Community detection in complex networks

Maguy Trefois Jean-Charles Delvenne

January 2012
Outline

Network: definition
Outline

Network: definition

Why networks?
Outline

Network: definition

Why networks?

Community detection
Outline

Network: definition

Why networks?

Community detection
 Some basic notions
Outline

Network: definition

Why networks?

Community detection
 Some basic notions
 Spectral partitioning
Outline

Network : definition

Why networks ?

Community detection
 Some basic notions
 Spectral partitioning
 Modularity maximization
Outline

Network: definition

Why networks?

Community detection
 Some basic notions
 Spectral partitioning
 Modularity maximization

Detecting groups of vertices with the same behavior...
Network: definition

Why networks?

Community detection
 Some basic notions
 Spectral partitioning
 Modularity maximization

Detecting groups of vertices with the same behavior...
A network (or graph) is a set of points joined by lines.

Example

A point is called a vertex.
A line is called an edge.
Network: definition

Why networks?

Community detection
 Some basic notions
 Spectral partitioning
 Modularity maximization

Detecting groups of vertices with the same behavior ...
Why networks?

Networks allow to model systems with interacting agents.

The structure of the network is fundamental for the understanding of the underlying system.
Examples

- *Technological networks*
 - *Internet*

- *Telephone networks*
- *Transportation networks*
• Social networks
 - Friendship network between members of a club

And so many others ...
Network : definition

Why networks ?

Community detection
 Some basic notions
 Spectral partitioning
 Modularity maximization

Detecting groups of vertices with the same behavior ...
Community detection:

Partitioning the vertices of the network into groups, called communities, with many edges within the communities and few links between them.

Utility:

Revealing the structure and the organisation of the network.
Examples

- Network of coauthorship in a university department

• Friendship network at a US high school

Network: definition

Why networks?

Community detection
 Some basic notions
 Spectral partitioning
 Modularity maximization

Detecting groups of vertices with the same behavior ...
Suppose that the network has N vertices numbered from 1 to N.

The network can be mathematically represented thanks to its adjacency matrix $A \in \mathbb{R}^{N \times N}$:

$$A_{ij} = \begin{cases}
1 & \text{if vertices } i \text{ and } j \text{ are connected} \\
0 & \text{otherwise}
\end{cases}$$
Suppose that the network has \(N \) vertices numbered from 1 to \(N \).

The network can be mathematically represented thanks to its adjacency matrix \(A \in \mathbb{R}^{N \times N} \):

\[
A_{ij} = \begin{cases}
1 & \text{if vertices } i \text{ and } j \text{ are connected} \\
0 & \text{otherwise}
\end{cases}
\]

The degree \(k_i \) of vertex \(i \) is the number of edges connected to it, that is:

\[
k_i = \sum_{j=1}^{N} A_{ij}
\]
The structure of the network can also be mathematically represented thanks to the Laplacian, strongly related to the adjacency matrix.

Denote D the diagonal matrix with the degrees of the vertices on its diagonal, that is:

$$D = \begin{pmatrix}
 k_1 & 0 & 0 & \ldots & 0 \\
 0 & k_2 & 0 & \ldots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \ldots & k_N
\end{pmatrix}$$

The Laplacian of the network is then the matrix: $L := D - A$, where A is the adjacency matrix of the network.
Network: definition

Why networks?

Community detection

Some basic notions
Spectral partitioning
Modularity maximization

Detecting groups of vertices with the same behavior ...
Goal: partitioning the network into two communities \(C_1 \) and \(C_2 \).

The cut function counts the number of edges between communities \(C_1 \) and \(C_2 \), that is:

\[
R = \sum_{i \in C_1, j \in C_2} A_{ij}.
\]
Goal: partitioning the network into two communities C_1 and C_2.

The cut function counts the number of edges between communities C_1 and C_2, that is:

$$ R = \sum_{i \in C_1, j \in C_2} A_{ij}. $$

\Rightarrow We have to find a partition which minimizes R.

Spectral partitioning method of Fiedler:

Define the following vector $s \in \mathbb{R}^{N \times 1}$:

$$s_i = \begin{cases}
+1 & \text{if vertex } i \in C_1 \\
-1 & \text{if vertex } i \in C_2
\end{cases}$$

Then,

$$R = \frac{1}{4} s^T L s,$$

where L is the Laplacian of the network to partition.
Denote $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_N$ the spectrum of L.

Let v_2 be the eigenvector related to eigenvalue λ_2.

The vector s given by Fiedler’s method is:

$$s_i = \begin{cases} +1 & \text{if } [v_2]_i > 0 \\ -1 & \text{if } [v_2]_i < 0 \end{cases}$$

If one entry i of v_2 is zero, then s_i can take equivalently value $+1$ or -1.
Network : definition

Why networks ?

Community detection
- Some basic notions
- Spectral partitioning
 - Modularity maximization

Detecting groups of vertices with the same behavior ...
Configuration model :

In this model of random graph:
- the number N of vertices is fixed
- the degree sequence $[k_1, \ldots, k_N]$ is given.

As a consequence, the number m of edges is fixed. Indeed,

$$m = \frac{1}{2} \sum_{i=1}^{N} k_i.$$

Let us place randomly the edges in the graph.

The expected number of edges between vertices i and j is:

$$\frac{k_i k_j}{2m}.$$
The modularity function compares the fraction of edges between two vertices in a same community and the expected fraction of edges (given the degree sequence), that is:

\[Q = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j), \]

where:
- \(m \) is the number of edges in the network
- \(c_i \) is the community index of vertex \(i \)
- \(\delta \) is the Kronecker symbol.

\[\Rightarrow \text{We have to find a partition which maximizes } Q. \]

There exist several methods. The fastest one is the Louvain method.
Network: definition

Why networks?

Community detection
 Some basic notions
 Spectral partitioning
 Modularity maximization

Detecting groups of vertices with the same behavior ...
We would like to detect groups of vertices with the same behavior or of the same type.

Example

A Movie-Actor network.
Actual work:

1. How to define the behavior of a vertex?
2. Developing algorithms to detect such groups of vertices.
Thank you for your attention!