
Feature-based error processing for robust
surface registration in computer assisted

orthopedic surgery
Maxime Taquet #1

# Communications and Remote Sensing Laboratory (TELE), Université catholique de Louvain
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Abstract—Accurate registration algorithms are re-
quired in computer assisted orthopedic surgery to
provide a reliable correspondence between the bone
and its tridimensional model. In surface registration,
the main source of errors lies in the points acqui-
sition process. This paper presents an online point
processing algorithm based on features correlated to
the error. The features are organized in classification
trees to detect and remove outliers. Different common
classification trees are investigated. The efficiency
of the approach to remove outliers is demonstrated
through experiments on a pelvic bone.

I. INTRODUCTION

Computer assisted orthopedic surgery requires
the registration between the patient’s bone in the
operating room and a preoperative tridimensional
image of this bone [1]. This returns the transform
between the coordinates in the reference frame
of the computer model and those in the patient’s
frame. This transform is then used in real time to
project the surgeon’s tool position in the computer
model. Any error made in the registration will
therefore propagate to the location of the tool. The
registration accuracy has thereby a strong impact
on the overall accuracy of the surgery [2], [3].

A surface registration is typically used for or-
thopedic surgery [4]. The surgeon acquires a point
cloud on the bone surface using a probe whose
position is recorded by a tracking camera. A
gradient-descent optimizer seeks the transform that
minimizes a metric representing the distance be-
tween the projected digitized points and the bone
surface in the computer model. Since the optimizer
may be trapped in local minima of the metric,
a preregistration step is used to provide a first
approximation of the transform. This is typically
performed by anatomical paired-point matching
that uses three or four points acquired on the bone
and their corresponding locations manually picked
in the computer model.

Large inaccuracies can proceed from outliers
present in the acquired point cloud. This problem
has been identified by many researchers and meth-
ods to solve it were suggested. Zhang et al. [5]
attempted to identify outliers in order to prevent
misregistration of free-form surfaces. Palombara et
al. [6] reported the consequences of outliers and
proposed a method to remove them in surface reg-
istration for total knee arthroplasty. Their algorithm
is based on a first registration and the use of a
threshold value on the estimated matching error.
Other researchers such as Rangarajan et al. [7] and
Ma et al. [8] attempted to reduce the influence of
outliers by means of a robust metric.

Three problems can be identified with these
algorithms. First, they do not completely eliminate
the influence of outliers on the final result and
may thereby fail to be robust if the number of
outliers is too high. Second, since the threshold
filter processes points offline, the registration accu-
racy may suffer from a low cardinality of the point
cloud after the filter. Third, the threshold method
assumes a Gaussian distribution of the matching
errors which is not the case when far outliers are
present [9].

The novel approach presented in this paper
suggests the use of a removal technique based
on features statistically correlated to the matching
error. This removes most outliers online, i.e. during
the point acquisition itself, and yields a remaining
error distribution closer to a Gaussian. It can be
combined with an offline removal technique and a
robust metric to lead to a significant improvement
of the overall registration accuracy.

The algorithm developed to remove outliers and
its integration is explained in section II. Section
III presents the main results of the presented algo-
rithm. Finally, section IV concludes and discusses
the main contributions of the presented approach



and suggests further research directions that may
improve its efficiency.

II. METHOD

The main idea of the method used to remove
outliers online is to analyze features related to the
acquired point i and correlated to its acquisition
error eacq(i), i.e. its distance from the bone surface.
The features can be organized in classification trees
whose goal is to decide whether a point is regular
or is an outlier.

The development of this method is performed in
two steps. First, the features are selected to define a
feature space in which outliers and regular points
can be separated. Second, the features are orga-
nized in a single structure based on classification
trees to detect outliers.

A. Feature space

Information can be extracted during the acqui-
sition process to detect the presence of outliers.
Basically, two categories of information can be
pointed out: the preregistration information and the
probe dynamic information.

Choices need to be made in oder to derive
analytic expressions for the features. These ex-
pressions should lead to a representative yet con-
cise feature space. Throughout this section, the
Kullback-Leibler divergence (KLD) is used to
guide these choices [10]. The KLD measures the
quality of a feature to give information about the
acquisition error. If E is this acquisition error and
Y is a feature, both defined as random variables
with distributions p(e) and p(y) respectively, then
the KLD measure is defined as:

IKLD(E, Y ) =
∫

R

∫
R
p(e, y) log2

p(e, y)
p(e)p(y)

dedy

(1)
The higher the KLD of a feature, the more corre-
lated it is to the acquisition error.

Technically, an experimental sample of 2,700
points was acquired along with the value of many
potential features Yi and their acquisition error
considered as realizations of E. This acquisition
error can be computed by means of a prior accu-
rate registration. The KLD IKLD(E, Yi) was then
computed to select the most relevant features.

1) Pre-matching distance: Since the preregistra-
tion is performed before the point set acquisition,
the transform returned (Tpre) can be used to com-
pute the pre-matching distance dpre(i) for any point
i. This quantity is a rough approximation of the
acquisition error.

However, since Tpre may not be very accurate,
an error epre(i) called the preregistration error may
corrupt the approximation, i.e.

dpre(i) = eacq(i) + epre(i) (2)

There is no accurate a priori knowledge about
the distribution of this error over the volume since
it strongly depends on the location of the paired
points used in the preregistration as well as the
accuracy with which they were acquired. To can-
cel the effect of the preregistration error, dpre(i)
can be compared to the pre-matching distance of
points within some neighborhood. The neighbor-
hood musts be small enough to legitimately con-
sider locally constant preregistration errors. How-
ever, it musts not be too small unless contiguous
outliers may be interpreted as the result of the
preregistration error and no more be detected.

To efficiently define the relative pre-matching
distance, assumptions should be made about the
distribution of outliers along the sampling track. It
will be assumed that at most two contiguous out-
liers and at least three contiguous regular points can
be encountered. These assumptions were observed
to be legitimate at common sampling rates used in
orthopedic surgeries (3 acquisitions/sec.) no matter
the speed at which the surgeon moves his hand.
Indeed, the time required for the probe to come
back onto the bone after it slipped off was observed
to be approximately constant. A digital high pass
filter could be used instead and would probably
be more robust with respect to the sampling rate.
However, for a fix sampling rate, a specific analysis
of the outliers occurrence is expected to yield better
results.

All the patterns of five contiguous points respect-
ing the above assumptions are the ones depicted
in Figure 1 and their symmetrical with respect to
the central point. Their complementary patterns,
i.e. the patterns obtained by replacing outliers with
regular points and reciprocally, if observed, must
be the result of the preregistration error which
cancels out the distance of outliers and exaggerates
the acquisition error of regular points. Therefore,
outliers can be detected even in case of large
preregistration errors.

The above analysis brings about a natural def-
inition of a continuous feature correlated to the
acquisition error. The idea is to assume that, in
any group of five contiguous points, the one with
the lowest pre-matching distance lies on the bone.
Its pre-matching distance is therefore equal to the
preregistration error. This preregistration error can
be subtracted to each one of the five pre-matching



Figure 1. Different possible patterns, (a) with no outlier, (b)-(d)
with one outlier, (e)-(g) with two outliers.

distances. If the pattern observed falls into one of
the patterns described in Figure 1, then the distance
of the point under analysis can be approximated by:

dn(i) = dpre(i)−min{dpre(i+ j)| |j| ≤ 2} (3)

which defines a feature correlated to the acqui-
sition distance. If the complementary of one of
the patterns defined in Figure 1 is observed, then
the point with the highest pre-matching distance
is considered to lie on the bone and the feature
correlated to the acquisition error is defined as:

d̃n(i) = max{dpre(i+ j)| |j| ≤ 2} − dpre(i). (4)

2) Probe dynamic: When the probe slips off, its
speed tends to increase. This speed is approximated
by the central difference method using the probe
position in three subsequent frames acquired by the
tracking camera.

The speed must be normalized in order to take
into account the discrepancies between surgeons
and between areas of the bone. According to the
assumptions about distance patterns for contiguous
points, there are always at least three regular points
in a group of five contiguous points. Therefore, the
normalization term could be the mean of the speed
corresponding to these three regular points. Since
it is expected that these speeds will be lower than
those corresponding to outliers, they can be defined
as the three minimum speeds out of the five. The
feature is then defined as

sn(i) = s(i)−mean{s(k), s(l), s(m)} (5)

where k, l and m are three different integers
between i − 2 and i + 2 standing for the relative
index of the points with minimal speed.

Other expressions of the speed such as the ratio
of the speed and the mean of the minimum speeds
or the use of a larger neighborhood with other
assumptions on the distribution of outliers were
also investigated but their computed KLD showed
to be lower than the KLD of sn by a factor of 1.5
at least. Besides, the probe acceleration was also
in competition for the feature space. Its KLD was,
however, observed to be three times lower than the
KLD of sn.

B. Classification trees

Classification trees can be represented as a set
of nodes each defined by a feature and a threshold
value. Data travel from node to node according to
the result of the comparison of their feature value to
the threshold. Their travel stops when they reach a
leaf for which a decision is made about their class.

The detection of outliers can be interpreted as a
statistical hypothesis test whose null hypothesis is
to consider the point as a regular point. Two types
of statistical errors can therefore occur: false posi-
tives (regular points classified as outliers) and false
negatives (outliers classified as regular points).

The efficiency of classification structures can
be assessed by the occurrence rates of both types
of statistical errors. These rates can be com-
puted through cross-validation. A 10-fold cross-
validation is performed, i.e. the learning sample
of 2,700 points is split into 10 subsamples of 270
points. The classification trees is grown using nine
out of ten subsamples and subsequently processes
the last subsample. This method prevents misinter-
pretations that would be induced if the data used
to test the trees were the same as the data used to
grow them.

Two main classification structures will be in-
vestigated: univariate classification and regression
tree (CART) as first described by Breiman [11],
[12] and extremely randomized trees (Extra-Trees)
introduced by Geurts [13]. Two problems can be
identified with these classifiers in their simplest
shape. First, they do not deal with unbalanced
data while the learning sample used contains much
more regular points than outliers. Second, they do
not allow weighing the misclassifications while in
the case of outliers detection, one usually cares
less about false positives than false negatives. Both
these problems will be addressed by generalizing
CART and Extra-trees.

1) CART trees: The learning step of CART
trees selects the nodes by maximizing the gain
in impurity defined as the difference between the
impurity of the parent node and the impurities of



the resulting child nodes weighed by the number
of records reaching them. Different definitions of
the impurity can be provided [14]. However, the
misclassification impurity allows generalizing the
tree to deal with unbalanced classes. It is defined
as

I(r) = 1−max
j
Pj(r) (6)

where j stands for the class and Pj(r) is the
proportion of learning data of class j at node r.
Since probabilities sum up to one, I(r) can be
seen as the sum of all proportions of learning
data that would be misclassified if the node was
a leaf. Replacing this by a weighted sum leads
to a straightforward generalization of the impurity
that assigns different costs for the different mis-
classification errors. In the case of two classes, the
weighted misclassification impurity can be written
as

IC(r) = C(t|1)P1(r) + C(t|0)P0(r) (7)

where t is the decision made if the node r was a
leaf, the ratio between the cost for false negatives,
C(0|1), and the cost for false positives, C(1|0), is
noted C. The value of C can be tuned by cross-
validation to match the classification goal.

The tree needs to be pruned thereafter to pre-
vent from overfitting. The leaves with the lowest
impurity gain are pruned first. The number N of
leaves to keep after pruning can also be tuned by
cross-validation.

2) Extra-Trees: The problem raised with CART
trees is that it results in a single tree whose node
threshold values strongly depend on the learning
sample [15]. One way to bypass this variance
problem would be to use several trees and to
perform a majority vote. Geurts introduced Extra-
Trees for which randomization is introduced in the
learning algorithm of the tree in order to generate
a forest of several different trees [13].

The learning process of Extra-Trees consists
in generating at each step of the iteration a set
of random nodes and selecting the one with the
highest impurity gain. If all computed gains have
a negative value, another set of random nodes are
generated.

Again, the method needs to be generalized in
order to match the classification goal. Three gener-
alizations are explored. First, the majority vote can
be weighed in order to give more importance to
pessimistic trees that classify the point in outliers.
This method is called votes generalization and
is parameterized by the weight W . Second, the

impurity gain used can be the weighed misclassi-
fication impurity as defined in (7) to define a cost
generalization method parameterized by the cost
C. Third, a bootstrap aggregation procedure can be
used within the learning process [16]. In bootstrap
aggregation, each classification tree is grown using
only a subsample of the learning set made of all
the outliers and P regular points per outlier.

III. RESULTS

The two main goals of the algorithm presented
here are to remove most outliers and to yield an
error distribution that is closer to a Gaussian. The
different classification methods can be compared
according to the number of false positives and false
negatives that they introduce. This comparison as
a result of cross-validation is depicted in Figure 2.
The CART results are obtained using cost values
C linearly increasing from 0 to 100. The bootstrap
method is implemented with proportions P linearly
increasing from 0.5 to 5. For the cost method,
the parameter C is logarithmically increasing from
0.1 to 100,000. The weights of the weighed votes
method are logarithmically increasing from 0.1 to
100.

The cost method yielded too many false nega-
tives even with the highest cost value. No improve-
ment were observed by further increasing the cost
value. Therefore, a bootstrap with a proportion P
of one was combined to it and the results of this
combination are also depicted in Figure 2.
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Figure 2. Statistical error rates of different classification
methods. All methods have suitable results in the region of
interest.

The region of interest of these results that com-
bines efficient outliers removal and low enough
false positive rates lies for false negative rates
between three and five percents. In this region, four



different strategies have acceptable results allowing
the removal of about two thirds of the outliers while
removing between 5% and 15% of regular points.
They are circled in black in Figure 2.

To choose between the four circled strategies,
the standard deviation of the results needs to be
taken into account. It assesses the reliability of the
obtained results. In order to compute the standard
deviations, each structure is grown ten times with
random permutations of the data, so that the 10-
fold cross-validation is performed with random
splitting of the learning sample. The mean, µ, and
the standard deviation, σ, of the removed points
and false positives are summarized in table I.

Table I
PERFORMANCE OF THE GENERALIZATION METHODS AND

THEIR STANDARD DEVIATIONS

Method µrem σrem µfp σfp
CART 57.7% 14.8% 10.1% 2.3%
Bootstrap 65.4% 0.7% 6.7% 0.3%
Cost + Bootstrap 66.8% 1.9% 7.3% 0.7%
Votes 69.0% 1.1% 13.4% 0.3%

This analysis of the variance clearly shows that
CART should be avoided because of its large
variance. None of the three others are outstanding.
Depending on the desired sensitivity of the tree
with respect to outliers and on the acceptable false
negative rates, one could choose one or the other
method. The following results of this section are
obtained using the votes generalization.

To demonstrate the efficiency of the online re-
moval method to yield an error distribution that
is closer to a Gaussian, a quantile-quantile plot
of this error versus a Gaussian distribution can be
used [17]. These plots are depicted in Figure 3 and
Figure 4 for the error distribution without and with
online outliers removal respectively. It is clear that
the removal of outliers brings the error distribution
closer to a Gaussian.

The algorithm presented in this paper has been
developed in the context of the development of a
navigation system for computer assisted orthopedic
surgery. The method was applied to the registration
between a point cloud acquired around the cotyle
of a pelvic bone and a computed model of the bone.
Figure 5 compares the registration results with and
without the online outliers removal. This method
obviously removes most significant outliers located
along the edges of the bone.

IV. CONCLUSION

This paper has introduced a novel point process-
ing algorithm to remove outliers from an acquired
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Figure 3. Q-Q plot of the error without online outliers removal.
The red line represents the Gaussian distribution.
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Figure 4. Q-Q plot of the error with online outliers removal.
The red line represents the Gaussian distribution.

point cloud. While existing algorithms are all of-
fline methods, the algorithm presented here allows
removing the outliers as they are acquired, based
on features statistically correlated to the distance
of the points from the bone. Two features have
been selected: the relative pre-matching error and
the relative speed of the probe.

A generalization of the extremely randomized
trees has allowed combining these features in an
efficient way. The experiment carried out showed
that two third of the outliers can be removed by
means of the generalized forest. The remaining out-
liers are expected to be removed by the threshold
filter which is likely to be more efficient since the
error distribution is now closer to a Gaussian.

Although cross-validation has been used to as-
sess the actual performance of the algorithm, there
may be a bias in this performance due to the fact
that a single surgeon was asked to acquire the
points of the learning sample. A more thorough



(a) (b)

Figure 5. (a) Registration result of a point cloud containing
outliers without using the removal method. Outliers are mostly
present along the edges of the bone. (b) Registration result of a
point cloud from which outliers have been removed online and
replaced by additional regular points.

analysis with a larger learning sample combining
the points acquired by different surgeons is re-
quired before the classification forest could indeed
be used in a general way.

Finally, the small dimensionality of the feature
space is required to reduce the computational cost
of the learning process and to avoid overfitting the
data due to the low number of elements of one
class in the learning sample. However, the defi-
nition of the relative pre-matching error requires
some strong assumptions about the preregistration
error which, in practice, are rarely respected. This
incorrect assumption is expected to induce most
encountered misclassification errors. It was indeed
observed that for some neighborhood, a linear
model of the preregistration error would better
represent the reality. This linearity could possibly
be detected by multivariate classification trees. For
these trees, the features used would be the bare pre-
matching error of the five points constituting the
neighborhood. Since the learning problem would
be of higher dimensionality, the representativeness
of the learning sample would be even more critical.
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