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CENTRAL EXTENSIONS OF PREORDERED GROUPS

by Marino Gran & Aline Michel

Abstract. — We prove that the category of preordered groups contains two full
reflective subcategories that give rise to some interesting Galois theories. The first one
is the category of so-called commutative objects, which are precisely the preordered
groups whose group law is commutative. The second one is the category of abelian
objects, which turns out to be the category of monomorphisms in the category of
abelian groups. We give a precise description of the reflector to this subcategory and
we prove that it induces an admissible Galois structure and then a natural notion of
categorical central extension. We then characterize the central extensions of preordered
groups in purely algebraic terms; these are shown to be the central extensions of groups
having the additional property that their restriction to positive cones is a special
Schreier surjection of monoids.
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660 M. GRAN & A. MICHEL

Résumé (Extensions centrales de groupes préordonnés). — Nous prouvons que la
catégorie des groupes préordonnés contient deux sous-catégories pleines réflexives qui
donnent lieu à certaines théories de Galois intéressantes. La première est la catégorie
des objets commutatifs, qui sont précisément les groupes préordonnés dont la loi de
groupe est commutative. La seconde est la catégorie des objets abéliens, qui s’avère être
la catégorie des monomorphismes dans la catégorie des groupes abéliens. Nous donnons
une description précise du réflecteur vers cette sous-catégorie, et nous prouvons qu’il
induit une structure galoisienne admissible et donc une notion naturelle d’extension
centrale catégorique. Nous caractérisons ensuite les extensions centrales de groupes
préordonnés en termes purement algébriques : on montre qu’elles sont données par les
extensions centrales de groupes ayant la propriété additionnelle que leur restriction
aux cônes positifs est une surjection spéciale de Schreier de monoïdes.

Introduction

A preordered group (G,≤) is a group G = (G,+, 0) endowed with a preorder
relation ≤ that is compatible with the addition + of the group G, in the sense
that, if a ≤ c and b ≤ d, then a+b ≤ c+d (for a, b, c, d ∈ G). Preordered groups
and monotone group homomorphisms form a category, denoted by PreOrdGrp.
This category is actually isomorphic to another category, whose objects are
given by pairs (G,PG), where G is a group and PG a submonoid of G closed
under conjugation in G. This submonoid PG is usually called the positive cone
of G, and an object (G,PG) can be depicted as

PG G,

where the arrow represents the inclusion of PG in G. An arrow between two
such objects (G,PG) and (H,PH) is given by a pair (f, f̄) : (G,PG)→ (H,PH)
of monoid morphisms making the diagram

(1)
PG PH

G H

f̄

f

commute, so that f : G → H is a group homomorphism that “restricts” to
the positive cones, in the sense that f(PG) ⊆ PH . It is this second equiva-
lent definition of the category PreOrdGrp of preordered groups that we shall
use throughout this article. As shown in [4] the category PreOrdGrp is both
complete and cocomplete and is a normal category in the sense of [14], which
is a pointed regular category where every regular epimorphism is a normal
epimorphism (i.e. a cokernel).

In this article, we prove that the lattice of normal subobjects on any pre-
ordered group (G,PG) is modular (Proposition 2.5), and this implies that any
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CENTRAL EXTENSIONS OF PREORDERED GROUPS 661

reflective subcategory of PreOrdGrp that is also closed in it under subobjects
and regular quotients is admissible from the point of view of categorical Galois
theory [7] (see Proposition 2.3). In particular, the full subcategory PreOrdAb of
preordered abelian groups satisfies this property, giving rise to the adjunction

(2) PreOrdGrp ⊥ PreOrdAb,
C

V

where V is the inclusion functor, and its left adjoint C sends a preordered group
(G,PG) to the preordered abelian group (G/[G,G], ηG(PG)), where ηG : G �
G/[G,G] is the quotient ofG by its derived subgroup [G,G]. Preordered abelian
groups turn out to be precisely the commutative objects (in the sense of [2])
of the category PreOrdGrp. A characterization of the normal extensions of
preordered groups with respect to this adjunction is given in Theorem 2.9; these
are precisely the normal epimorphisms (f, f̄) : (G,PG) (H,PH) such

that f : G H is a central extension of groups and, moreover, a−b+c ∈
PG whenever a, b, c ∈ PG are such that ηG(a) = ηG(b) and f(b) = f(c).

We then turn our attention to the composite adjunction

PreOrdGrp ⊥ PreOrdAb ⊥ Mono(Ab),
C

V

A

W

where Mono(Ab) is the category of monomorphisms in the category Ab of
abelian groups, W is the inclusion functor and A its left adjoint (described in
detail in Section 3). We prove that Mono(Ab) is the category of abelian objects
in PreOrdGrp (Corollary 3.8), and we characterize the normal epimorphisms

(3)
PG PH

G H

f̄

f

in PreOrdGrp (i.e. both f and f̄ are surjective) that are central extensions in
the sense of categorical Galois theory [10] for this composite adjunction. By
using the results established in [15] we show in Theorem 6.3 that these are
characterized by the fact that the surjective morphism f is a central extension
of groups and f̄ a special homogeneous surjection (or, equivalently, a special
Schreier surjection) in the sense of [3]. This result opens the way to the possi-
bility of studying the non-abelian homology of preordered groups by using the
approach adopted in [5] (which is itself based on the one in [9]), which we leave
for future work.
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662 M. GRAN & A. MICHEL

1. Categorical Galois structures and central extensions

We first recall some definitions and results of categorical Galois theory that
will be needed for our work. For this section, we mainly follow [7, 8, 10].

Definition 1.1. — A Galois structure is a system Γ = (C ,F , F, U,E ,Z ) in
which

• C ⊥ F
F

U

is an adjunction, with unit η and counit ε;

• E and Z are classes of morphisms in C and F , respectively,
such that
• C and F admit all pullbacks along morphisms from E and Z , respec-

tively;
• E and Z are closed under composition, contain all isomorphisms and
are pullback-stable;

• F (E ) ⊆ Z ;
• U(Z ) ⊆ E .

Let Γ = (C ,F , F, U,E ,Z ) be a Galois structure. For any object B in C ,
let E (B) denote the full subcategory of the slice category C ↓ B determined
by the morphisms A B

f in the class E . Objects in this subcategory are
called extensions of B and are denoted by (A, f). Let p : E → B be any arrow
in C . Then p∗ : E (B) → E (E) is the change-of-base functor associating, with
any object f : A → B in E (B), the object p∗(f) = π1 : E ×B A → E as in the
following pullback diagram:

E ×B A A

E B.

π2

π1 f

p

It is well known that a Galois structure Γ = (C ,F , F, U,E ,Z ) induces, for
any object B ∈ C , an adjunction between the categories of extensions as in the
diagram

(4) E (B) ⊥ Z (F (B))
FB

UB

with unit and counit denoted by ηB and εB , respectively. The left adjoint
FB : E (B) → Z (F (B)) is defined, for any (A, f) ∈ E (B), by FB(A, f) =
(F (A), F (f))(∈ Z (F (B))), while the right adjoint UB : Z (F (B)) → E (B)
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CENTRAL EXTENSIONS OF PREORDERED GROUPS 663

sends any (X,φ) ∈ Z (F (B)) to the pullback η∗B(U(φ)) of U(φ) along ηB :

B ×UF (B) U(X) U(X)

B UF (B).

η∗B(U(φ)) U(φ)

ηB

Definition 1.2. — A Galois structure Γ = (C ,F , F, U,E ,Z ) is admissible
when, for any B ∈ C , the counit morphism εB of the adjunction (4) is an
isomorphism.

There is an equivalent way to define the admissibility of a Galois structure
Γ = (C ,F , F, U,E ,Z ), which corresponds to the equivalence (1)⇔ (2) in the
following proposition. Under an additional condition on the Galois structure,
we also obtain the equivalence with (3). This extra condition is that the counit
ε of the adjunction F a U is an isomorphism. In this paper, we shall always
be in such a situation, so that it will be possible to use this last equivalent
definition of the admissibility.

Proposition 1.3. — Let Γ = (C ,F , F, U,E ,Z ) be a Galois structure such
that the counit ε of the adjunction F a U is an isomorphism. Then, the
following conditions are equivalent:

(1) Γ is admissible;
(2) for any B ∈ C , the functor UB : Z (F (B))→ E (B) is fully faithful;
(3) F preserves all pullbacks of the form

B ×UF (B) U(X) U(X)

B UF (B)

π2

π1 U(φ)

ηB

where φ ∈ Z .

From now on, we assume that an admissible Galois structure Γ =
(C ,F , F, U,E ,Z ) as in Proposition 1.3 has been fixed. Let us then recall
the notions of (Γ-)trivial, (Γ-)central and (Γ-)normal extensions.

Definition 1.4. — A morphism f : A → B in E is a (Γ-)trivial extension
when the square

A UF (A)

B UF (B)

ηA

f UF (f)

ηB

is a pullback. Equivalently, f : A → B in E is a (Γ-)trivial extension when f
lies in the image of the functor UB : Z (F (B))→ E (B).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



664 M. GRAN & A. MICHEL

Remark that the equivalence in the above definition follows directly from
the admissibility of the Galois structure Γ.

By a monadic extension we mean a morphism p : E → B in E that is also
an effective descent morphism (see [11, 12], for instance).

Definition 1.5. — A morphism f : A → B in E is a (Γ-)central extension
when there exists a monadic extension p : E → B such that p∗(f) : E×BA→ E
is a (Γ-)trivial extension, that is, the following diagram

E ×B A UF (E ×B A)

E UF (E)

ηE×B A

p∗(f)=π1 UF (π1)

ηE

is a pullback, where π1 is the first projection in the pullback

E ×B A A

E B.

π2

p∗(f)=π1 f

p

Definition 1.6. — An arrow f : A→ B in E is a (Γ-)normal extension when
f is a monadic extension, and f∗(f) is a (Γ-)trivial extension.

Clearly, any trivial extension is central and any normal extension is central.
The admissibility of the Galois structure Γ also guarantees that any trivial
extension is normal.

2. The reflector C : PreOrdGrp → PreOrdAb and its induced admissible
Galois structure

The thorough study of the properties of the category PreOrdGrp carried out
in [4] provides in particular a description of the limits and the colimits of this
category that will be needed for our work. We briefly recall these constructions
for the reader’s convenience.

First, the product of two preordered groups (G,PG) and (H,PH) is given
by the preordered group (G×H,PG×PH). Then the equalizer of two parallel
arrows

(5) (G,PG) (H,PH)
(f,f̄)

(g,ḡ)

is given by ((E,PE), (e, ē)), where (E, e) is the equalizer of f and g in the
category Grp of groups and PE = E ∩ PG, that is, the following square is a
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pullback in Mon:

PE PG

E G.

ē

e

It is not difficult to see that this is equivalent to saying that (E, e) is the
equalizer of f and g in Grp and (PE , ē) the equalizer of f̄ and ḡ in Mon.
As a consequence, the pullback of two morphisms (f, f̄) : (G,PG) → (H,PH)
and (g, ḡ) : (C,PC) → (H,PH) with the same codomain (H,PH) is given by
((P, PP ), (p1, p̄1), (p2, p̄2)), where (P, p1, p2) is the pullback of f and g in Grp
and (PP , p̄1, p̄2) the pullback of f̄ and ḡ in Mon. More generally, all limits of
PreOrdGrp are computed “componentwise”. Note that in particular the ker-
nel (K,PK) of a morphism (f, f̄) : (G,PG) → (H,PH) in PreOrdGrp can also
be computed by taking K to be the kernel Ker(f) of f in Grp and PK the
intersection K ∩ PG.

Colimits in PreOrdGrp are a bit more difficult to describe, in general, since
they are not simply computed “componentwise”. We shall be mainly interested
in coequalizers; given two parallel arrows as in (5) their coequalizer is given by
((Q,PQ), (q, q̄)) with (Q, q) the coequalizer of f and g in Grp and PQ = q(PH)
(i.e. q̄ is surjective):

PH PQ

H Q.

q̄

q

In particular the cokernel of a morphism (f, f̄) : (G,PG) → (H,PH) in
PreOrdGrp is then given by a pair (q, q̄) making the diagram above commute,
with q the cokernel of f in Grp and q̄ surjective.

As recalled in the Introduction, an important result of [4] is that the category
PreOrdGrp of preordered groups is normal. Although the category PreOrdGrp
is not Barr-exact [1] (see [4, Remark 2.6]) its effective descent morphisms (see
[11], for instance) are easy to characterize. In this context, effective descent
morphisms coincide with normal epimorphisms, so that an effective descent
morphism in the category PreOrdGrp of preordered groups has a fairly simple
description; it is a morphism (f, f̄) : (G,PG)→ (H,PH) as in (1) where both f
and f̄ are surjective. Epimorphisms in PreOrdGrp are given by morphisms (f, f̄)
where only f is required to be surjective, and monomorphisms are morphisms
(f, f̄) where f is injective (which, in turn, implies that also f̄ is injective).

Let us then denote by PreOrdAb the full subcategory of PreOrdGrp whose
objects (G,PG) are preordered abelian groups, i.e. such that G is abelian.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



666 M. GRAN & A. MICHEL

Proposition 2.1. — There is an adjunction

(6) PreOrdGrp ⊥ PreOrdAb
C

V

between the category PreOrdGrp of preordered groups and its full subcategory
PreOrdAb of preordered abelian groups, where the right adjoint V is the inclu-
sion functor and the left adjoint C is defined, for any (G,PG) ∈ PreOrdGrp, by
C(G,PG) = (G/[G,G], ηG(PG))

PG ηG(PG)

G G/[G,G] = ab(G),

η̄G

ηG

where ηG(PG) is the direct image of PG along the quotient ηG of G by its derived
subgroup [G,G].

Proof. — Let (G,PG) be any preordered group. Then the (G,PG)-component
of the unit of the adjunction (6) is given by the above morphism (ηG, η̄G).
Indeed, consider any preordered abelian group (A,PA) and any morphism
(f, f̄) : (G,PG)→ (A,PA) in PreOrdGrp:

PG ηG(PG)

PA

G ab(G).

A

η̄G

f̄ ḡ

iab(G)

iA
ηG

f g

Then, the universal property of the abelianization of G yields a unique arrow
g : ab(G) → A such that g · ηG = f in the category Grp. Knowing that η̄G
is a strong epimorphism in the category Mon of monoids, there is, moreover,
a unique monoid morphism ḡ : ηG(PG) → PA making the following diagram
commute:

PG ηG(PG)

PA A.

η̄G

f̄ g·iab(G)
ḡ

iA

Accordingly, there exists a unique morphism (g, ḡ) : (ab(G), ηG(PG))→ (A,PA)
in PreOrdGrp such that (g, ḡ) · (ηG, η̄G) = (f, f̄). �
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Corollary 2.2. — If EC denotes the class of normal epimorphisms in
PreOrdGrp and ZC the class of normal epimorphisms in PreOrdAb, then
(7) ΓC = (PreOrdGrp,PreOrdAb, C, V,EC ,ZC)
is a Galois structure.

We will now prove that this Galois structure is actually admissible. In order
to do this, we will use the following result, which is a reformulation of a result
due to Janelidze and Kelly [10].

Proposition 2.3. — Let C be a normal category. Let Γ = (C ,F , F, U,E ,Z )
be a Galois structure, where E is the class of normal epimorphisms in C and
F a full reflective subcategory of C closed under subobjects and quotients. If
the lattice NormX(C ) of normal subobjects of any X in C is modular, then the
Galois structure Γ is admissible.

Proof. — Consider any pullback in C of the following form

(8)
P A

B F (B),

π2

π1 φ

ηB

where ηB is the B-component of the unit of the adjunction F a U , A an object
of the subcategory F and φ any morphism in the class E . We write s : S � P
and t : T � P for the kernels of π1 and π2, respectively. We need to prove that
this pullback is preserved by the reflector F . In order to do this, we consider
the next commutative diagram

(9)

R ∨ S S

R P F (P ) A

T B F (B) F (B)

s

r

m

ηP

π2

q
π1

ψ

F (π1) φ

n

t

ηB

where r : R � P is the kernel of the P -component ηP of the unit of the
adjunction F a U , R ∨ S is the supremum of R and S in NormP (C ), q is
the composite ηB · π1 = F (π1) · ηP , and ψ is the unique morphism induced
by the universal property of ηP such that ψ · ηP = π2. We compute that
π2 ·r = ψ ·ηP ·r = 0 so that, by the universal property of kernels, there exists a
unique arrowm : R→ T such that t·m = r, hence R ≤ T . The assumption that
F is a full reflective subcategory of C closed under subobjects and quotients
implies that the middle square of the above diagram (9) is a pushout (see
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Proposition 3.1 in [10]). As a consequence, the supremum R ∨ S exists, and
it is the kernel of the morphism q. Accordingly, since q · t = F (π1) · ηP · t =
φ ·ψ · ηP · t = φ · π2 · t = 0, there exists a unique morphism n : T → R∨ S such
that ker q · n = t, so that T ≤ R ∨ S in NormP (C ). Observe then that

R = R ∨ {0} = R ∨ (S ∧ T ) = (R ∨ S) ∧ T = T,

where the second equality follows from the fact that π1 and π2 are jointly
monomorphic, the third equality by modularity of NormP (C ) (since R ≤ T ),
and the last one from the fact that T ≤ R ∨ S. This means that ker(ηP ) =
ker(π2), and the induced morphism ψ is then an isomorphism. If we apply the
reflector F to the pullback (8), we then get a pullback in F , and the Galois
structure Γ is therefore admissible, as desired. �

We will now apply this proposition to the adjunction we are interested in.
It just remains to prove that the lattice of normal subobjects in PreOrdGrp is
modular. In order to do this, we first need to describe the supremum of two
normal subobjects in PreOrdGrp.

Lemma 2.4. — Let (A,PA) and (B,PB) be two normal subobjects in PreOrdGrp
of a preordered group (G,PG). The supremum of (A,PA) and (B,PB) in
Norm(G,PG)(PreOrdGrp) is given by

(A,PA) ∨ (B,PB) = (A ·B, (A ·B) ∩ PG),

where A · B = {a + b | a ∈ A and b ∈ B} is the supremum of the normal
subgroups A and B in the category Grp of groups.

Proof. — We first note that (A · B, (A · B) ∩ PG) is a normal subobject of
(G,PG). Indeed, A ·B is a normal subgroup of G and the square

(A ·B) ∩ PG PG

A ·B G

is a pullback in the category Mon of monoids. It is also clear that (A,PA) ≤ (A·
B, (A ·B)∩PG) and that (B,PB) ≤ (A ·B, (A ·B)∩PG) (since PA = A∩PG and
PB = B∩PG). Consider next that we have another normal subobject (N,PN ) of
(G,PG) such that (A,PA) ≤ (N,PN ) and (B,PB) ≤ (N,PN ). Then, of course,
A ·B ≤ N since A ·B = A∨B in Grp. As a consequence, (A ·B, (A ·B)∩PG) ≤
(N,PN ). �

Proposition 2.5. — The lattice of normal subobjects in the category PreOrdGrp
of preordered groups is modular: for any triple (A,PA), (B,PB) and (C,PC) of
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normal subobjects in PreOrdGrp of a given preordered group (G,PG), such that
(C,PC) ≤ (A,PA), we have that

(A,PA) ∧ ((B,PB) ∨ (C,PC)) = ((A,PA) ∧ (B,PB)) ∨ (C,PC).

Proof. — We already know that A ∧ (B ∨ C) = (A ∧ B) ∨ C since the lattice
NormG(Grp) of normal subgroups of G is modular. We, therefore, compute that

(A,PA) ∧ ((B,PB) ∨ (C,PC)) = (A,PA) ∧ (B · C, (B · C) ∩ PG)
= (A ∩ (B · C), PA ∩ (B · C) ∩ PG)
= (A ∩ (B · C), A ∩ PG ∩ (B · C) ∩ PG)
= (A ∩ (B · C), (A ∩ (B · C)) ∩ PG)
= (A ∧ (B ∨ C), (A ∧ (B ∨ C)) ∩ PG)
= ((A ∧B) ∨ C, ((A ∧B) ∨ C) ∩ PG)
= (A ∩B) · C, ((A ∩B) · C) ∩ PG)
= (A ∩B,PA ∩ PB) ∨ (C,PC)
= ((A,PA) ∧ (B,PB)) ∨ (C,PC),

where we have used the fact that the infimum of two normal subobjects in the
lattice of normal subobjects of (G,PG) is given by their pullback. �

Corollary 2.6. — The Galois structure (7) is admissible.

Proof. — This is a direct consequence of Propositions 2.3 and 2.5. �

We will prove in Theorem 2.9 that the ΓC-normal extensions are given by
the normal epimorphisms (f, f̄) : (G,PG) (H,PH) such that

(i) f : G H is an algebraically central extension, i.e. Ker(f) ⊆ Z(G);
(ii) the following Condition (?) holds for (f, f̄):

(?) for any (a, b, c) ∈ Eq(η̄G)×PG
Eq(f̄), a− b+ c ∈ PG,

where η̄G : PG � ηG(PG) is the restriction of ηG : G � G/[G,G] to the
positive cones.

The following two lemmas will be helpful to establish this characterization.

Lemma 2.7. — Consider the following pullback

(P, PP ) (G,PG)

(E,PE) (H,PH)

(p2,p̄2)

(p1,p̄1) (f,f̄)

(p,p̄)

in PreOrdGrp, where all the arrows are regular epimorphisms.
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670 M. GRAN & A. MICHEL

(1) If Condition (?) holds for (f, f̄), then it holds for (p1, p̄1).
(2) If (p, p̄) = (f, f̄), then Condition (?) holds for (p1, p̄1) if and only if it

holds for (f, f̄).

Proof. — 1. Let ((e1, x1), (e2, x2), (e3, x3)) ∈ Eq(η̄P ) ×PP
Eq(p̄1). Then, this

means that
• ei ∈ PE and xi ∈ PG for any i = 1, 2, 3;
• p(ei) = f(xi) for any i = 1, 2, 3;
• ηP (e1, x1) = ηP (e2, x2), which implies that

(e1 − e2, x1 − x2) ∈ Ker(ηP ) = [P, P ],

hence, in particular, x1 − x2 ∈ [G,G];
• p1(e2, x2) = p1(e3, x3), i.e. e2 = e3.

As a consequence,
• ηG(x1) = ηG(x2), i.e. (x1, x2) ∈ Eq(η̄G);
• f(x2) = p(e2) = p(e3) = f(x3), i.e. (x2, x3) ∈ Eq(f̄).

In other words, (x1, x2, x3) ∈ Eq(η̄G) ×PG
Eq(f̄). By assumption the element

x1 − x2 + x3 then belongs to PG, and one has that

(e1, x1)− (e2, x2) + (e3, x3) = (e1 − e2 + e3, x1 − x2 + x3)
= (e1, x1 − x2 + x3) ∈ PP ,

as desired.
2. Thanks to (1), it suffices to check that, if Condition (?) holds for (p1, p̄1)

(with (p1, p̄1) the first projection of the kernel pair of (f, f̄)), then it also holds
for (f, f̄).

Let (a, b, c) ∈ Eq(η̄G)×PG
Eq(f̄). In particular, this means that a, b, c ∈ PG,

a− b ∈ Ker(ηG) = [G,G], and f(b) = f(c). The fact that a− b ∈ [G,G] implies
that

(a, a)− (b, b) = (a− b, a− b)
=

(
[x1, x2] + [x3, x4] + · · ·+ [xn−1, xn],
[x1, x2] + [x3, x4] + · · ·+ [xn−1, xn]

)
,

for some suitable elements xi ∈ G (with i ∈ {1, . . . , n}). It follows that

(a, a)− (b, b) = (x1, x1) + (x2, x2)− (x1, x1)− (x2, x2)
+ · · ·+ (xn−1, xn−1) + (xn, xn)− (xn−1, xn−1)− (xn, xn),

so that (a, a) − (b, b) ∈ [Eq(f), Eq(f)] = Ker(ηEq(f)). This means that
((a, a), (b, b)) ∈ Eq(η̄Eq(f)). On the other hand, p1(b, b) = p1(b, c), and this
implies that ((b, b), (b, c)) ∈ Eq(p̄1), and then

((a, a), (b, b), (b, c)) ∈ Eq(η̄Eq(f))×Eq(f̄) Eq(p̄1).
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So, by assumption,
(a, a− b+ c) = (a, a)− (b, b) + (b, c) ∈ Eq(f̄),

hence, in particular, a− b+ c ∈ PG. �

Lemma 2.8. — Condition (?)holds for anymorphism (f, f̄) : (G,PG)→ (H,PH)
in PreOrdGrp where (G,PG) ∈ PreOrdAb.

Proof. — Let (a, b, c) ∈ Eq(η̄G)×PG
Eq(f̄). Since G ∈ Ab, we have that ηG =

1G, and then that a = ηG(a) = ηG(b) = b. It follows that a−b+c = c ∈ PG. �

Theorem 2.9. — Let (f, f̄) : (G,PG) (H,PH) be a regular epimor-
phism in PreOrdGrp. The following conditions are equivalent:

(1) (i) Ker(f) ⊆ Z(G);
(ii) for any (a, b, c) ∈ Eq(η̄G)×PG

Eq(f̄), we have a− b+ c ∈ PG.
(2) (f, f̄) is a (ΓC-)normal extension.

Proof. — (1) ⇒ (2): we need to prove that the first projection (π1, π̄1) of the
kernel pair of (f, f̄) is a (ΓC-)trivial extension, i.e. that the square below

(10)

Eq(f, f̄) C(Eq(f, f̄))

(G,PG) C(G,PG)

(ηEq(f),η̄Eq(f))

(π1,π̄1) C(π1,π̄1)=(C(π1),C(π̄1))

(ηG,η̄G)

is a pullback in the category PreOrdGrp of preordered groups. First of all it is
well known that (i) implies that its restriction to the category Grp of groups
is a pullback (in Grp) [7]. It remains to show that the external square in the
diagram

Eq(f̄) ηEq(f)(Eq(f̄))

PP

PG ηG(PG)

η̄Eq(f)

φ̄

π̄1 C(π̄1)

q̄2

q̄1

η̄G

is a pullback inMon. Consider then the pullback (P, PP ) of (ηG, η̄G) andC(π1, π̄1)
(denoted with a slight abuse of notation by (C(π1), C(π̄1))) in PreOrdGrp (with
the two projections (q1, q̄1) and (q2, q̄2)), as well as the induced morphism

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



672 M. GRAN & A. MICHEL

(φ, φ̄) : (Eq(f), Eq(f̄)) → (P, PP ) to the pullback (with φ an isomorphism, as
already observed). Since φ is an isomorphism, obviously φ̄ is a monomorphism
by commutativity of the following square:

Eq(f̄) PP

Eq(f) P.

φ̄

φ

∼=

So it suffices to show that φ̄ is surjective. Let (a, ηEq(f)(b, c)) ∈ PP . In other
words, a, b, c ∈ PG are such that f(b) = f(c) and ηG(a) = C(π̄1)(ηEq(f)(b, c)) =
(ηG · π1)(b, c) = ηG(b), that is, (a, b, c) ∈ Eq(η̄G) ×PG

Eq(f̄). By (ii) we then
have that (a, a − b + c) ∈ Eq(f̄). We are going to show that this element is
sent by φ to (a, ηEq(f)(b, c)). We first observe that, since (a, b) ∈ Eq(η̄G), there
exist xi ∈ G (for i ∈ {1, . . . , n}) such that

a− b = x1 + x2 − x1 − x2 + x3 + x4 − x3 − x4 + · · ·+ xn−1 + xn − xn−1 − xn.

This implies that

(a− b, a− b) = (x1, x1) + (x2, x2)− (x1, x1)− (x2, x2)
+ · · ·+ (xn−1, xn−1) + (xn, xn)− (xn−1, xn−1)− (xn, xn),

i.e. (a − b, a − b) ∈ [Eq(f), Eq(f)] = Ker(ηEq(f)). As a consequence, we can
compute

φ(a, a− b+ c) = (a, ηEq(f)(a, a− b+ c))
= (a, ηEq(f)(a− b, a− b) + ηEq(f)(b, c))
= (a, ηEq(f)(b, c)),

and deduce that the homomorphism φ̄ is then surjective, hence an isomorphism.
This proves that the square (10) is a pullback in PreOrdGrp, i.e. that (f, f̄) is
a (ΓC-)normal extension.

(2) ⇒ (1): since (f, f̄) is a (ΓC-)normal extension, the two squares below
are then pullbacks in PreOrdGrp:

(Eq(f), Eq(f̄)) (G,PG)

(G,PG) (H,PH)

(π2,π̄2)

(π1,π̄1) (f,f̄)

(f,f̄)
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(Eq(f), Eq(f̄)) (ab(Eq(f)), ηEq(f)(Eq(f̄)))

(G,PG) (ab(G), ηG(PG)).

(ηEq(f),η̄Eq(f))

(π1,π̄1) C(π1,π̄1)

(ηG,η̄G)

In this second diagram, C(π1, π̄1) ∈ PreOrdAb. So, thanks to Lemma 2.8, we
know that C(π1, π̄1) satisfies Condition (?). Now, using Lemma 2.7(1) with
the second pullback, we get that Condition (?) holds for (π1, π̄1). The appli-
cation of Lemma 2.7(2) to the first pullback gives the validity of Condition (?)
for (f, f̄), which corresponds to (ii). Condition (i) follows directly from the
fact that f : G H is a normal extension with respect to the admis-
sible Galois structure induced by the abelianization functor ab : Grp → Ab
(see [7, 10]). �

Remark 2.10. — It would be interesting to know whether Lemma 2.7(2) holds
when (p, p̄) 6= (f, f̄). This problem is related to the possibility of finding a
characterization of the (ΓC)-central extensions.

3. Commutative and abelian objects in the category of preordered groups

This section is devoted to the characterization of the commutative and the
abelian objects in the category of preordered groups. For the reader’s con-
venience, we first recall some definitions and results (we refer to [2] for more
details).

A pointed category C with finite limits is said to be unital when, for any
objects X,Y ∈ C , the pair (lX , rY ) in the diagram

X X × Y Y
lX rY

is strongly epimorphic, where lX = 〈1X , 0〉 and rY = 〈0, 1Y 〉.

Definition 3.1. — Let C be a unital category. An object X ∈ C is said to
be commutative when there exists a morphism φ : X × X → X making the
following diagram commute:

X X ×X X

X.

lX

φ

rX
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Note that the morphism φ above is necessarily unique by unitality of the
category C . It turns out that any commutative object in a unital category is
an (internal) commutative monoid.

Proposition 3.2. — [2] Let C be a unital category. The category ComMon(C )
of internal commutative monoids in C is the full subcategory of commutative
objects in C .

Definition 3.3. — [2] Let C be a unital category. An object X ∈ C is said to
be abelian when it is commutative and the corresponding internal commutative
monoid is an internal abelian group.

The following proposition gives a useful characterization of abelian objects
in a unital category:

Proposition 3.4. — [2] Let C be a unital category. Then an object X of C
is abelian if and only if there exists a morphism φ : X × X → X making the
diagram

X X ×X X

X

rX

φ

∆X

0

commute, where ∆X = 〈1X , 1X〉 is the diagonal of X.

A pointed category C with finite limits is said to be strongly unital when,
for any object X ∈ C , the pair (rX ,∆X) in the diagram

X X ×X X
rX ∆X

is strongly epimorphic, where rX = 〈0, 1X〉 and ∆X = 〈1X , 1X〉.
Any abelian object is commutative (by definition), but the converse is not

true in general. In the strongly unital context though, the converse holds:

Proposition 3.5. — [2] In a strongly unital category, any commutative object
is an abelian object.

As proved in [4], the category PreOrdGrp of preordered groups is a unital
category, so that the notions of commutative and abelian objects both make
sense in this setting. It turns out that the commutative objects in PreOrdGrp
are precisely the preordered abelian groups:

Proposition 3.6. — The category PreOrdAb of preordered abelian groups coin-
cides with the category ComMon(PreOrdGrp) of internal commutative monoids
in PreOrdGrp:

PreOrdAb = ComMon(PreOrdGrp).
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Proof. — Let (G,PG) be a commutative object in PreOrdGrp. Then, this means
that there exists a morphism (φ, φ̄) : (G,PG)×(G,PG)→ (G,PG) in PreOrdGrp
such that the diagram

(G,PG) (G×G,PG × PG) (G,PG)

(G,PG)

(lG,l̄G)

(φ,φ̄)

(rG,r̄G)

commutes. In particular, for any x ∈ G and any y ∈ G,
x+ y = (φ · lG)(x) + (φ · rG)(y)

= φ(x, 0) + φ(0, y)
= φ((x, 0) + (0, y))
= φ(x, y)
= φ((0, y) + (x, 0))
= φ(0, y) + φ(x, 0)
= (φ · rG)(y) + (φ · lG)(x)
= y + x,

which means that G is an abelian group and then that (G,PG) ∈ PreOrdAb.
Conversely, consider (G,PG) ∈ PreOrdAb and define, for any (x, y) ∈ G×G,

the morphism φ : G×G→ G as follows: φ(x, y) = x+y. Then it is easy to check
that φ is a group morphism and that φ · lG = 1G and φ · rG = 1G. Moreover, it
is clear that the restriction φ̄ of φ to PG × PG takes its values in PG, since PG
is a submonoid of G. As a consequence, (φ, φ̄) : (G,PG)× (G,PG)→ (G,PG) is
a morphism in PreOrdGrp making the above diagram commute in PreOrdGrp.
This means that (G,PG) is a commutative object in PreOrdGrp. The result
then follows from Proposition 3.2. �

Proposition 3.7. — The abelian objects in PreOrdGrp are the preordered
groups (G,PG) where G is an abelian group and PG a (normal) subgroup of G.

Proof. — Let (G,PG) be an abelian object in PreOrdGrp. In particular, it
is a commutative object, so that G ∈ Ab (by Proposition 3.6). Thanks to
Proposition 3.4, we also have that there exists a morphism (φ, φ̄) : (G,PG) ×
(G,PG)→ (G,PG) making the following diagram commute:

(G,PG) (G×G,PG × PG) (G,PG)

(G,PG).

(rG,r̄G)

(φ,φ̄)

(∆G,∆̄G)

(0,0)
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The restriction φ̄ of φ to PG × PG takes its values in PG. Accordingly, for any
x ∈ PG, φ(x, 0) ∈ PG. Now we compute that

φ(x, 0) = φ((0,−x) + (x, x)) = φ(0,−x) + φ(x, x)
= (φ · rG)(−x) + (φ ·∆G)(x) = −x+ 0 = −x.

As a consequence, −x ∈ PG for any x ∈ PG, which proves that PG is a subgroup
of G, as desired.

Conversely, consider any preordered abelian group (G,PG) where the pos-
itive cone PG is a subgroup of G. Define the morphism φ : G × G → G by
φ(x, y) = −x + y, for any (x, y) ∈ G × G. It is easily seen that φ is a group
morphism since the group G is abelian. Moreover, for any x ∈ G,
• (φ · rG)(x) = φ(0, x) = −0 + x = x, so that φ · rG = 1G;
• (φ ·∆G)(x) = φ(x, x) = −x+ x = 0, so that φ ·∆G = 0.

Let us now prove that the restriction φ̄ of φ to PG × PG takes its values in
PG. Let (x, y) ∈ PG × PG. Since PG is a subgroup of G, then −x ∈ PG and
then −x+y = φ(x, y) ∈ PG. Accordingly, the pair (φ, φ̄) : (G,PG)× (G,PG)→
(G,PG) is a morphism in PreOrdGrp making the diagram above commute. By
Proposition 3.4 we conclude that (G,PG) is an abelian object in PreOrdGrp. �

Corollary 3.8. — The category Ab(PreOrdGrp) of internal abelian groups in
PreOrdGrp is isomorphic to the category Mono(Ab) of monomorphisms in the
category Ab of abelian groups:

Ab(PreOrdGrp) = Mono(Ab).

Proof. — This is a direct consequence of Proposition 3.7 and Definition 3.3. �

Another consequence of Proposition 3.7 is the following remark, which was
first observed in [4]:

Remark 3.9. — The category PreOrdGrp of preordered groups is not strongly
unital.

Proof. — This follows from Propositions 3.6, 3.7 and 3.5. For instance, the
inclusion N ↪→ Z of the monoid N of non-negative integers in the abelian group
Z of integers is an example of a commutative object in PreOrdGrp that is not
an abelian object. �

Corollary 3.10. — The category PreOrdGrp is not subtractive (in the sense
of [13]).

Proof. — This follows from the Remark 3.9 and the well-known fact that

strongly unital = unital + subtractive

(see [6], for instance). �
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We will now consider the functor F from the category PreOrdGrp of pre-
ordered groups to its subcategory Mono(Ab) of abelian objects. We will see it
as the composite of the following two functors

PreOrdGrp PreOrdAb Mono(Ab),C A

where C is defined as in Section 2 and A is defined, for any preordered abelian
group (G,PG), by

A(G,PG) = (G, grp(PG))
with grp(PG) the group completion of the monoid PG. As a consequence, for
any (G,PG) ∈ PreOrdGrp,

F (G,PG) = (ab(G), grp(ηG(PG))).

(11)

PG ηG(PG) grp(ηG(PG))

G ab(G) ab(G)

η̄G

η̂G

jG

iab(G)

ηG

ηG

Let us recall the general construction of the group completion (also called
Grothendieck group) of an additive commutative monoid M . On the Cartesian
product M ×M one defines an equivalence relation ∼ in the following way:
(m1,m2) ∼ (n1, n2) if and only if there exists an element k inM such thatm1+
n2+k = m2+n1+k. The Grothendieck group grp(M) ofM is then given by the
quotient (M×M)/ ∼, which turns out to be an abelian group. Note that there
is a monoid homomorphism j : M → grp(M) sending any element m of M to
the equivalence class [(m, 0)] (with respect to ∼). This homomorphism satisfies
a universal property: for any monoid homomorphism φ : M → X from M to
an abelian group X, there is a unique group homomorphism ψ : grp(M)→ X
such that φ = ψ · j.

This universal property yields the existence of the unique morphism iab(G)
making the diagram (11) commute. The following lemma implies that
grp(ηG(PG)) is in addition a submonoid of ab(G), so that (ab(G), grp(ηG(PG)))
is then, indeed, a preordered group.

Lemma 3.11. — Let M be a submonoid of an abelian group X and
Y = {x ∈ X | x = a− b, for a, b ∈M},
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which is a (normal) subgroup of X. Then there is a group isomorphism

grp(M) ∼= Y,

which implies that grp(M) is a (normal) subgroup of X.

Proof. — By definition, grp(M) = (M ×M)/ ∼. Now, we observe that, for
(m1,m2), (n1, n2) ∈ M ×M , (m1,m2) ∼ (n1, n2) if and only if there exists a
k in M such that m1 + n2 + k = m2 + n1 + k. We can see this equality in the
groupX so that, by the cancellation property, (m1,m2) ∼ (n1, n2) if and only if
m1 +n2 = m2 +n1, which is equivalent to m1−m2 = n1−n2. Accordingly, the
group homomorphism Φ: grp(M)→ Y defined, for any [(m1,m2)] in grp(M),
by Φ([(m1,m2)]) = m1 −m2, is an isomorphism. �

4. The Galois theory corresponding to the group completion functor

If we take a look at the restriction of the functor A to the positive cones
(i.e. to the category ComMon of commutative monoids), we then get the group
completion functor grp studied in [15]. In this section, we recall the results of
this article that will be useful for our work.

In their paper [15], Montoli, Rodelo and Van der Linden study the adjunction

(12) Mon ⊥ Grp
grp

mon

between the categories Mon of monoids and Grp of groups, where the right
adjoint mon is the forgetful functor, while the left adjoint grp is the group
completion functor.

A significant part of the article [15] is devoted to the proof that the Galois
structure

Γgrp = (Mon,Grp, grp,mon,Egrp,Zgrp)

is admissible when Egrp and Zgrp are the classes of surjective homomorphisms
in Mon and Grp, respectively. At the end of the paper, a characterization
of (Γgrp-)normal and (Γgrp-)central extensions is given; both notions coincide
with the one of special homogeneous surjection that we are now going to recall.

Definition 4.1. — [3] Let f : X → Y be a split epimorphism in Mon, with
section s and kernel k:

(13) K X Y.k
f

s

The split epimorphism (f, s) is homogeneous when, for any y ∈ Y , the functions
µy : K → f−1(y) and νy : K → f−1(y), defined, for any x ∈ K, by µy(x) =
x+ s(y) and νy(x) = s(y) + x, are bijective.
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Definition 4.2. — [3] Let f : X Y be a surjective homomorphism in
the category Mon of monoids. Consider its kernel pair (Eq(f), π1, π2) with the
diagonal ∆:

Eq(f) X Y.
π1

π2

∆
f

The morphism f is said to be a special homogeneous surjection when (π1,∆)
is a homogeneous split epimorphism.

Special homogeneous surjections are pullback-stable and, moreover, one has
the following property:

Proposition 4.3. — [3] Consider in Mon the following pullback where both f
and f ′ are surjective homomorphisms:

P Z

X Y.

f ′

g′ g

f

If g′ is a special homogeneous surjection, then so is g.

We now recall in Theorem 4.5 the characterization of (Γgrp-)normal and
(Γgrp-)central extensions considered in [15].

Proposition 4.4. — [15] Consider an arbitrary split epimorphism (f, s) as in
(13). Then the following conditions are equivalent:

1. f is a (Γgrp-)trivial extension.
2. f is a special homogeneous surjection.

Theorem 4.5. — [15] Let f : X Y be a surjective homomorphism of
monoids. Then the following conditions are equivalent:

1. f is a special homogeneous surjection.
2. f is a (Γgrp-)normal extension.
3. f is a (Γgrp-)central extension.

5. The functor F : PreOrdGrp → Mono(Ab) and its induced admissible
Galois structure

Proposition 5.1. — There is an adjunction

(14) PreOrdGrp ⊥ Mono(Ab)
F

U
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between the category PreOrdGrp of preordered groups and its full subcategory
Mono(Ab) of abelian objects, where the right adjoint U is the inclusion functor,
and the left adjoint F is defined as in Section 3: for any (G,PG) ∈ PreOrdGrp,

F (G,PG) = (ab(G) = G/[G,G], grp(ηG(PG))).

Proof. — The adjunction (14) can be seen as the composite of the two adjunc-
tions

PreOrdGrp ⊥ PreOrdAb ⊥ Mono(Ab)
C

V

A

W

where the left-hand one has been studied in Section 2 and (the restriction to
the positive cones of) the right-hand one has been considered in Section 4. Note
that the (G,PG)-component of the unit of the composite adjunction is given
by the morphism (ηG, η̂G) (in the notations of diagram (11)). �

Remark 5.2. — For a given preordered group (G,PG), the (G,PG)-component
(ηG, η̂G) of the unit of the adjunction (14) is not a regular epimorphism, in
general. The morphism (ηG, η̂G) is just an epimorphism, since ηG is sur-
jective, while η̂G is not necessarily surjective. Note also that the morphism
jG : ηG(PG)→ grp(ηG(PG)) is a monomorphism because ηG(PG) is a commu-
tative monoid with cancellation.

Remark 5.3. — The restriction to the positive cones of the adjunction A aW
is not exactly the same as the adjunction (12) studied in [15]. As a matter of
fact, we are considering the adjunction

ComMoncan ⊥ Ab

which is the restriction of (12) to the subcategory ComMoncan of commutative
monoids with cancellation. However, the results of [15] that we use in this
article can be easily adapted to this situation (see Remark 2.5 in [15]).

Proposition 5.4. — If E denotes the class of regular epimorphisms in
PreOrdGrp and Z the class of regular epimorphisms in Mono(Ab), then

(15) Γ = (PreOrdGrp,Mono(Ab), F, U,E ,Z )

is a Galois structure.

Since the Galois structure (15) is a composite of two “compatible” Galois
structures that are admissible, we may use the following known result in order
to prove its admissibility (the argument given to prove Lemma 6.2 in [5], for
instance, still holds in our situation).
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Proposition 5.5. — Consider the following chain of adjunctions

(16) C ⊥ B ⊥ A
J

L

I

H

where A is a full subcategory of B and B a full subcategory of C . Assume,
moreover, that
• ΓJ = (C ,B, J, L,EJ ,ZJ);
• ΓI = (B,A , I,H,EI ,ZI)

are admissible Galois structures that are “compatible” in the sense that
J(EJ)⊂EI and H(ZI)⊂ZJ . Then the composite of these two admissible Galois
structures

Γ = (C ,A , I · J, L ·H,E ,Z ),

where E = EJ and Z = ZI , is an admissible Galois structure.

Corollary 5.6. — The Galois structure (15) is admissible.

6. Characterization of Γ-normal and Γ-central extensions

This section is devoted to Γ-normal and Γ-central extensions, which will be
characterized in Theorem 6.3. The following two lemmas will be needed for the
proof of this result.

Lemma 6.1. — Consider a chain of adjunctions as in (16) and assume that we
have admissible Galois structures ΓJ and ΓI as in Proposition 5.5. Assume,
moreover, that any component of the unit of the adjunction J a L is a descent
morphism. Then, for an extension f : X → Y in C , the following conditions
are equivalent:

(1) f is a Γ-trivial extension for the admissible Galois structure Γ described
in Proposition 5.5.

(2) f is a ΓJ -trivial extension and J(f) is a ΓI-trivial extension.

Proof. — (1)⇒ (2): by assumption, the square

X (I · J)(X)

Y (I · J)(Y )

ηX

f (I·J)(f)

ηY
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is a pullback in C . Note that this pullback decomposes into the following two
squares:

(17)

X J(X) (I · J)(X)

Y J(Y ) (I · J)(Y )

ηJ
X

f

ηI
J(X)

J(f) (I·J)(f)

ηJ
Y ηI

J(Y )

(where ηJ and ηI are the units of the adjunctions J a L and I a H, re-
spectively). Equivalently, the fact that f is a Γ-trivial extension can also be
formulated by saying that

f = (L ·H)Y (g)

for some extension g : A→ (I · J)(Y ) in A . Now,

(L ·H)Y (g) = LY (HJ(Y )(g)),

so that f = LY (ḡ), for an extension ḡ = HJ(Y )(g) in B with codomain J(Y ).
This means precisely that f is a ΓJ -trivial extension; hence in the diagram
(17) both the left-hand square and the external rectangle are pullbacks. Since
ηJY is a descent morphism, it then follows that also the right-hand square is a
pullback, meaning that J(f) is a ΓI -trivial extension.

(2) ⇒ (1): statement (2) means that both squares in diagram (17) are
pullbacks, so that the external rectangle is also a pullback, and f is a Γ-trivial
extension. �

Lemma 6.2. — Let (f, f̄) : (G,PG) (H,PH) be a regular epimorphism
in PreOrdGrp. Then the following conditions are equivalent:

(1) for any (x, y) ∈ Eq(f̄), y − x ∈ PG and −x+ y ∈ PG;
(2) f̄ is a special homogeneous surjection in Mon;
(3) for any (x, y) ∈ Eq(f̄), y − x ∈ PG;
(4) f̄ is a special Schreier surjection in Mon.

Proof. — The surjective homomorphism f̄ is special homogeneous precisely

when Eq(f̄) PG
π̄1

∆̄
is ahomogeneous split epimorphism(seeDefinition4.2).

This happens if and only if, for any x ∈ PG, the functions

µx : Ker(π̄1) ∼= Ker(f̄)→ π̄−1
1 (x); (0, a) 7→ (0, a) + ∆̄(x) = (x, a+ x)

and

νx : Ker(π̄1) ∼= Ker(f̄)→ π̄−1
1 (x); (0, b) 7→ ∆̄(x) + (0, b) = (x, x+ b)
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are bijective. This is equivalent to the fact that, for any (x, y) ∈ Eq(f̄), there
exist a unique a ∈ Ker(f̄) and a unique b ∈ Ker(f̄) such that (x, y) = (x, a+ x)
and (x, y) = (x, x+ b). This condition also amounts to asking for the existence
of a unique a ∈ Ker(f)∩PG and a unique b ∈ Ker(f)∩PG such that y = a+ x
and y = x + b, so that a and b are elements of G of the form a = y − x
and b = −x + y. As a consequence, the surjective homomorphism f̄ is special
homogeneous if and only if, for any (x, y) ∈ Eq(f̄), y−x ∈ PG and −x+y ∈ PG.
This proves the equivalence between (1) and (2).

The equivalence between (3) and (4) is proved similarly. Indeed, the fact
that f̄ is a special Schreier surjection is equivalent to the fact that the function
µx defined above is bijective for any x ∈ PG.

It remains to check that condition (3) implies condition (1). Let (x, y) ∈
Eq(f̄). Then, by assumption, we already have that y − x ∈ PG. Now, we
compute that −x+ y = −x+ y+ (−x+x) = −x+ (y−x) +x. This allows one
to conclude that −x+ y ∈ PG since PG is closed in G under conjugation. �

Theorem 6.3. — Let (f, f̄) : (G,PG) (H,PH) be a regular epimor-
phism in PreOrdGrp. Then the following conditions are equivalent:

(1) (a) Ker(f) ⊆ Z(G);
(b) f̄ is a special homogeneous surjection in Mon.

(2) (a) Ker(f) ⊆ Z(G);
(b) f̄ is a special Schreier surjection in Mon.

(3) (f, f̄) is a (Γ-)normal extension.
(4) (f, f̄) is a (Γ-)central extension.

Proof. — (1)⇔ (2): this follows directly from Lemma 6.2.
(1) ⇒ (3): first remark that condition (b) implies that a − b + c ∈ PG for

any (a, b, c) ∈ Eq(η̄G) ×PG
Eq(f̄). Indeed, thanks to Lemma 6.2, we know

that −b + c ∈ PG since (b, c) ∈ Eq(f̄), and then a − b + c ∈ PG since
a ∈ PG, and PG is a submonoid of G. So condition (b) implies condition
(ii) of Theorem 2.9, and it then follows, thanks to the validity of condition
(a), that (f, f̄) is a ΓC-normal extension. In other words, the first projec-
tion (π1, π̄1) : (Eq(f), Eq(f̄)) (G,PG) of the kernel pair of (f, f̄) is a
ΓC-trivial extension. According to Lemma 6.1, it now remains to prove that
C(π1, π̄1) is a ΓA-trivial extension (where ΓA denotes the admissible Galois
structure associated with the reflection A a W ). By condition (b), f̄ is a
special homogeneous surjection, which implies that also π̄1 is a special ho-
mogeneous surjection by pullback-stability. This, in turn, implies that the
restriction C(π̄1) of C(π1, π̄1) to the positive cones is a special homogeneous
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surjection thanks to Proposition 4.3. Indeed, the square

Eq(f̄) ηEq(f)(Eq(f̄))

PG ηG(PG)

η̄Eq(f)

π̄1 C(π̄1)

η̄G

is a pullback of regular epimorphisms in Mon, since (π1, π̄1) is a ΓC-trivial
extension. Accordingly, C(π̄1) is a split epimorphism, which is a special ho-
mogeneous surjection, and is then a Γgrp-trivial extension by Proposition 4.4.
This means that the square

ηEq(f)(Eq(f̄)) grp(ηEq(f)(Eq(f̄)))

ηG(PG) grp(ηG(PG))

jEq(f)

C(π̄1) grp(C(π̄1))

jG

is a pullback in the category ComMon of commutative monoids. As a conse-
quence, the square

(ab(Eq(f)), ηEq(f)(Eq(f̄))) (ab(Eq(f)), grp(ηEq(f)(Eq(f̄))))

(ab(G), ηG(PG)) (ab(G), grp(ηG(PG)))

(1,jEq(f))

C(π1,π̄1) (A·C)(π1,π̄1)=F (π1,π̄1)

(1,jG)

is a pullback in the category PreOrdAb of preordered abelian groups, and this
proves that C(π1, π̄1) is a ΓA-trivial extension. By Lemma 6.1, we conclude
that (π1, π̄1) is a Γ-trivial extension, which is equivalent to saying that (f, f̄)
is a Γ-normal extension.

(3)⇒ (4): any normal extension is central by definition.
(4) ⇒ (1): by definition of a (Γ-)central extension, there exists an effective

descent morphism (i.e. a regular epimorphism) (p, p̄) : (E,PE) (H,PH)
in PreOrdGrp such that the pullback (p, p̄)∗(f, f̄) (which we will denote by
(π1, π̄1)) of (f, f̄) along (p, p̄) is a Γ-trivial extension. Using Lemma 6.1, this
means that

(α) (π1, π̄1) is a ΓC-trivial extension, and
(β) C(π1, π̄1) is a ΓA-trivial extension.

The first statement (α) means, of course, that (f, f̄) is a ΓC-central exten-
sion. In particular, f is algebraically central, that is, f : G H satisfies
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condition (a). The second statement (β) now implies that the square

(ab(P ), ηP (PP )) (ab(P ), grp(ηP (PP )))

(ab(E), ηE(PE)) (ab(E), grp(ηE(PE)))

(1,jP )

(C(π1),C(π̄1))=C(π1,π̄1) (A·C)(π1,π̄1)=F (π1,π̄1)

(1,jE)

(where P = E ×H G and PP = PE ×PH
PG) is a pullback in PreOrdAb. In

particular, its restriction to ComMon

ηP (PP ) grp(ηP (PP ))

ηE(PE) grp(ηE(PE))

jP

C(π̄1) grp(C(π̄1))

jE

is a pullback. This means that C(π̄1) is a Γgrp-trivial extension and then a Γgrp-
normal extension. Indeed, since Γgrp is admissible, any Γgrp-trivial extension is
Γgrp-normal. Thanks to Theorem 4.5, we can conclude that C(π̄1) is a special
homogeneous surjection. Since special homogeneous surjections are pullback-
stable, it then follows that π̄1 has this same property. Indeed, the statement
(α) implies (among other things) that the square

PP ηP (PP )

PE ηE(PE)

η̄P

π̄1 C(π̄1)

η̄E

is a pullback in Mon. Applying now Proposition 4.3 to the following pullback
of regular epimorphisms

PP PG

PE PH ,

π̄2

π̄1 f̄

p̄

we obtain that f̄ is a special homogeneous surjection, i.e. condition (b) is
satisfied. This concludes the proof. �
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