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Abstract. Log-euclidean polyaffine transforms have recently been intro-
duced to characterize the local affine behavior of the deformation in prin-
cipal anatomical structures. The elegant mathematical framework makes
them a powerful tool for image registration. However, their application is
limited to large structures since they require the pre-definition of affine
regions. This paper extends the polyaffine registration to adaptively fit a
log-euclidean polyaffine transform that captures deformations at smaller
scales. The approach is based on the sparse selection of matching points
in the images and the formulation of the problem as an expectation max-
imization iterative closest point problem. The efficiency of the algorithm
is shown through experiments on inter-subject registration of brain MRI
between a healthy subject and patients with multiple sclerosis.
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1 Introduction

Medical image registration is used in a variety of applications, from atlas con-
struction to intraoperative navigation. The goal is to find a transform T that
maps an image I onto another image J . A valuable property of the transform is
diffeomorphism which guarantees invertibility and topology preservation [9].

Different models can be chosen for T [4]. Dense field models, as returned
by diffeomorphic demons [9], are very flexible. However, models with fewer pa-
rameters are typically more robust. Log-euclidean polyaffine transforms (LEPT)
[2,6] are compact and diffeomorphic transforms. They are built by composing
affine transforms in the log-domain, and have been successfully used to register
predefined anatomical structures [6].

The nature of tissues suggests that higher order deformations could also be
modeled by LEPT with more degrees of freedom. However, predefining affine
regions at a lower scale would be too cumbersome or impossible.

This paper introduces a registration method that adaptively fits a LEPT
based on matching points sparsely selected in the image. The main contribution
is the extension of the expectation-maximization iterative closest point (EM-
ICP [7]) to use LEPT. This scheme accounts for matching ambiguities due to
regularities in the image and naturally integrates regularization as a prior on T .



The rest of this paper is organized as follows. Section 2 introduces the ele-
ments of the algorithm. Section 3 shows results on brain inter-subject registra-
tion. Section 4 concludes and presents some directions for future work.

2 Methods

The proposed method, summarized in Table 1, aims at optimizing the param-
eters of a LEPT to map image J onto I. The location of the anchors of the
affine components are first defined. The parameters of the affine components are
then estimated in a multi-scale approach. At each scale, corresponding points
are selected and their prior matching probabilities are recorded. The optimiza-
tion then alternates between updating the posterior matching probabilities and
optimizing the transform parameters. The image structure tensor is used in the
definition of these probabilities to account for matching ambiguities.

Table 1. Summary of the proposed method

1: Define the anchor locations ak in I.
2: for r = 0 to R− 1
3: Compute the structure tensor S of image I at scale r.
4: Compute the LEPT weights w(x) at scale level r.

5: Select the K best matches C = {(mi, si,j , πij)} between I and T (r−1,Nit) ◦ J .
6: for i = 1 to Nit do

7: E-Step Update the probabilities: C(r,i) ← Update(C(r,i−1);T (r,i−1),S).

8: M-Step Optimize the affine corrections δL(r,i) ← Optimize(T (r,i);C(r,i),S).

9: Composition of the affine components: exp(L
(r,i)
k )← exp(L

(r,i−1)
k ) exp(δL

(r,i)
k ).

10: Interpolation of the transform: T (r,i) ← Interpolate(L(r,i),w(x)).
11: end for
12: end for

2.1 Log-Euclidean Polyaffine Transforms

Log-euclidean polyaffine transforms (LEPT) are defined as a weighted composi-
tion of N affine transforms in the logarithm domain [2]. In other words, under
the action of an LEPT, the point x is transformed to x+ T (x) with

T (x) = exp

(
K∑
k=1

wk(x)Lkx̃

)
, (1)

where exp(.) is the exponential-map, Lk ∈ R3×4 is the principal logarithm of an
affine matrix in homogenous coordinates (with the last line ignored), wk(x) are
the weights which depend on the anchor location ak, and x̃ = [x, 1]T . LEPT
have remarkable properties. They are invertible and their inverse is a LEPT [2].



In this paper, the location of the anchors are determined a priori based
on the local intensity heterogeneity of the image. More precisely, a measure
of heterogeneity hI(x) is computed at every x (see Sec. 2.3). The anchors are
defined as the K-means centroids of the point cloud spanned by all x s.t. hI(x) >
h̄I(x), where h̄I(x) is a sliding mean of heterogeneity. Hence, the anchors will
tend to concentrate more in areas with high local contrast. Given K anchors ak,
we want to optimize the 12K parameters corresponding to the Lk’s.

2.2 Block Matching

Block matching is used to establish a dense correspondence between points in
image I and J . As a similarity measure, the correlation coefficient (CC) is used
because of its invariance under any linear mapping of intensities. Let Bm (resp.
Bs) be the block centered at mi (resp. si,j) in image I (resp. J), the CC is:

ρ(mi, si,j) =
Cov(Bm, Bs)√

Var(Bm)Var(Bs)
.

For each block in I, the CC of the best match ρmax(mi) is compared to the mean
of all CC for this block ρ̄(mi). The N points with the highest ratio ρmax/ρ̄ are
selected. The prior matching probability is modeled as a normal distribution of
the root mean squared error (MSEn=2−2ρ) between normalized blocks (zero
mean, unit variance):

πij =
1√

2πσ2
e

exp
(
−2− 2ρ(mi, si,j)

2σ2
e

)
.

Block matching is not robust to noise and suffers from the aperture problem.
To deal with this issue, M matches in J are recorded for each of the N selected
points in I, and we will choose N � K. The remaining of this paper explains
how the LEPT can be robustly estimated based on this set C of matching pairs.

2.3 Image Structure Tensor

The location of the matches can be ambiguous due to the regularity of the inten-
sity profile around the point. This problem can be addressed by anisotropically
weighting the error with the structure tensor [5].

The structure tensor at xk, S(xk) ∈ R3 is defined as the autocorrelation of
the intensity gradient ∇I(x) in a neighborhood Ωk:

S(xk) = EΩk

{
∇I(x)∇I(x)T

}
=

1
|Ωk|

∑
x∈Ωk

∇I(x)∇I(x)T .

The normalized structure tensor, S(x)=S(x)/||S(x)||2, is positive semidefinite
with a maximum eigenvalue of 1 and an eigenvector aligned with ∇I(x) in Ωk.

Consequently, the norm of e′ = Se is more affected by the component of e
parallel to ∇I(x). In other words, the overall error is less affected by matching



ambiguities due to regular structures than by errors made in the direction of
∇I(x).

Besides weighting the errors, the structure tensor is also used to define anchor
locations. Indeed, its highest eigenvalue λ3 is significantly higher than zero only
for heterogenous areas, making it natural to define hI(x) = λ3(x).

2.4 Transformation Estimation

Given the set C of matching pairs with prior probabilities πij , we propose to
estimate the transform T by maximizing the joint log-likelihood of C and T [7,1]:

T ∗ = arg max
T

E {logP (C, T )} = arg max
T

E {logP (C|T )}+E {logP (T )} . (2)

The first term of (2) tends to honor the detected correspondences. The second
term is a prior on T . This term favors some transforms over others, based on
intrinsic properties of the transforms only. This is a statistical interpretation of
the regularization energy used in [4,6,9]. We will use the following prior:

logP (T ) = −λ2
∑
k,l

ak,l||Lk − Ll||2 + cst,

where ||.||2 is the Frobenius norm and ak,l =
∑

x wk(x)wl(x)
(

1P
x wk(x)+ 1P

x wl(x)

)
is an overlapping coefficient. This expression states that transforms are more
likely if nearby affine components (components that share a common affecting
area) are close to each other. Interestingly, this term is equivalent to the regu-
larization energy defined in [6].

An efficient method to optimize (2) is EM-ICP [7]. This algorithm consists in
alternatively optimizing the criterion for C considering T fixed (E-step) and for
T considering C fixed (M-step). If enough matching pairs are selected, EM-ICP
is very robust to noise. It is thus well suited to cope with the block matching
issues. The E-step simply results in computing the matching probabilities:

(C)ij =
πijp(si,j |mi, T )∑
k πikp(si,j |mk, T )

, (3)

where the expression of p(si,j |mi, T ) is accounts for the matching ambiguities:

p(si,j |mi, T ) = exp
(
−||S(mi)(mi − T ∗ si,j ||2

2σ2
n

)
.

The M-step then consists in optimizing the parameters of T :

T ∗ = arg max
T

N∑
i=1

M∑
j=1

(C)ij log p(si,j |mi, T )− λ2
K∑

k,l=1

ak,l||Lk − Ll||2. (4)



Unlike affine transforms, this equation does not have an obvious solution for the
parameters Lk, due to the exponential map of (1). Therefore, we propose a first
order approximation in which T (x) is approximated by:

T (x) ≈ I +
N∑
k=1

wk(x)Lkx̃.

In that case, optimizing (4) amounts to the quadratic programming (QP):

l∗ = arg min
l

(Hl −D)TS(Hl −D) + λ2lTAl, (5)

where:

l ∈ R12K is the vector of the elements of Lk taken row-wise and concatenated,
H ∈ R3N×12K is the interpolation matrix. Each 3 × 12 block [H]ij corre-

sponds to point mi = (xi, yi, zi) and the jth anchor aj and is equal to
I3 ⊗ (wj(mi)m̃i)T , where I3 is the 3 × 3 identity matrix and ⊗ stands for
the Kronecker product,

D ∈ R3N is the vector obtained by taking, for each mi, the barycenter of its
matches si weighted by (C)ij (the equivalence between criterion (4) and the
use of barycenters is justified in [7].),

S ∈ R3N×3N is the block diagonal matrix of the structure tensor. Each 3 × 3
block on the diagonal corresponds to the structure tensor at point mi,

A ∈ R12K×12K is the prior matrix with (A)k 6=l = −ak,l and (A)kk =
∑
l ak,l.

In practice, the weights wi and overlapping coefficients ak,l are thresholded out,
so that H, S and A are sparse. Taking the derivative of (5) w.r.t. l and setting
it to 0 yields the linear system:

(HTSH + λ2A)l = HTSD. (6)

Interestingly, the regularization term is optimized simultaneously with the simi-
larity term, unlike [6] where an ad-hoc one step gradient descent is performed on
the regularization energy. Alternating the estimation of matching probabilities
(3) and the estimation of parameters (6) until convergence results in a globally
optimal LEPT that best fits the observations of the block matching.

2.5 Weights: the Kriging Estimator

In [6,2], the weights wk(x) are simply a normalized Gaussian function of the
distance between the point and the anchor. Here we use the Kriging estimator
(KE) to define these weights, as in [8]. The KE has the advantage of adapting
the weights to the spatial distribution of anchors in a statistically sound way.

Let us interpret LEPT as random fields of matrix logarithms L(x) for which
Lk are observations at locations ak. In this interpretation, the weights are the
coefficients of a linear estimator of L at x. KE is a best linear unbiased estimator
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Fig. 1. (Left) LEPT (displayed as checkpoints) are able to accurately recover the syn-
thetic field (deformed grid) within the brain volume (Middle) Influence of N on the
recovering accuracy (the x−axis is logarithmic) (Right) Influence of K on the recover-
ing accuracy.

for the field L(x), given a (presumably valid) model of its spatial correlation en-
coded in a variogram: γ(x,y)=E

{
|L(x)− L(y)|2/2

}
. Given (γa(x))i=γ(ai,x),

the weights w(x)=(w1(x)...wK(x))T are obtained by solving the linear system:

[
w(x)
µ

]
= Γ (x)−1γa(x), with Γ (x) =

[
(γ(ai,aj)) 1

1T 0

]
∈ R(K+1)×(K+1)

where µ is the Lagrange multiplier ensuring unbiasedness of the estimate. In this
paper an exponential isotropic variogram is used: γ(x,y) = 1− e−||x−y||/t.

3 Experiments and Results

The method was tested on a dataset of ten brain T1-MRI (resolution: 256×256
×176). A synthetic experiment was first carried out. Inter-subject registration
was then performed. Unless otherwise mentioned, parameter values are: K=500,
N=(20+5r)3 at scale r, R=5, M=20, Nit=5, t=40, λ2=0.3, σe=σn=5. For block
matching, blocks of 53 voxels and searching region of 93 voxels are used.

3.1 Synthetic Experiments

The knowledge of a ground true deformation helps understanding how the algo-
rithm behaves. A synthetic field T (x) = sin(πx50 ) cos(πy50 )(3, 3, 3)T was applied to
the image. Both adaptive LEPT and diffeomorphic demons accurately recovered
T within the brain volume, with mean absolute error of 0.21 and 0.12 respectively
(Fig. 1) and were invertible (min. jacobian of 0.67 and 0.65 respectively).

The registration was then performed for different numberN of sparse matches
and K of anchors. The evolution of the accuracy with N (Fig. 1) suggests that
the method is not sensitive to the number of selected matches as long as this
number is high compared to K. For lower N , the affine transforms can no more
be robustly estimated and the performances collapse. The evolution of the ac-
curacy with K (Fig. 1) tells us that no loss of accuracy is observed between
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Fig. 2. Dice’s coefficient with a 95% CI. Adaptive LEPT aligns structures better than
diffeomorphic demons. The difference is especially significant for low contrast structures
such as the putamen and the insluae.

K = 700 and K = 300, suggesting that the number of selected matches is the
bottleneck here. For lower K, the performance decreases, but the method does
not diverge, since all affine components can still be robustly estimated.

3.2 Inter-Subject Registration

The method was then applied to register ten multiple-sclerosis (MS) patients to
one healthy subject. Each brain was skull stripped and affinely registered to the
subject. Images were manually segmented by an expert in a validated protocol,
providing an external validation criterion for the registration. More precisely,
the Dice’s coefficient between the subject label image and the label image of the
patients after alignment were computed for each tissue (Fig. 2).

As a whole, adaptive LEPT aligns tissues better than diffeomorphic demons.
For high contrast regions (e.g. lateral ventricles), both methods achieve com-
parable results. However, diffeomorphic demons tend to excessively favor these
regions at the cost of a very poor alignment of low contrast structures (e.g.
putamen). For these structures, the difference of performance between the two
algorithms is strongly significant.

Fig. 3 depicts the aligned contours for one slice, along with the deformed
grid. Again, the Jacobian of the field never fell under 0 (min. jacobian of 0.12).
However, a strong pinching effect appeared in the lobe regions. These regions are
typically subject specific and, while good pairs of local matches can be detected,
they may be misleading in the transform estimation. Finally, note that the non-
rigid deformation of the structures (as seen e.g. by the bending of the lateral
ventricles) would not be captured if a single affine region was defined for them
as in the previous LEPT registration framework.

4 Conclusion and Future Work

This paper introduced a registration algorithm that adaptively fits a LEPT based
on a set of sparse matches. Results on inter-subject registration show that LEPT



Fig. 3. (Left to right) Subject with labeled tissues, projected labels of the patient’s
tissues after diffeomorphic demons registration and after adaptive LEPT registration,
patient image with the deformed grid overlaid.

are able to capture the local affine deformations occurring at small scales. In a
future work, we want to investigate an adaptive way of incrementally defining
the anchor locations such as in [3]. The choice of location could include a cost
related to the confidence of the estimation in order to avoid the pinching effect
observed in Fig. 3.
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