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Abstract

Multi-fiber models have been introduced as an efficient
and interpretable way of representing the diffusion signal
in areas with crossing fibers. However, no metric has been
provided to use multi-fiber features in registration. The nor-
malized correlation coefficient is commonly used in regis-
tration of scalar images due to its invariance under linear
transformations of the intensities. In this paper, we gen-
eralize the normalized correlation coefficient for tensor and
multi-tensor images. The generalized invariance allows lin-
ear transformations of the diffusion eigenvalues in the loga-
rithmic domain. We subsequently use it as a metric for block
matching and show that multi-tensor features leverage the
accuracy of the matching in areas with crossing fibers.

1. Introduction

Diffusion tensor imaging (DTI) provides an insight into
the local diffusion of water molecules in tissues. Brain
DTI enables the visualization and the characterization of
fiber tracts in the white matter [5]. The development of
registration methods for DTI has been motivated by the
impossibility, in T1-weighted images, to distinguish struc-
tures in the white matter. Methods based on scalar fea-
tures (e.g. [4, 7, 11]) and on the entire tensor information
(e.g. [8, 14, 12]) have been proposed and it has been shown
that methods based on the full tensor are better at detecting
white matter differences [13].

A classical limitation of DTI is its incapacity to represent
complex structures such as crossing fibers [6]. To overcome
this limitation, novel sampling schemes (such as high angu-
lar resolution diffusion imaging, HARDI [10]) and novel
model-based and model-free methods to analyze the diffu-
sion weighted signals have emerged. These methods in-
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Figure 1. Just as the common normalized correlation coefficient
is invariant under linear transformation of the image intensity, the
generalized correlation coefficient is invariant under linear trans-
formations of the diffusion eigenvalues in the log-domain. The
three blocks of each row have a generalized correlation coefficient
equal to 1 between each other. The color coding of the tensor
images indicate the direction of the principal eigenvector, show-
ing that linear transformations in the space of tensors and multi-
tensors preserve the eigenvectors but affect the eigenvalues.

clude Q-ball imaging (QBI), diffusion spectrum imaging
(DSI), spherical deconvolution (SD) and generalized diffu-
sion tensor imaging (GDTI), among others. Most of these
methods aim at describing the general shape of the diffu-
sion profile. Registration methods taking advantage of the
information contained in these higher order diffusion mod-
els have been proposed [3, 2].

The principal drawback of these recent models is that
they do not consider each fiber independently, and their in-
terpretability is somewhat challenging. In contrast, multi-
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fiber models [10] represent the diffusion as a gaussian mix-
ture model (GMM) in which each component corresponds
to each fiber present at that location. Since the probability
of the crossing of more than two fibers is extremely low, a
second or third (one component being the isotropic diffu-
sion) order GMM is typically used:

S = S0

(
f0e
−bDiso + f1e

−bgT D1g + f2e
−bgT D2g

)
, (1)

where Diso is the diffusivity of free water, Di are the
anisotropic diffusion tensors and fi are the relative volu-
metric occupancy. In this model, the water molecules are
assumed to be in one of the channels with a probability
corresponding to the volumetric occupancy of that channel
in the voxel. With such a model, the diffusion parameters
can be computed independently for each fiber bundle. This
property is of central interest for tractography and fiber in-
tegrity assessment [9]. Besides, considering fiber bundles
independently should allow the definition of novel metric
for matching multi-tensor diffusion images, with the expec-
tation to further improve the characterization of white mat-
ter differences between subjects. However, to the best of
our knowledge, no such metric has been defined and it is
precisely the goal of this paper to initiate this investigation.

The value of white matter diffusivity varies from one
subject to the other, partly explained by the difference in
myelination between individuals. The metric used for reg-
istration of diffusion images shall therefore account for this
variability. In this paper, we generalize the normalized cor-
relation coefficient, widely used in block matching of scalar
images for its invariance under linear transformations of the
intensities in the image block. In particular, our generalized
correlation coefficient is invariant under linear transforma-
tions of the logarithm of the eigenvalues of the diffusion
tensors, while being sensitive to changes in orientation of
these tensors (Fig. 1).

The remaining of this paper is organized as follows. Sec-
tion 2 introduces the generalized correlation coefficient and
specifies a particular expression for single-tensor and multi-
tensors DTI. Section 3 shows prior results on a brain diffu-
sion image. A comparison between single-tensor and multi-
tensor matching in terms of accuracy and robustness is pro-
vided. Section 4 summarizes the paper.

2. Methods

The normalized correlation coefficient used for block
matching in scalar images is generalized in this section to
single-tensor and multi-tensor images. We proceed in two
steps. First, we extend the normalized correlation coeffi-
cient to its most general form and determine the constraints
on its components to maintain its invariance property and
its interpretability as a similarity metric. Second, we make

sound choices of these components for the single-tensor and
multi-tensor cases.

2.1. Generalized correlation coefficient

Let R and S be two image blocks with N voxels whose
locations are referred to as x. The common definition for
the normalized correlation coefficient between R and S is:

ρ(R,S) =
〈

R− µR

||R− µR||
,
S − µS

||S − µR||

〉
,

where µR is the mean of R over the image domain. This
coefficient is invariant under any linear transformation of
the image values:

R′ = aR+ b⇒ ρ(R′, S) = ρ(R,S). (2)

Ruiz-Alzola et al. [8] proposed to extend the normalized
correlation coefficient to cope with vector images1. Their
idea relies on rewriting R− µR as

R− µR = R− 〈R, T 〉 T

||T ||2
,

where they define T as an image of the same modality as R
(scalar, vector or tensor) containing only 1’s. The invariance
property becomes:

R′ = aR+ bT ⇒ ρ(R′, S) = ρ(R,S). (3)

In the remaining of this section, we keep T as a general
constant image and address the following question: can the
normalized correlation coefficient be further generalized by
allowing the inner product 〈., .〉 to be a more general scalar
mapping (i.e. a mapping from a pair of image blocks to the
scalar field)? We denote by m(X,Y ) this scalar mapping
and define the generalized norm as n2

m(X) = m(X,X).
In its most general form, the generalized correlation co-

efficient therefore reads:

ρ(R,S) = m

(
R−m(R, T )T

nm(R−m(R, T )T )
,

S −m(S, T )T
nm(S −m(S, T )T )

)
,

where m(R, T )T can be thought of as a generalization of
the mean image (the projection of the image on the con-
stant image) and the denominators can be thought of as a
generalization of the variance images. In the next section,
the properties required by m to ensure invariance and inter-
pretability of the correlation coefficient are exposed.

2.2. Valid Scalar Mappings

Not all scalar mappings preserve the invariance prop-
erty (3) and the interpretability of the resulting correlation
coefficient as a similarity metric. We call valid mappings

1They also present a tensor extension by rasterizing the tensor to a vec-
tor which, however, does not account for the structure of the tensor space.
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the scalar mappings that preserve the invariance and inter-
pretability of the correlation coefficient. In the following,
we derive the conditions on m to be a valid mapping.

Let us start by deriving the conditions on m for the cor-
relation coefficient to be interpretable. As a similarity mea-
sure, we want the correlation coefficient to be equal to 1
when the two image blocks are identical:

ρ(R,R) = 1, (4)

and we want it to be lower or equal to 1 in absolute value in
any other case:

|ρ(R,S)| ≤ 1. (5)

Condition (4) is satisfied if

m(aR, aR) = a2m(R,R), (6)

and condition (5) is satisfied if

|m(R,S)| ≤ nm(R)nm(S). (7)

We also want the correlation coefficient to be symmetric,
which is satisfied if the mapping is symmetric:

m(R,S) = m(S,R). (8)

Now, the invariance under linear transformations, i.e.

ρ(aR+ bT, S) = ρ(R,S),

is preserved if the following two conditions are respected:

m(aR, T ) = am(R, T ) (9)
m(R+ T, T ) = m(R, T ) +m(T, T ). (10)

Note that these two last conditions are related to cases
where one of the argument of the mapping is the constant
image T . Linearity of the mapping with respect to any pair
of images is a sufficient but not a necessary condition for
valid mappings. Therefore, the set of valid scalar mappings
includes, but is not restricted to, inner products. This prop-
erty will turn out to be highly relevant when defining a gen-
eralized correlation coefficient in the multi-tensor case.

2.3. The Single-Tensor Case

The space of symmetric positive semi-definite matrices
is not a vector space in the canonical parameterization.
However, Arsigny et al. [1] proposed a vector space struc-
ture for diffusion tensor processing by representing every
diffusion matrix by its matrix logarithm. An inner product
can then be defined in the log-domain. Given two tensor
image blocks R and S defined on a domain Ω such that for
x ∈ Ω, R takes the value R(x), the inner product can be
defined as:

m1(R,S) =
∑
x∈Ω

〈logR(x), logS(x)〉 (11)

=
∑
x∈Ω

Trace
(
logR(x)T logS(x)

)
.(12)

To satisfy conditions (6-10), the basic arithmetic operations
need also be defined in the log-domain so that the invariance
property of the correlation coefficient becomes:

logR′(x) = a logR(x) + bT (x) (13)
⇒ ρ(R′, S) = ρ(R,S). (14)

Since no constraint is imposed on T , its choice is driven by
the targeted invariance. By choosing T as a tensor image
whose voxels are proportional to the identity matrix, i.e.:

T (x) = T0 ∝ I3, ∀x ∈ Ω,

the invariance (14) becomes:

R′(x) = ebRa ⇒ ρ(R′, S) = ρ(R,S).

This invariance preserves the eigenvectors and allows lin-
ear transformations of the eigenvalues λ1, λ2, λ3 in the log-
domain:

λ′i = ebλa
i . (15)

Any pair of blocks having their eigenvectors aligned at each
voxel, with eigenvalues related by (15) will thus be consid-
ered a perfect match and have a correlation coefficient equal
to 1.

2.4. The Multi-Tensor Case

In the multi-tensor model, the diffusion signal is as-
sumed to emanate from a gaussian mixture model as in (1).
Since the fractions fi sum up to 1, the multi-tensor images
can be parameterized by:

R(x) =
(
f1(x), R1(x), f2(x), R2(x)

)
.

The expression of the signal (1) tells us that the points
R12 = (f1, R1, f2, R2) and R21 = (f2, R2, f1, R1) need
to be identified. This folding of the space makes it hard,
if not impossible, to represent it as a vector space. Conse-
quently, an inner product for mutli-tensor images cannot be
defined and a more general scalar mapping m is required.

Fiber-crossings only occur sparsely in the image. We
therefore want our generalized correlation coefficient to
tend towards the single-tensor inner product when only one
fiber is present in all voxels of both image blocks. In other
words, we want:

lim
f1→1,f2→0
g1→1,g2→0

m(R,S) = m1(R1, S1), (16)

where R = (f1, R1, f2, R2) and S = (g1, S1, g2, S2). This
condition is added to conditions (6-10) of valid scalar map-
pings.

We start by separating the spatial dependency in the
scalar mapping, just as in (12):

m(R,S) =
∑
x∈Ω

ml(R(x), S(x)), (17)
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where ml is now a scalar mapping in the space of multi-
tensors (and not multi-tensor images). A natural general-
ization of (12) would come from defining ml as a linear
combination of single-tensor inner products, with coeffi-
cients proportional to the fractions. In this way, when the
fractions tend to zero, the corresponding terms in the linear
combination vanish and the scalar mapping sums up to a
single-tensor inner product.

Pairing the tensors of the multi-tensor model in two clus-
ters on which single-tensor inner products are computed re-
quires caution. Indeed, there is no sound reason to pair
R1(x) with S1(x) rather than S2(x). We will select, at
each voxel, the pairings that maximizes the absolute value
of the scalar mapping. Let d1 and d2 be the two possible
linear combinations:

d1 = f1g1 〈R1, S1〉+ f2g2 〈R2, S2〉 (18)
d2 = f1g2 〈R1, S2〉+ f2g1 〈R2, S1〉 . (19)

The local scalar mapping is defined as:

ml(R,S) = arg max
di

|di|. (20)

The absolute value is required to satisfy (16): in the limit
of the single-tensor case, d1 or d2 would tend to zero while
the other one, equal to single-tensor scalar product, might
be negative.

To verify the invariance property of the resulting corre-
lation coefficient, both the constant element T and the basic
arithmetics (multiplication by a scalar and addition of the
constant element) need to be defined for multi-tensor im-
ages. The constant element naturally comes as:

T (x) ∝ (0.5, T0, 0.5, T0), ∀x ∈ Ω.

As for the arithmetic operations, they are again defined in
the log-domain. The multiplication by a scalar is naturally
generalized by:

a(f1, logR1, f2, logR2) = (f1, a logR1, f2, a logR2).
(21)

The addition of the constant element to a multi-tensor image
can be defined as:

R+ T = (f1, log(R1) + T0, f2, log(R2) + T0). (22)

Note that only the addition of the constant element is re-
quired to define the generalized correlation coefficient.

It is straightforward to check that these definitions of
scalar mapping and basic operations respect conditions (6-
10). The invariance property can now be expanded:

R′ = aR+ bT = (f1, e
bRa

1 , f2, e
bRa

2)
⇒ ρ(R′, S) = ρ(R,S) (23)

This invariance is a natural generalization of the invariance
property for single-tensor images. In terms of eigenvalues,
(23) reads:

λ′i = ebλa
i and κ′i = ebκa

i

⇒ ρ(R′, S) = ρ(R,S), (24)

where λi are the eigenvalues of R1 and κi are the eigenval-
ues of R2.

Any pair of blocks having their eigenvectors aligned at
each voxel in both channels, with equal fractions and with
eigenvalues related by (15) will thus be considered a perfect
match and have a correlation coefficient equal to 1. On the
contrary, if the eigenvectors are misaligned, the correlation
coefficient will not be preserved.

3. Experiments and Results
We assess the ability of the metric to distinguish be-

tween anatomical features under the influence of deforma-
tion and noise. Diffusion weighted (DW) signals were ob-
tained for a full brain volume and both a single-tensor DTI
and a multi-tensor DTI models were constructed using the
technique described in [9]. Throughout the volume, 400
anatomical landmarks presenting fiber crossings were de-
tected (Fig. 2(a)). A random smooth synthetic field was
applied to both the single-tensor and the multi-tensor DTI
(Fig. 2(b)).

Block matching with the generalized correlation coeffi-
cient was used to estimate the location of the anatomical
features in the deformed image. The blocks were 7× 7 and
correspondences were sought in regions of size 31 × 31.
Only one iteration at one scale was performed. Symmet-
ric matrices of gaussian noise were then applied in the log-
domain at each voxel in the single-tensor DTI and in the
multi-tensor DTI (independently in each channel). The
standard deviation of the noise goes from 0% to 20% of
the mean Frobenius norm of the log-tensor computed in the
single-tensor DTI. Two quantities were measured: the accu-

(a) (b)

Figure 2. (a) Repartition of the volumetric fractions encoded as a
RGB map. Green areas indicate the presence of a second fiber. (b)
Synthetic random smooth deformation field applied to the images.
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racy and the saliency of the correspondence. The accuracy
is assessed by the target registration error (Fig. 3 and 4(a)).
The multi-tensor features appear to be more robust to noise.
For an additive gaussian noise of 10% and over, the differ-
ence of accuracy is significant on average (p < 10−9). The
saliency of the correspondence is computed as the differ-
ence between the correlation coefficient of the correct cor-
respondence and the mean of the correlation coefficient in
the search region, expressed as a number of standard devi-
ations (Fig. 3 and 4(b)). The saliency of the correct match
is significantly stronger on average using multi-tensor fea-
tures than for single-tensor features (p < 10−15). This tells
us that, although the correct match may no more be the lo-
cal maximum of the similarity map in presence of noise, its
similarity value is still much larger than the average metric
value in the region of interest. Qualitative results are also
depicted in Fig. 5 where multi-tensors appear at the inter-
face between the white matter and the grey matter.

The volumetric fractions fi depend on the angle at which
two fibers cross each other. This phenomenon, known as the
partial volume effect, modifies the diffusion signal at every
voxel of fiber crossing areas. Therefore, the content of both
the multi-fiber and the single-tensor models will be modi-
fied. The extreme case occurs when two fibers are cross-
ing in one image but lie in separate voxels in the other im-
ages. This phenomenon was simulated by setting to zero
the smallest fraction at each voxel in the deformed multi-
tensor image. We then compared the results by performing
(1) single-tensor registration between the resulting single
tensor image and the single-tensor model of the original im-
age and (2) multi-tensor registration between the resulting
single-tensor image and the original multi-tensor model.

The results in terms of accuracy and saliency for the
same 400 anatomical landmarks are reported on Fig. 4(c-
d). The differences between the two features are highly sig-
nificant (p < 10−15), although not surprising. Indeed, the
multi-tensor model will still contain part of the information
used for the matching, while the single-tensor model will
present a very different content.

Since the generalized correlation coefficient for multi-
tensor images is equal to the single-tensor one in regions
with single fibers, the better alignment of multi-tensor mod-
els in crossing fiber areas is obtained at no cost for the
single-fiber areas.

4. Conclusion
In this paper, the normalized correlation coefficient has

been generalized to tensor and multi-tensor images. The
generalized invariance allows linear transformations of the
tensor eigenvalues in the log-domain. Its use in block
matching shows overall good performances and signifi-
cantly better performances when used with multi-tensor im-
ages, leveraging the registration accuracy in areas with fiber

0.5 

0 

1 

0.8 

0.6 

1 

Figure 3. The use of multi-tensor features allow more accurate and
more robust matchings. This figure depicts the similarity maps
in the presence of 0% (left), 10% (middle) and 20% (right) addi-
tive gaussian noise, for both multi-tensor block matching (top) and
single-tensor block matching (bottom). The ◦ indicates the correct
match and the + indicates the maximum of the similarity metric.

(a) (b)

(c) (d)

Figure 4. Saliency and accuracy compared for both multi-tensor
and single-tensor block matching, (a-b) in the presence of additive
gaussian noise, (c-d) in the case where one of the crossing fiber
disappears from the block, e.g. due to a different crossing angle.

crossing. In a future work, a comparison with existing regis-
tration of high order diffusion models should be performed.
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