the crack and reaching the
crack tips after being reflected off the film surface, we consider here the case of
a stronger interface that leads to a slower crack propagation. The geometry of
the problem is similar to the one described in Figure 7.1 except that H/Lc = 0.4
so that the time needed for the wave to cross the film is relatively smaller. To
be more accurate in our observations, we use a zoomed-in version of the system
with Lc = X/4.

The loading is τH = 0.8τsH(t) as in Section 7.1.1, but the cohesive parame-
ters are now doubled, τstr0 = 2τs and δc = δc0 = 0.104 τs

µ+ X. So, if we use a film
thickness of H = 100µm and a typical interface strength of τs = 500MPa, we
have τH = 400MPa, Lc = 250µm and the parameters of the strong interface are
δ0 ≈ 2µm and τstr0 = 1GPa. Note that we use again η = 2048, ∆x = X/1024
and thus β = 0.06.
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Figure 7.9: Comparison of the evolutions of the crack and cohesive zone tips a
for film of finite and infinite thickness in the case of a strong interface, showing
an acceleration of the propagation due to the wave reflection of the wave on the
surface. t = 0 corresponds here to the arrival of the initial shear wave on the
interface.
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To study the influence of the wave reflections, we compare the dynamic
response of this system with the response of a similar system with an infi-
nite thickness. To simulate this infinite thickness, we apply a load τH(x, t) =
τH
0 H

(
t − H

c+
s

)
, and we take the limit for H tending to infinity of l+ appearing

(2.14). This yields

µ+

c+
s

u̇+(x, t) + τ+(x, t) = f+∞(x, t) + 2τH
0 H(t),

which replaces (2.14) and where the newly introduced convolution term is given
in the Fourier domain by

F+(t; q) = −µ+ |q|
∫ t

0
C∞(|q| c+

s t′)U+(t − t′; q) |q| c+
s dt′.

As shown in Figure 7.9, the waves reflected off the surface and coming back
on the lower boundary of the film accelerate the propagation of the crack. The
effect is indeed too large to be caused only by the small stress augmentation
associated with the reflection of the initial plane wave, since, due to the value
of k defined by (7.2), it only causes stress variations smaller than 2τs/100. One
can also see that, before the first reflection, the evolution of the crack does not
depend of the possible finite thickness of the film.

7.3 Dynamic delamination along Al/Si interface
with a loading on the substrate

In this section, we consider the same system and discretization as in Section
7.1.1, but, to be closer of the experiments of [12], we replace the loading on the
film surface by a plane shear wave coming from the substrate.

To simulate this loading, we consider the substrate as a thin film with a
thickness Hs on the surface of which a shear stress τB = τB

0 H
(
t − H

c−s

)
would

be applied. We then take the limit of the obtained formulation for an infinite
value of Hs, as done for the infinite case in Section 7.1.1. The relation (2.8)
derived in Section 2.2 is then replaced by

τ−(x, t) − µ−

c−s
u̇−(x, t) + 2τB

0 H(t) = f−(x, t), (7.3)

where f− is defined by in the Fourier domain by (2.6). Note that the formu-
lation for the thin film is unchanged, but some terms may be removed since
τH ≡ 0.

Before showing the results, it is important to note that the behavior of the
stress and velocity in the absence of crack are different than in Section 7.1. One
can indeed show (see Appendix C.2) that, for t ≥ 0,

61



τ(t) = 2τB
0

1

1 + µ−c+
s

µ+c−s

kn(t), u̇(t) = −2τB
0

c−s
µ−



1 +
1

1 + µ−c+
s

µ+c−s

kn(t)





(7.4)
where n(t) = ( c+

s t
2H ) and k is defined by (7.2). It is interesting to note that the

initial and limiting values of the traction stress and the velocity depend only
on the substrate properties. Moreover, at each reflection of the initial wave,
the absolute value of the stress decreases and tends eventually to zero while the
absolute value of the velocity tends to twice the value that we would have for
a same loading applied on the surface of the film. Note that these limiting val-
ues would be those observed in the absence of thin film. The decreasing values
of the stress implies that the crack should eventually decelerate, leading to a
complete arrest. This effect should begin in our case after the first reflection
at t = 2H/c+

s , since the small value of k implies that the traction stress would
then take value smaller than 1% of the original value.
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Figure 7.10: Evolution of the tip of the cohesive zone (coz ) and of the crack tip
(crz ) in the case of a shear wave coming from the substrate. c+

s and c−s denote
the propagation of elastic waves in the film and substrate respectively. This
plot shows the rapid deceleration of the crack after t = 2H/c+

s and its arrest
at t = 4.6H/c+

s . Note that, before t = 2H/c+
s , the evolution is identical to the

case of thin film with an infinite thickness.
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Figure 7.11: Evolution of the interface velocities (a) and traction stress (b) for
nodes 0,1 and 2 defined in Figure 7.1, in the case of a shear wave coming from
the substrate. For node 0 located away from the crack, the velocity and traction
stress take the values predicted by (7.4) until the arrival of the wave associated
with the crack. Unlike in Figure 7.7, the velocities do not tend to increase with
time.

We can see in Figure 7.10 that the crack propagation indeed arrests as pre-
dicted before, but this does not occur at t = 2H/c+

s . At this time, in the region
not yet reached by the crack, the traction stress falls to nearly zero as shown
in Figure 7.11. However, the evolution of the traction stress predicted by (7.4)
does not apply to the crack zone, where the waves are being reflected off what
becomes a traction free lower boundary. There remains thus traction stress
concentrations around the crack tips as shown in Figure 7.12, and the crack
continues to propagate at a slower rate until approximately t = 4.6H/c+

s . Due
to the elasticity of the thin film, the slip across the interfaces begin to decrease
after approximately t = 4H/c+

s , as shown in Figure 7.13. This result constitutes
another main difference with the problem of Section 7.1.1 and can also be seen
by comparing the evolutions of the velocities in Figures 7.7 and 7.11. Unlike in
the case of a loading on the film surface, the velocity of the upper part of the
interface does not seem here to increase constantly.
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Figure 7.12: Evolution of the interface traction stress in the case of a shear
wave coming from the substrate, showing the remain of the stress concentrations
around the crack tips after t = 2H/c+

s while the traction stress outside the crack
diminishes to nearly zero. One can also see that while the crack slows down and
eventually arrest at t = 4.6H/c+

s , a traction stress wave continues to propagate
at the shear wave speed along the fracture plane.
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Figure 7.13: Evolution of the slip across the interface in the case of a shear wave
coming from the substrate, showing the arrest of the crack at t ≈ 4.6H/c+

s and
a diminution of the slip beginning after t = 4H/c+

s . Note that one can also
see the influence of the reflections of the initial plane wave after each period of
2H/c+

s .
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7.4 Delamination and spallation of Al/Steel in-
terface

In this section, we analyze the dynamic behavior of an interface between a sub-
strate an a thin film made of materials with more disparate properties: steel
and aluminium (see Table 7.1) for which the absolute value of the impedance
mismatch parameter is |k| = 0.4954. As in the initial formulation described in
Chapter 2, the shear stress is applied at the surface of the thin film. This com-
bination of materials leads to abrupt traction stress variations at the interface,
which can cause interesting phenomena. In Section 7.4.1, we analyze the case
of a system unstable from the point of view of the static analysis, but where a
crack can propagate for a certain period of time before a complete spallation.
We consider then in Section 7.4.2 the opposite case of a system stable from the
static point of view, but where a spallation take place at the arrival of the initial
shear wave. Note that we present here two extreme cases, but, even when no
spallation take place, the combination of materials with disparate properties
can lead to large variations of the crack speed at each reflection.

Material µ (GPa) ρ (kg/m3) cs (m/s)
Aluminium 26.0 2710 3097.4

Steel AISI C120 78.8 7850 3168.3

Table 7.1: Material properties for aluminium and steel from [12] and [18].

7.4.1 Crack propagation in a statically unstable system

We consider here a thin film made of steel on an aluminium substrate. The
problem geometry is the same as in Section 7.1, but the loading amplitude is
τH
0 = 1.25τs. The problem is thus unstable from the point of view of the static

analysis. However, due to the dynamic stress reduction along the interface, the
spallation does not occur immediately and it is thus possible to observe first the
propagation of a crack.

As mentioned before, the impedance mismatch parameter k defined by (7.2)
is 0.4954 for this material combination. By (7.1), in the absence of a crack, the
traction stress should take the following values, as shown in Figure 7.14

0 → H/c+
s H/c+

s → 3H/c+
s 3H/c+

s → 5H/c+
s 5H/c+

s → 7H/c+
s

0 0.6307τs 0.9432τs 1.098τs

.

So, when the initial shear wave reaches the interface, the crack begin to prop-
agates, but when t = 5H/c+

s , the traction stress exceeds the strength. This
results in a spallation of the whole thin film as shown in Figure 7.15 and 7.16.
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Figure 7.14: Evolution of the traction stress τ in the absence of fracture com-
pared to the strength τs and the loading τH for an thin steel film and an alu-
minium substrate. The loading is larger than the strength and the system is thus
unstable from a static point of view. However, due to dynamic effects, the trac-
tion stress is smaller than the strength until t = 5H/c+

s . A crack propagation
can thus be observed before the complete spallation of the thin film.

Note that this effect could not be observed if the shear wave was coming from
the substrate as in Section 7.3, since, in that case, the absolute value of the
traction stress can only decrease with time. It is also interesting to mention
that the relatively important augmentation of the traction stress at t = 3H/c+

s

results in a small abrupt augmentation of the cohesive zone, but does not in-
fluence the velocity of the propagation since this velocity is already close to its
maximum value.

Note that we use H = 0.05X, η = 1024 and ∆x = X/1024. The critical
distance of the interface is δc = 0.05 τs

µ+ X outside of the initial crack. We do not
have experimental values for the strength of a steel/aluminium interface, but
using τs = 500MPa as in the case of a Si/Al interface and H = 100µm gives us
X = 2mm, τH

0 = 625MPa and δc = 0.63µm
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Figure 7.15: Evolution of the stress at the interface for nodes 0, 1 and 2 located
on the path of the propagating crack and defined in Figure 7.1. The final rise
of stress is continuous for nodes 1 and 2 and corresponds to the crack reaching
theses nodes, while it is discontinuous for node 0. It corresponds there indeed
to an abrupt augmentation of the stress due to a wave reflection and precedes
the spallation.
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Figure 7.16: Evolution of the location of the cohesive zone tip (coz ) and the
crack tip (crz ), showing the influence on the cohesive zone of the wave reflection
at t = 3H/c+

s , and the spallation beginning at t = 5H/c+
s .

7.4.2 Spallation of a statically stable system

We consider here the case of an aluminium thin film on a steel substrate and
show that for these materials it is possible to observe a spallation with a loading
smaller than the strength. If the loading is τH = 0.8τsH(t), a static analysis
would predict that the system is stable and do not break. But, since the pa-
rameter k is in this case −0.4954, in the absence of fracture the traction stress
would be 1.1963τs for t ∈]H/c+

s , 3H/c+
s [, as shown in Figure 7.17. This results

in an immediate spallation of the thin film, as shown in Figure 7.18.

Note that we use the same geometry and discretization as in Section 7.4.1
and a critical distance δc = 0.01 τs

µ+ X. So, assuming an interface strength
τs = 500MPa gives us τH

0 = 400MPa and δc = 0.384µm.
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Figure 7.18: Evolution of the slip at the interface u+−u−, showing the spallation
when the shear waves reaches the interface. Note that in the zone where the
initial strength is null, the velocity is larger at the beginning.
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Chapter 8

Extension to finite length
domains

Figure 8.1: Example of pattern used for a piezo transducer (PZT) thin film on
a Si substrate. The dark region correspond to the PZT [19],[20]

Some recent thin film applications such as some micro- and nano-electronic,
optical, and mechanical devices involve patterned films with complex shapes,
as shown in Figure 8.1. A promising avenue for the fabrication of these pat-
terned film devices is provided by the soft lithographic techniques introduced
by Whitesides and colleagues in the early 1990s [21], [22]. Interfacial adhesion
is a critical parameter for these processes. Successful patterning requires indeed
either the complete elimination of crack defects or highly controlled cracking to
form the desired pattern. Note that as in the non-patterned case, one of the
most successful experimental technique proposed to extract the delamination
properties is the laser-induced spallation test

In this chapter, we extend the scheme of Chapter 2 to domains with finite
length (Figure 8.2). We apply then the obtained formulation to the case of a
thin film with a finite length initially adherent to a semi-infinite substrate (see

70



Figure 8.3). We show in Section 8.2 that we can capture the stress concentra-
tions around the lower corners of the film in the case of a perfect interface and
in Section 8.3 that these stress concentrations can lead to the delamination of
the film in the absence of an initial crack.

8.1 Applying the boundary condition by select-
ing frequencies

L

Hµ,l

x

y

0

Figure 8.2: Material with finite length. Note that H does not need to be finite.

In this section, we consider a domain with a finite length L from which the
two lateral boundaries are traction free and we show that the results of Section
2.1 are still valid if we replace the Fourier transform by a certain sine and cosine
series. Note that, thanks to the use of the independent formulation, we can
perform all this derivation for one generic domain and then apply the results
either to the substrate, to the thin film or to both of them. This also includes
the case of two domains with different lengths.

Let us thus consider a linear elastic rectangular material of length L and
height H, and define a cartesian coordinate system, such that y = 0 is its lower
or upper boundary and that the lateral borders are x = 0 and x = L, as shown
in Figure 8.2. The only non-vanishing displacement component uz(x, y, t) is
independent of the z -coordinate and satisfies the scalar wave equation (2.1)

c2
s (uz,xx + uz,yy) = üz,

for (x, y) ∈ [0, L] × [0,H]. Since the lateral boundaries are traction free, we
have, in comparison to Chapter 2, two additional boundary conditions,

µuz,x(x = 0) = 0,
µuz,x(x = L) = 0. (8.1)
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Instead of using a exponential development as done before, it is more con-
venient to use here an equivalent development in cosine and sine,

uz(x, y, t) =
∑

q≥0

Ωq(t, y) cos(qx) +
∑

q>0

Ω′
q(t, y) sin(qx), (8.2)

where q can take any positive value. The first condition of (8.1) can then be
expressed as

∑

q>0

qΩ′
q(t, y) = 0, ∀y ∈ [0,H],∀t.

This is only possible if Ω′
q ≡ 0, for all q, which means that the second term of

(8.2) is null. The second boundary condition thus becomes

−
∑

q>0

qΩq(t, y) sin(qL) = 0, ∀y ∈ [0,H],∀t,

which is only possible if, for all q > 0,

Ωq(t, y) sin(qL) = 0, ∀y ∈ [0,H],∀t.

The only q for which Ωq can be non identically null are thus the integer multiples
of π

L . So, the displacement can be written as

uz(x, y, t) =
∑

q

Ωq(y, t) cos qx, q = k
π

L
, k ∈ N .

As in Chapter 2, (2.1) must be satisfied by all spectral components. We have
thus, for each q = k π

L ,

(
1
cs

)2

Ω̈q = −q2Ωq + Ωq,yy.

Taking a Laplace transform with respect to the time, this becomes

Ω̂q,yy = α2
sq

2Ω̂q,

where

αs =

√

1 +
(

p

qcs

)2

,

which is exactly the same equation as (2.2). All the further results are thus the
same.

This shows thus that the spectral scheme for domains with a finite length
is totally similar to the scheme with an infinite length as soon as one replace
the Fourier transform and thus the FFT by a cosine development. The imple-
mentation is thus similar. However, it is important to note that in the infinite
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H

Figure 8.3: Thin film of finite dimension on a semi-infinite substrate. Typical
length : L = 500µm, X = 2mm (where X is the length on which the simulation
is performed) and H = 100µm, which implies H/c+

s = 32.28ns.

length case the frequency discretization is imposed for computational reasons
while in the finite length case it results from the mathematical formulation.

If the lengths of the two materials are different, one needs to make sure that
the discretization points are the same for both of them at the interface. It is
then also needed to modify slightly the implementation of the cohesive model by
imposing a zero traction condition at the points that belong only to one material,
for example in the zone before x = 0 or after x = L in in Figure 8.3. Note that,
for a finite domain, even if the problem solved by the numerical scheme is still
theoretically periodic, there is no more influence from the adjacent domains.

8.2 Perfect interface

We consider here the dynamic response of a perfect interface between a semi-
infinite substrate made of fused silica and an aluminium thin film with a finite
length on the surface of which a shear stress τH(x, t) = τH

0 H(t) is applied as
shown in Figure 8.3 using τstr0 = ∞. Note that we use ∆x = X/2048 and
η = 2048.

As one can see in Figure 8.4, the scheme developed in Section 8.1 is able
to capture the stress concentrations appearing on the lower corners of the film.
In Figure 8.5, we can see the displacement of the substrate boundary. Note
that due to the absence of crack and the small value of k defined by (7.2),
there is no visible effect caused by plane reflection of the initial shear wave at
t = (2n + 1)H/c+

s .
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8.3 Delamination in the absence of an initial
crack

In this section, we consider the case of an interface with a finite strength τs and
show that due to the stress concentrations appearing in the lower corners of the
film, a delamination can take place in the absence of an initial crack. We use the
same material and geometry as in Section 8.2, but to be closer to a real situation
we consider a constant shear wave τB coming from the substrate instead of a
loading τH applied on the film surface. The cohesive properties of the interface
are τstr0 = τs and δc = 0.013τsµ+/X and the load is τB = 0.4τs. So, using a
typical strength τs = 500MPa, we have τB = 200MPa and δc = 0.5µm. Note
that we use the same space- and time-discretization as in Section 8.2.
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Figure 8.6: Evolution of the location of the left crack tip (crz - point at which
δ = δc) and left cohesive zone tip (coz - point at which δ > 0) for a thin film of
length L loaded by a plane substrate wave. x = 0 denotes the left corner of the
film (Figure 8.3). The lines labelled c+

s and c−s correspond to the propagation of
elastic waves along the film and substrate, respectively. Note the deceleration
of the crack beginning at t = 2H/c+

s leading to a temporary arrest before a new
propagation at about t = 3.6H/c+

s .
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As in Section 7.3, the small value of k defined by (7.2) implies that, far from
the crack tips, the stress should fall to nearly 0 at t = 2H/c+

s . This would lead
to a deceleration of the crack. Figure 8.6 shows us that the cracks propagate at
an intersonic speed before t = 2H/c+

s and then begin indeed to decelerate and
totaly arrests at t ≈ 2.8H/c+

s . But, at t ≈ 3.45H/c+
s , propagations begin again.

Looking at the evolution of the interface traction stress in Figure 8.7a, we
can see that far from the crack tip the stress falls to nearly zero when the plane
reflection of the initial shear wave reaches the interface at t = 2H/c+

s . This
diminution causes the crack to decelerate and eventually arrest. But one can
see on the zoomed-in features (Figure 8.7b) that, when the propagation deceler-
ates, a wave continues to propagate from each crack tip at the shear wave speed,
and that when this wave reaches the other crack tip a small augmentation of
the stress concentration takes place and the delamination begins again. The
re-acceleration of the crack propagation after a period of arrest could thus be
explained by this small wave interfering constructively with the stress concen-
trations around the crack tips. This would be confirmed by the chronology of
the different events. When the crack decelerates, the cohesive zones tips are
located at x ≈ 0.3L and x ≈ 0.7L (see Figure 8.6), and when the propagation
re-accelerates they are located at x ≈ 0.36L and x ≈ 0.64L. The time needed
for a wave propagating at the substrate shear wave speed to go from one crack
tip to the other is thus approximatively 0.14H/c+

s , which is very close to the
time between the cracks deceleration and their re-acceleration.

In Figure 8.8, one can see in addition of the evolution of the crack that the
slip at the extremities take smaller values between angular points occurring at
each reflection of the initial shear wave at t = 2nH/c+

s but that there is nearly
no influence of these reflections in the neighborhood of the crack tips. At the
extremities, the lower boundary of the film is indeed traction free. The plane
wave is thus totally reflected when it comes back on this surface. On the other
hand, in the part of the interface not yet reached by the crack the wave is almost
totally transmitted. This explains why no visible major change in the slip takes
place there at t = 2nH/c+

s .
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Figure 8.7: Evolution of the interface traction stress, showing a diminution at
t = 2H/c+

s , leading to a deceleration and temporary arrest of the crack. As
shown in the zoomed-in features in (b), a stress wave continues to propagate
from each crack tip at t = 2H/c+

s , and that when this wave reaches the other
crack tip, the cracks re-accelerate. The origin x = 0 is defined in Figure 8.3.
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Chapter 9

Conclusions and future
works

9.1 Conclusions

A spectral scheme has been derived to analyze various film delamination prob-
lem in mode III, leading to a numerical scheme based on an exact spectral
representation of the elastodynamic equations in each domain. The accuracy
of this scheme was tested by comparing the numerical results to an analytical
solution available in the case of a single mode loading. This showed a linear
dependance of the error with respect to the time-discretization and an increase
of the error at each reflection of the initial wave off the interface. It also showed
the appearing of instabilities for large space frequencies cases. To stabilize the
scheme, a filter was chosen using a ”worst case” frequency analysis of the dif-
ferent terms involved in the mathematical formulation. The use of a first order
low-pass filter in the scheme was then proved to remove the instabilities without
affecting the rest of the solution.

The improved scheme has shown to provide a very accurate description of
the shear stress and out-of-plane displacements along the fracture plane and
the surface of the film, including the vicinity of the crack tips. In the case of a
non-propagating crack, it could capture with a great accuracy the influence of
waves reflected off the crack or the film surface on the evolution of the stress in-
tensity factor characterizing the importance of the stress concentration around
the crack tips. It could also show the influence of the crack on the behavior of
the film surface where measure can be made.

The scheme was used to analyze the influence of the finite thickness of the
film on a propagating crack in the case of a loading applied along the surface
or in the case of a shear wave coming from the substrate. This last case was
shown to lead to the arrest of the crack after a period of deceleration.
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It also showed that the use of materials with disparate properties could lead
to interesting phenomena such as an interface crack propagation before a total
delamination of the film in a statically unstable system, or the immediate de-
lamination of the film in a statically stable system.

The scheme was extended to the case of a film of finite length. This ex-
tended scheme could capture accurately the interface stress concentrations in
the neighborhood of the film limits, and showed that these stress concentrations
could lead to a delamination even in the absence of an initial crack. In the case
of a shear wave coming from the substrate, it also showed some very interesting
phenomena such as the temporary arrest of a crack before a re-acceleration.

9.2 In-plane problems

y

x0

H λ+, µ+, ρ+

λ−, µ−, ρ−

(τH
x , τH

y )(x, t)

Figure 9.1: In plane problem.

A natural extension of this work is to consider a problem similar to that of
Chapter 2, but with an in-plane load, stress and displacement, as shown in Fig-
ure 9.1. We have then to consider the 2-D displacement (ux(x, y, t), uy(x, y, t)),
and the applied load is

(
τH
x (x, t), τH

y (x, t)
)
. As explained in [15], in order to

solve this problem, it is more convenient to introduce the Helmotz decomposi-
tion of the displacement in terms of the potential functions φ and ψ,

ux = φ,x + ψ,y; uy = φ,y − ψ,x. (9.1)
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It can be shown that, inside a linearly elastic material, these potentials satisfy

c2
d (φ,xx + φ,yy) = φ,tt,

c2
s (ψ,xx + ψ,yy) = ψ,tt,

(9.2)

where the wave velocities are defined by

c2
d =

λ + 2µ

ρ
, c2

s =
µ

ρ
.

where λ and µ are the Lamé constants. Performing a Fourier/Laplace transform
on (9.2) leads to

Φ̂,yy(y; p, q) = q2α2
dΦ̂(y; p, q)

Ψ̂,yy(y; p, q) = q2α2
sΨ̂(y; p, q).

(9.3)

The introduced variables αs,αd are defined by

αd =

√

1 +
p2

q2c2
d

, αs =

√

1 +
p2

q2c2
s

, (9.4)

Resolving (9.3) in the general case gives us

Φ̂(y; p, q) = Φ̂A(p, q)eqαdy +Φ̂B(p, q)e−qαdy

Ψ̂(y; p, q) = Ψ̂A(p, q)eqαsy +Ψ̂B(p, q)e−qαsy.
(9.5)

Since we are mainly interested in the displacement and stress at the interface,
let us consider

(vx, vy)(x, t) = (ux, uy)(x, y = 0, t),

and

(τx, τy)(x, t) =
(

µ

(
∂ux

∂y
+

∂uy

∂x

)
, (2µ + λ)

∂uy

∂y
+ λ

∂ux

∂x

)
(x, y = 0, t).

Taking a Fourier/Laplace transform on this newly introduced variables yields

(V̂x, V̂y)(x, t) = (Ûx, Ûy)(x, y = 0, t)
(τx, τy)(x, t) =

(
µ

(
Ûx,y + iqÛy

)
, (2µ + λ) Ûy,y + λiqÛx

)
(x, y = 0, t).

Using (9.1) and (9.5), we get

V̂x = qiΦ̂A + qiΦ̂B + qαsΨ̂A − qαsΨ̂B

V̂y = qαdΦ̂A − qαdΦ̂B − qiΨ̂A − qiΨ̂B ,
(9.6)

and

T̂x = 2µq2iαdΦ̂A − 2µq2iαdΦ̂B

+µq2(1 + α2
s)Ψ̂A + µq2(1 + α2

s)Ψ̂B

T̂y =
(
(2µ + λ)α2

d − λ
)
q2Φ̂A +

(
(2µ + λ)α2

d − λ
)
q2Φ̂B

−2µq2iαsΨ̂A + 2µαsq2iΨ̂B .

(9.7)
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As in Chapter 2, we now need to apply a boundary condition to (Ûx, Ûy) in
order to eliminate Φ̂A, Φ̂B , Ψ̂A and Ψ̂B in (9.6) and (9.7).

In the substrate, we need to keep the solution finite when y → −∞. We
have thus

Φ−
B = Ψ−

B = 0 if q > 0
Φ−

A = Ψ−
A = 0 if q < 0.

This relation allows us to bind (V̂ −
x , V̂ −

y ) and (T̂−
x , T̂−

y ). Back in the time/space
domain, this leads to a relation between (v−

x , v−
y ) and (τ−

x , τ−
y ), as described in

[15].

In the thin film, the load applied on the external boundary (y = H) can be
expressed as

(τH
x , τH

y )(x, t) =
(

µ

(
∂ux

∂y
+

∂uy

∂x

)
, (2µ + λ)

∂uy

∂y
+ λ

∂ux

∂x

)
(x, y = H, t).

In the Fourier/Laplace domain, this becomes

(T̂H
x , T̂H

y )(x, t) =
(
µ

(
Ûx,y + iqÛy

)
, (2µ + λ) Ûy,y + λiqÛx

)
(x, y = H, t).

Using (9.1) and (9.5), we get

T̂H
x = 2µq2iαdeaαdΦ̂A − 2µq2iαde−aαdΦ̂B

+µq2(1 + α2
s)eaαsΨ̂A + µq2(1 + α2

s)e−aαsΨ̂B

T̂H
y =

(
(2µ + λ)α2

d − λ
)
q2eaαdΦ̂A +

(
(2µ + λ)α2

d − λ
)
q2e−aαdΦ̂B

−2µq2iαseaαsΨ̂A + 2µαsq2ie−aαsΨ̂B ,
(9.8)

with a = qH. In order to derive a relation between (v+
x , v+

y ), (τ+
x , τ+

y ) and
(τH

x , τH
y ), one would need to eliminate Φ̂A, Φ̂B , Ψ̂A and Ψ̂b in (9.6), (9.7) and

(9.8). Then one would need to perform an inverse Laplace and Fourier Trans-
form on the obtained 4-equation linear system. Using a cohesive model to link
this and the results obtained in [15] for a semi-infinite substrate then leads to
a formulation of the problem of the in-plane fracture propagation between a
thin-film and an substrate, similar to that obtained in Chapter 2.
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Appendix A

Laplace inversions

The purpose of this appendix is to explain how some computations, mainly some
inverse Laplace transforms, are performed. Since most of these computations
present some similarities, the same methodology is often used to handle them.
This methodology is described in A.2. Prior to this, we present some results
used in the rest of this Chapter. Note that, in the following sections, in order
to avoid some overwhelming notations, we use the convention

f
(√

z
)

= f
(√

z
)
H(z), (A.1)

and ∫ b

a
f(z)dz =

(∫ b

a
f(z)dz

)
H(b − a). (A.2)

A.1 Some useful results

A.1.1 Laplace inversion of e−ms

aeks+be−ks

Many the Laplace inversions that we have to perform contain some terms that
can be expressed as

F̂ (s) =
e−ms

ceks + de−ks
. (A.3)

In order to simplify the further computations, we show here the inversion of this
generic expression.

We can rewrite (A.3) as

F̂ (s) =
e−(m+k)s

c
.

1
1 + d

c e−2ks
. (A.4)

It would be convenient to transform this last equation in order to eliminate the
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denominator. Let us remember that if |z| < 1,

1
1 − z

=
∞∑

n=0

zn.

To be able to use this relation in our case, we should verify that
∣∣∣∣
d

c
e−2ks

∣∣∣∣ < 1.

Let us assume R(k) ≥ 0; this is not restrictive, since one could use k′ = −k if
its value was negative. So, if 1(s) > 0, we only need the next hypothesis,

|d| ≤ |c| .

If we assume that this condition is satisfied, we can then rewrite (A.4) as

F̂ (s) =
e−(m+k)s

c

∞∑

n=0

(
−d

c

)n

e−2nks,

or

F̂ (s) =
1
c

∞∑

n=0

(
−d

c

)n

e−((2n+1)k+m)s.

Using then the linear properties of the Laplace transform, we get

F (t) = L −1

(
e−ms

ceks + de−ks

)
=

1
c

∞∑

n=0

(
−d

c

)n

δ(t − (2n + 1)k − m). (A.5)

It is important to remember that this relation is guaranteed only if we assume
k ≥ 0, and |d| ≤ |c|.

From this result, we can directly see two important corollaries,

L −1

(
1
s

e−ms

ceks + de−ks

)
=

1
c

∞∑

n=0

(
−d

c

)n

H (t − (2n + 1)k − m) , (A.6)

and

L −1

(
s

e−ms

ceks + de−ks

)
=

1
c

∞∑

n=0

(
−d

c

)n

δ′ (t − (2n + 1)k − m) , (A.7)

where δ′ denotes the derivative of the Dirac δ-function.
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A.1.2 Integration of vδ′(v − k)
J1(

√
T 2−v2)√

T 2−v2

Since this integration appears more than once, we perform it now in order to
simplify the further computations. Let us define

I =
∫ T

0
vδ′(v − k)

J1

(√
T 2 − v2

)
√

T 2 − v2
dv.

Integrating I by part to eliminate the derivative of the Dirac δ-function, we
get

I =

[
δ(v − k)v

J1

(√
T 2 − v2

)
√

T 2 − v2

]T

0

−
∫ t

0
δ(v − k)

(
v
J1

(√
T 2 − v2

)
√

T 2 − v2

)′

dv. (A.8)

The first term of this expression can be evaluated
[
δ(v − k)v

J1

(√
T 2 − v2

)
√

T 2 − v2

]T

0

= δ(T − k)T lim
z→0

J1 (z)
z

,

and since J ′
0(z) = 1

2 , we get

[
δ(v − k)v

J1

(√
T 2 − v2

)
√

T 2 − v2

]T

0

=
k

2
δ(T − k).

We have now to compute the integral in (A.8). The derivative that appears in
its expression can be developed as

(
v
J1

(√
T 2 − v2

)
√

T 2 − v2

)′

=
J1

(√
T 2 − v2

)
√

T 2 − v2
+ v

(
J1

(√
T 2 − v2

)
√

T 2 − v2

)′

.

Since, (
J1(z)

z

)′
= −J2(z)

z
,

we get
(

v
J1

(√
T 2 − v2

)
√

T 2 − v2

)′

=
J1

(√
T 2 − v2

)
√

T 2 − v2
+ v2 J2

(√
T 2 − v2

)

T 2 − v2
.

We can thus now compute the integral in (A.8),

∫ t

0
δ(v − k)

(
v
J1

(√
T 2 − v2

)
√

T 2 − v2

)′

dv =
J1

(√
T 2 − k2

)
√

T 2 − k2
+ k2 J2

(√
T 2 − k2

)

T 2 − k2
.
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Finally, reintroducing this result in the expression of I gives

I =
∫ T

0
vδ′(v−k)

J1

(√
T 2 − v2

)
√

T 2 − v2
dv =

k

2
δ(T−k)−

J1

(√
T 2 − k2

)
√

T 2 − k2
−k2 J2

(√
T 2 − k2

)

T 2 − k2
.

(A.9)
Note that this result is true for any value of k, including k = 0.

A.1.3 Integration of H
(√

t2 − u2 − k
)
J1(u)

This integration also appears more than once in the further sections. Let us
define

I(t) =
∫ t

0
H

(√
T 2 − u2 − k

)
J1(u)du.

I(t) can be rewritten as

I(t) =
∫ √

t2−k2

0
J1(u)du.

Since J ′
0 = −J1 and J0(0) = 1, this yields

I(t) = H (t − k)
(
1 − J0

(√
t2 − k2

))
. (A.10)

A.2 Methodology for the Laplace inversions

The purpose of this section is to describe a methodology that is often used to
perform some inverse Laplace transform. As we mentioned in the introduction
of this chapter, most of the functions that we have to inverse have the same
structure. The main steps of their inversion is therefore the same.

Almost all the inversions that we have to perform can be written as

L −1
(
N̂(p)M̂(αs)

)
,

with

αs =

√

1 +
(

p

|q| cs

)2

,

and where M̂ is a function for which we know an explicit expression. On the
other hand, N̂ is either a constant or an unknown function.

We always proceed in four steps :

• first step
Computation of M(t), the inverse Laplace transform of M̂(s).
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• second step
Using the result of the first step, computation of L −1

(
M̂(

√
1 + s2)

)
. To

perform this we need one of the two expressions of the next property that
we show without demonstration.

Property 1 If
L −1 (ĝ(s)) = g(T ),

then

L −1
(
ĝ

(√
1 + s2

))
= g(T ) −

∫ T

0
g

(√
T 2 − u2

)
J1(u) du, (A.11)

where J1 denotes the Bessel function of the first kind and of order 1.
Sometimes, it is more convenient to express this in another way, with a
change of variable v =

√
T 2 − u2. It gives

L −1
(
ĝ

(√
1 + s2

))
= g(T ) −

∫ T

0
v g(v)

J1

(√
T 2 − v2

)
√

T 2 − v2
dv. (A.12)

• third step
Replacement of s by p

|q|cs
in order to replace

√
1 + s2 by αs. To perform

this, we use the next property.

Property 2 If
L −1 (ĝ(s)) = g(T ),

then
L −1 (ĝ(as)) =

T

a
g

(
1
a

)
. (A.13)

So, using the results of the second step, we know

L −1
(
M̂(αs)

)
.

• fourth step
If N̂ is not a constant, convolution of its inverse Laplace transform with
the result of the third step.

L −1
(
N̂(p)M̂(αs)

)
= L −1

(
N̂(p)

)
⊗ L −1

(
M̂(αs)

)
,

where

(f ⊗ g) (t) =
∫ t

−∞
f(t − t′)g(t′)dt′.
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A.3 Laplace inversion for the analytical solution

Our purpose is here to compute the inverse Laplace transform of

L −1

(
1

µ−αs sinh(αsa) + µ+αs cosh(αsa)

)
, (A.14)

that appears in (3.1). Note that a = |q|H ≥ 0. Since the Laplace variable p
only appears inside αs, we use the methodology described in A.2.

• first step
We begin by the inverse Laplace transform of

F̂1(s) =
1

µ−s sinh(as) + µ+s cosh(as)
. (A.15)

This expression can be rewritten as

F̂ (s) =
1

s
(

µ−+µ+

2 eas + µ−−µ+

2 e−as
) .

So, if

c =
µ− + µ+

2
, d =

µ− − µ+

2
,

since the shear module µ is non-negative, we have always |d| ≤ |c|. We
can then use (A.6) with m = 0, and get

L −1
(
F̂ (s)

)
= 2

∞∑

n=0

(µ+ − µ−)n

(µ+ + µ−)n+1 H (t − (2n + 1)a) . (A.16)

• second step
Replacing s in (A.15) by

√
1 + s2 and using (A.11) to adapt the result of

the first step, we get

L −1
(
F̂

(√
1 + s2

))
= 2

∞∑

n=0

(µ+ − µ−)n

(µ+ + µ−)n+1 In(t),

with

In(t) = H (t − (2n + 1)a) −
∫ t

0
H

(√
T 2 − u2 − (2n + 1)a

)
J1(v)dv.

Using (A.10) on this integration yields

In(t) = H (t − (2n + 1)a) J0

(√
t2 − (2n + 1)2a2

)
.

So, we have

L −1
(
F̂

(√
1 + s2

))
= 2

∞∑

n=0

(µ+ − µ−)n

(µ+ + µ−)n+1 H (t − (2n + 1)k) J0

(√
t2 − (2n + 1)2k2

)
.
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• third step
Replacing s by p

|q|cs
, and using (A.13), we get

L −1
(
F̂ (αs)

)
= 2

∞∑

n=0

qcs
(µ+ − µ−)n

(µ+ + µ−)n+1 J0

(√
(|q| cst)2 − (2n + 1)2a2

)
,

which is used to transform (3.1) into (3.2).

A.4 Laplace inversions for two-convolution ap-
proach

The purpose of this section is to perform the Laplace inversion of two terms of
(2.10)

T̂+ = −µ+ |q|α+
s tanh(aα+

s )Û++ 1
cosh(aα+

s )
T̂H .

#1 #2
(A.17)

Since the Laplace variable p appears only inside αs, we use the methodology
described in (A.2) for both terms.

A.4.1 term #1: −µ+ |q|α+
s tanh(aα+

s )Û+

• first step
Let us first compute

L −1 (s tanh(as)) = L −1 (tanh(as))′ .

If we rewrite s tanh(as) as

s tanh(as) = s
eas

eas + eas
− s

e−as

eas + eas
,

we can use (A.7) on each term, with c = d = 1, k = a and m = ∓a. This
gives

L −1 (tanh(as)) =
∞∑

n=0

(−1)nδ′ (t − 2na) −
∞∑

n=0

(−1)nδ′ (t − (2n + 2)a) .

Finally, by changing the index of the second sum, this expression can be
rewritten as

L −1 (s tanh(as)) = δ′(t) + 2
∞∑

n=0

(−1)nδ′ (t − 2na) .

• second step
Applying (A.12) to the result of the first step yields

L −1
(√

1 + s2 tanh(a
√

1 + s2)
)

= δ′(t) −
∫ t
0 vδ′(v)J1(

√
T 2−v2)√

T 2−v2 dv

+ 2
∑∞

n=0(−1)nδ′ (t − 2na)

−
∫ t
0 2

∑∞
n=0(−1)nvδ′ (v − 2na) J1(

√
T 2−v2)√

T 2−v2 dv.
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Using (A.9) to compute these integrals yields

L −1
(√

1 + s2 tanh(a
√

1 + s2)
)

= δ′(t) − C∞(t)
+2

∑∞
n=0(−1)nδ′ (t − 2na)

−2na
∑∞

n=0(−1)nδ (t − 2na)
+CH2(t),

(A.18)
where

CH2(t) = 2
∞∑

n=1

(−1)n

(
J1

(√
T 2 − 4n2a2

)
√

T 2 − 4n2a2
+ 4a2 J2

(√
T 2 − 4n2a2

)

T 2 − 4n2a2

)
,

and
C∞(T ) =

J1(T )
T

.

• third step
Replacing s by p

|q|c+
s

in (A.18) yields

L −1 (α+
s tanh(aα+

s )) = |q| c+
s δ′(|q| c+

s t) − C∞(|q| c+
s t)

+2
∑∞

n=0(−1)n |q| c+
s δ′ (t − 2na)

−2
∑∞

n=0(−1)nna |q| c+
s δ (t − 2na)

+CH2(|q| c+
s t).

• fourth step
Finally we perform the convolution, and obtain

L −1
(
−µ+ |q|α+

s tanh(aα+
s )Û+

)
=

− µ+

c+
s

U̇+(t)

− 2µ+

c+
s

∑∞
n=0(−1)nU̇+

(
t − 2n H

c+
s

)

+ 2µ+ |q|
∑∞

n=1(−1)nnaU+
(
t − 2n H

c+
s

)

− µ |q|
∫ t
0 {C∞(|q| c+

s t′) + CH2(|q| c+
s t′)}U+(t − t′) |q| c+

s dt′

A.4.2 term #2 1
cosh(aα+

s )
T̂H

• first step
Let us start by the inversion of

1
cosh as

=
2

eas + e−as
.

Using (A.5) with c = d = 1, m = 0 and k = a, we get

L −1

(
1

cosh as

)
=

∞∑

n=0

(−1)nδ(t − (2n + 1)a).
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• second step
Applying (A.12) to the previous result yields

L −1

(
1

cosh
(
a
√

1 + s2
)
)

= 2
∞∑

n=0

(−1)nδ (t − (2n + 1)a) − 2
∞∑

n=0

(−1)nIn,

(A.19)
where

In =
∫ t

0
vδ (v − (2n + 1)a)

J1

(√
T 2 − v2

)
√

T 2 − v2
dv.

Computing this integral, we can rewrite (A.19) as

L −1

(
1

cosh
(√

1 + s2
)
)

= 2
∞∑

n=0

(−1)nδ (t − (2n + 1)a) − E2(t)

where

E2(T ) = 2
∞∑

n=0

(−1)n(2n + 1)a
J1

(√
T 2 − (2n + 1)2a2

)

√
T 2 − (2n + 1)2a2

. (A.20)

• third step
Replacing s by p

|q|c+
s

, and using (A.13), we get

L −1

(
1

cosh(aα+
s )

)
= 2 |q| c+

s

∑∞
n=0(−1)nδ (|q| c+

s t − (2n + 1)a)

− 2 |q| c+
s E2 (|q| c+

s t) .

• fourth step
Performing the convolution with TH yields

L −1
(

T̂ H

cosh aα+
s

)
= 2

∑∞
n=0(−1)nTH

(
t − (2n + 1) H

c+
s

)

−
∫ t
0 E2 (|q| c+

s t′) TH (t − t′) |q| c+
s dt′.

A.5 Laplace inversion for three-convolution ap-
proach

The purpose of this section is to perform the Laplace inversion of (2.13). As in
the previous section, we work term by term,

T̂++ e−2α+
s aT̂+ = −µ+ |q|α+

s e−2α+
s a+ +µ+ |q|α+

s Û++ 2e−α+
s aT̂H .

#1 #2 #3 #4
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A.5.1 term #1 e−2α+
s aT̂+

Since the Laplace variable p appears only inside αs, we can use the methodology
described in A.2.

• first step
Let us remind that

L −1
(
e−2as

)
= δ(T − 2a).

• second step
So, by (A.12), we have

L −1
(
e−2a

√
1+s2

)
= δ(T − 2a) −

∫ T

0
vδ(v − 2a)

J1

(√
T 2 − v2

)
√

T 2 − v2
dv.

Computing this integral yields

L −1
(
e−2a

√
1+s2

)
= δ (T − 2a) − D3(T ),

where D3 is defined by

D3(T ) = 2a
J1

(√
T 2 − 4a2

)
√

T 2 − 4a2
.

• third step
Replacing s by p

|q|c+
s

and using (A.13), we can get

L −1
(
e−2aαs

)
= |q| c+

s δ(|q| c+
s t) − D3

(
|q| c+

s t
)
|q| c+

s . (A.21)

• fourth step
The convolution of (A.21) with T gives

L −1
(
e−2aαs T̂

)
= T

(
t − 2

H

cs

)
−

∫ t

0
D3 (|q| cst

′) T (t − t′) |q| csdt′.

(A.22)

A.5.2 term #2 µ+ |q|αse−2aαsÛ+

Once more, we are going to use the methodology described in A.2.

• first step
Let us remind that

L −1
(
se−2as

)
= δ′(T − 2a).
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• second step
Applying (A.12) to the results of the first step, we get

L −1
(√

1 + s2e−2a
√

1+s2
)

= δ′(T − 2a) −
∫ t

0
vδ′(v)

J1

(√
T 2 − v2

)
√

T 2 − v2
dv.

To compute the integral appearing in this expression, we can use (A.9)
with k = 2a. This yields

L −1
(√

1 + s2e−2a
√

1+s2
)

= δ′(T − 2a) − aδ(T − 2a) + CH3(T ),

where CH3 is defined by

CH3(T ) =
J1

√
T 2 − 4a2

√
T 2 − 4a2

+ 4a2

√
T 2 − 4a2

T 2 − 4a2
.

• third step
Replacing s by p

|q|c+
s

and using (A.13), we get

L −1
(
e−2aα+

s

)
= |q| c+

s δ′ (|q| c+
s t − 2a) − a |q| c+

s δ (|q| c+
s t − 2a)

+CH3 (|q| c+
s t) |q| c+

s .
(A.23)

• fourth step
The laplace transform of the term #2 can now be computed convoluting
U with (A.23). This yields

L −1
(
µ+ |q|αse−2aαsÛ+

)
= µ+

c+
s

U̇
(
t − 2H

c+
s

)
− µ+ |q| aU

(
t − 2H

c+
s

)

+µ+ |q|
∫ t

2H

c+s

(CH3 (|q| c+
s t′)) U(t − t′) |q| c+

s dt′.

A.5.3 term #3 µ+ |q|α+
s Û+

This inversion is performed exactly as that performed in 2.2: Extracting the
velocity of this expression gives

µ+ |q|α+
s Û+ =

µ+

c+
s

pÛ+ + µ+ |q|
(

α+
s − p

|q| c+
s

)
Û+.

Since
L −1

(√
1 + s2 − s

)
=

J1(T )
T

.= C∞(T ),

we get

L −1
(
µ+ |q|α+

s Û+
)

=
µ+

c+
s

U̇(t) + µ+ |q|
∫ t

0
C∞

(
|q| c+

s t′
)
U(t − t′) |q| csdt′.

Note that we could have performed this inversion following our four steps
scheme.
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A.5.4 term #4 2e−α+
s aT̂H

We can rewrite this inversion as

L −1
(
2e−α+

s aT̂H
)

= 2L −1
(
e−α+

s 2 a
2 T̂H

)
,

which is exactly the expression of the term #1. Using then (A.22), we get

L −1
(
2e−α+

s aT̂H
)

= 2TH

(
t − H

cs

)
−

∫ t

H

c+s

E3

(
|q| c+

s t′
)
TH(t − t′) |q| c+

s dt′,

where the convolution kernel E3 is defined by

E3(T ) .= 2a
J1

(√
T 2 − a2

)
√

T 2 − a2

A.6 Laplace inversion for the external boundary

The purpose of this section is to perform the Laplace inversion of (5.1). We
work term by term,

|q|α+
s ÛH+ |q|α+

s ÛHe−2aα+
s = 2qα+

s Û+e−aα+
s + 1

µ+ T̂H− 1
µ+ T̂He−2aα+

s .
#1 #2 #3 #4

A.6.1 term #1 |q|α+
s ÛH

This term is totally similar to A.5.3. Reusing this results gives us

L −1
(
qα+

s ÛH
)

=
U̇H(t)

c+
s

+ |q| +
∫ t

0
C∞

(
|q| c+

s t′
)
UH(t − t′) |q| c+

s dt′

A.6.2 term #2 |q|α+
s ÛHe−2aα+

s

This term is totally similar to A.5.2. We have thus

L −1
(
|q|α+

s ÛHe−2aα+
s

)
= 1

c+
s

U̇H
(
t − 2H

c+
s

)
− |q| aUH

(
t − 2H

c+
s

)

+ |q|
∫ t

2H

c+s

(CH3 (|q| c+
s t′)) UH(t − t′) |q| c+

s dt′.

A.6.3 term #3 2qα+
s Û+e−aα+

s

This term is similar to A.5.2. We can thus use this result with a
2 instead of a,

and this yields

L −1
(
2 |q|αsÛ+e−aαs

)
= 2

c+
s

U̇+
(
t − H

c+
s

)
− |q| aUH

(
t − H

c+
s

)

+2 |q|
∫ t

H

c+s

(C ′
H3 (|q| c+

s t′)) UH(t − t′) |q| c+
s dt′,
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where the convolution kernel C ′
H3 is defined by

C ′
H3(T ) =

J1

√
T 2 − a2

√
T 2 − a2

+ a2

√
T 2 − a2

T 2 − a2
.

A.6.4 term #4 1
µ+ T̂He−2aα+

s

This term is similar to A.5.1. So, we have

L −1

(
1

µ+
e−2aαs T̂H

)
=

1
µ+

TH

(
t − 2

H

c+
s

)
− 1

µ+

∫ t

0
D3

(
|q| c+

s t′
)
TH (t − t′) |q| c+

s dt′.

(A.24)

A.7 Laplace inversion for the analytical solution
for the external boundary

Our purpose is here to compute the inverse Laplace transform of

pÛH cosh(aαs) = pU +
τH
0

µ+qαs
sinh(aαs),

with

pÛ =
τH
0

qµ−αs sinh(αsa) + qµ+αs cosh(αsa)
.

This can be expressed as

pÛH =
τH
0

qµ+αs cosh(aαs)

(
sinh(aαs) +

1
µ−

µ+ cosh(aαs) + sinh(aαs)

)
,

or, since sinh2(X) + 1 = cosh2(X),

pÛH =
τH
0

qµ+αs




µ−

µ+ sinh(aαs) + cosh(aαs)
µ−

µ+ cosh(aαs) + sinh(aαs)



 .

The inversion of the left member of this relation is trivial L −1
(
pÛH

)
= U̇H .

In the right member, the Laplace variable p only appears in αs. We can thus
use the methodology described in A.2.

• firth step
We can rewrite

L −1
(
ŨH

1 (s)
)

= L −1



1
s




µ−

µ+ sinh(as) + cosh(as)
µ−

µ+ cosh(as) + sinh(as)
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as

L −1
(
ŨH

1 (s)
)

= L −1

(
1
s

eas

eas − ∆µe−as

)
+ ∆µL −1

(
1
s

eas

eas − ∆µe−as

)
,

(A.25)
where

∆µ =
(

µ+ − µ−

µ+ + µ−

)
.

Using (A.6) on these two inversions leads to

L −1
(
ŨH

1 (s)
)

= H(t)+
∞∑

n=1

∆n
µH (t − 2na)+∆n

µ

∞∑

n=0

∆n
µH (t − 2(n + 1)a) ,

(A.26)
or, changing the index of the second sum,

ŨH
1 = H(t) + 2

∞∑

n=1

∆n
µH (t − 2na) . (A.27)

• second step
Applying (A.11) to the results of the first step yields

L −1
(
ŨH

1

(√
1 + s2

))
= H(t) + 2

∑∞
n=1 ∆n

µH (t − 2na)

−
∫ t
0 H

(√
t2 − u2

)
J1(u)du

− 2
∑∞

n=1 ∆n
µ

∫ t
0 H

(√
t2 − u2 − 2na

)
J1(u)du.
(A.28)

Using (A.10) to perform the integrations, this becomes

L −1
(
ŨH

1

(√
1 + s2

))
= J0(t) + 2

∞∑

n=1

∆n
µH (t − 2na) J0

(√
t2 − 4n2a2

)
.

(A.29)

• third step
Replacing s by p

qcs
, and using (A.13) yields

L −1

(
ŨH

1

(√
1 +

(
p

qcs

)2
))

= qcsJ0(qcst)

+ 2
∑∞

n=1 ∆n
µH (t − 2na) qcsJ0

(√
(qcst)

2 − 4n2a2

)
,

(A.30)
and finally

U̇H(t) =
τH
0 cs

µ+

(
J0 (qcst) + 2

∞∑

n=1

(∆µ)nJ0

(√
(qcst)

2 − 4na2

)
H (qcst − 2na)

)
.

(A.31)
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Appendix B

Kernel asymptotic analysis

The purpose of this appendix is to analyze the asymptotic behavior of some
kernels involved in 2.14, in order to understand the origin off the instabilities
and to select an appropriate filter (see Chapter 4).

B.1 asymptotic behavior and convergence of terms
#1 and #3

In this section, we show that, for a fixed function Ũ , and z > 2,

I = lim
a→∞

∫ z

2

J2

(
a
√

z′2 − 4
)

z2 − 4
4a2Ũ(z − z′)dz′ = a2Ũ(z − 2). (B.1)

Our purpose is not here to give a complete and rigorous demonstration, but to
convince the reader that this relation is true. Note that this result was con-
firmed numerically.

Let us rewrite the first term of (B.1) using x =
√

z2 − 4,

I = lim
a→∞

∫ x(z)

0

J2(ax′)
x′
√

x′2 + 4
4a2U(x − x′)dx′,

where U (x(z)) = Ũ(z). Since J2 decays to 0, the inner part of this integral only
takes significant values on an interval [0,M(a)] which size decreases to 0 when
a → ∞. We can thus assume that for large values of a,

∫ x(z)

0

J2(ax′)
x′
√

x′2 + 4
4a2U(x − x′)dx′ ≈

∫ M(a)

0

J2(ax′)
x′
√

x′2 + 4
4a2U(x − x′)dx′,

where lima→∞M(a) = 0. Since U is supposed fixed (i.e. independent of a), we
can assume that for large values of a, its value is constant on [x − M(a), x],

I = lim
a→∞

∫ M(a)

0

J2(ax′)
x′
√

x′2 + 4
4a2U(x)dx′.
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Since M(a) → 0,
√

x′2 + 4 ≈ 2 on [0,M(a)], we have thus

I = lim
a→∞

∫ M(a)

0

J2(ax′)
x′ 2a2U(x)dx′.

The change of variable y = ax leads to

I = 2a2U(x) lim
a→∞

∫ aM(a)

0

J2(y′)
y′ dy′.

As mentioned before, J2(y
′)

y′ only takes significant values on [0, aM(a)], we can
thus rewrite this last relation as

I = 2a2U(x) lim
a→∞

∫ aM(a)

0

J2(y′)
y′ dy′ ≈ 2a2U(x) lim

a→∞

∫ ∞

0

J2(y′)
y′ dy′.

Finally, using ∫ ∞

0

J2(y)
y

dy =
1
2
,

we get
I = aU(x) = aŨ(z − 2),

which was the relation we wanted to show.

B.2 asymptotic behavior of term #2

The purpose of this section is to show that for a fixed function Ũ , and z > 2,

I = lim
a→∞

∫ z

2

J1

(
a
√

z′2 − 4
)

√
z2 − 4

aŨ(z − z′)dz′ = Ũ(z − 2). (B.2)

As in Section B.1, we do not intend to give here a complete and rigorous proof,
but just to convince the reader that this relation is true. Note that this result
was confirmed numerically.

Let us rewrite the first term of (B.2) using x =
√

z2 − 4,

I = lim
a→∞

∫ x(z)

0

J1(ax′)√
x′2 + 4

aU(x − x′)dx′,

where U (x(z)) = Ũ(z). Since J1 decays to 0, the inner part of this integral only
takes significant values on an interval [0,M(a)], which size decay to 0 when
a → ∞. We can thus assume that for large values of a,

∫ x(z)

0

J1(ax′)√
x′2 + 4

aU(x − x′)dx′ ≈
∫ M(a)

0

J1(ax′)√
x′2 + 4

aU(x − x′)dx′,
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where lima→∞M(a) = 0. Since U is supposed fixed (i.e. independent of a), we
can assume that for large values of a, its value is constant on [x − M(a), x],

I = lim
a→∞

∫ M(a)

0

J1(ax′)√
x′2 + 4

aU(x)dx′.

For large values of a, M(a) → 0. On [0,M(a)], we have thus
√

x′2 + 4 ≈ 2 , and

I =
1
2

lim
a→∞

∫ M(a)

0
J1(ax′)aU(x)dx′.

As mentioned before, J2(ax) only takes significant values on [0,M(a)]. We can
thus rewrite this last relation as

I =
1
2
U(x) lim

a→∞

∫ ∞

0
J1(ax′)adx′ =

1
2
U(x) =

1
2
Ũ(z − 2).
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Appendix C

Analytic solution for
constant loading and a
perfect interface

The purpose of this appendix is to derive an analytic expression for the evo-
lution of the traction stress τ and the velocity of the interface in the case of
a perfect interface and an uniform loading. The problems are thus reduced to
1-D problems that can be formulated using recurrence equations. Section C.1
treats the case of a shear stress applied along the film surface, while Section C.2
treats the case of a shear wave coming from the substrate.

C.1 Shear stress applied along the surface of the
thin film

As said before, we consider here the evolution of the traction stress and the
velocity in the case of a perfect interface between the substrate and a thin film
on surface of which a shear stress τH

0 H(t) is applied. Since nothing depends on
x, (2.8) and (2.14) become






µ+

c+
s

u̇+(t) + τ+(t) = µ+

c+
s

u̇+
(
t − 2 H

c+
s

)
− τ+

(
t − 2 H

c+
s

)
+ 2τH

(
t − H

c+
s

)

µ−

c−s
u̇−(t) − τ−(t) = 0.

(C.1)
Using the continuity conditions of the perfect interface u̇+ = u̇− = u̇, τ+ =
τ− = τ , and assuming t ≥ 0, we can reformulate (C.1) as a recurrence,

{
µ+

c+
s

u̇(n + 1) + τ(n + 1) = µ+

c+
s

u̇ (n) − τ (n) + 2τH
0

µ−

c−s
u̇(n) − τ(n) = 0,

(C.2)
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where n = ( c+
s t+H
2H ) ≥ 0 represents the number of reflections of the shear wave

off the interface. From this discrete system, we can isolate two independent
discrete equations,






(
µ+

c+
s

+ µ−

c−s

)
u̇(n + 1) =

(
µ+

c+
s
− µ−

c−s

)
u̇(n) + 2τH

0(
µ+

c+
s

+ µ−

c−s

)
τ(n + 1) =

(
µ+

c+
s
− µ−

c−s

)
τ(n) + 2µ−

c−s
τH
0

The general solution for the traction stress is the sum of the homogenous solution
and a particular solution (τ = τH),

τ(n) = τH + Akn,

where A has to be determined by an initial condition, and k is defined by

k =
µ+

µ− − c+
s

c−s
µ+

µ− + c+
s

c−s

. (C.3)

Since τ(0) = 0, we have
τ(n) = τH

0 (1 − kn) .

The velocity is obtained by a similar computation, or using the second equation
of (C.2),

u̇(n) =
c−s
µ− τH

0 (1 − kn) .

C.2 Shear wave coming from the substrate

We consider here the evolution of the traction stress and the velocity in the case
of a perfect interface. Unlike in section C.1, there is no loading on the thin film,
but a plane shear wave of amplitude τB

0 is coming from the substrate. We use
thus the modified formulation explained in section 7.3. Since nothing depends
on x, (2.14) and (7.3) give us






µ+

c+
s

u̇+(t) + τ+(t) = µ+

c+
s

u̇+
(
t − 2 H

c+
s

)
− τ+

(
t − 2 H

c+
s

)

µ−

c−s
u̇−(t) − τ−(t) = −2τB

0 H(t).
(C.4)

Using the continuity conditions of the perfect interface u̇+ = u̇− = u̇, τ+ =
τ− = τ and eliminating the velocity yields the recurrence relation

2
µ+

c+
s

τB
0 (H(n + 1) − H(n)) = τ(n+1)

(
µ+

c+
s

+
µ−

c−s

)
−τ(n)

(
µ+

c+
s

− µ−

c−s

)
. (C.5)

where n = ( c+
s t

2H ) represents the numbers of reflection of the shear wave off the
interface. Note that, unlike in section C.1, we have to solve this equation for
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n ≥ −1 since the initial condition is known for n = −1. The homogeneous
solution of (C.5) is

τ(n) = A




µ+

c+
s
− µ−

c−s
µ+

c+
s

+ µ−

c−s




n+1

.

One can verify that a particular solution to C.5 is given by

τ(n) = −
2τB

0
µ+

c+s
µ+

c+s
−µ−

c−s

if n = −1

0 else.

The initial condition τ(−1) = 0 becomes thus

A −
2τB

0
µ+

c+
s

µ+

c+
s
− µ−

c−s

= 0.

So reintroducing the value of A, we get the expression of the interface traction
stress for n ≥ 0

τ(n) = 2τB
0

1

1 + µ−c+
s

µ+c−s

kn,

where k is defined by (C.3). Performing a similar resolution for the velocity or
reintroducing this solution in the second equation of (C.4), one gets

u̇(n) = −2τB
0

c−s
µ−



1 +
1

1 + µ−c+
s

µ+c−s

kn



 .
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