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The origins of system identification

» The early work in system identification was developed by the
statistics and time series communities

* It has its roots in the work of Gauss (1809) and Fisher
(1912) and the theory of stochastic processes

» See Deistler (2002) for an excellent survey of this work




Start the of the model-based control era

1960: Kalman’s key papers - start of the state-space era
(Kalman:1960a,b)

{ Tit1 Az + Buy

Yt Czxy

* Development of a model-based theory for prediction,
filtering and control

« Kalman filter replaces Wiener filter

* Pole placement and LQG control

» Applications initially in areas where good models are
available (aerospace, mechanical, electrical systems)

Growing pressure to apply these modern techniques to
areas where models are not available from physics

—> Need for system identification




|dentification in a nutshell
What is system identification ?

|dentification is the task of constructing a dynamical model
that can predict the outputs of a dynamical system:

Either driven by input and noise: Or driven by noise only:

w(t)
| v(®) v
u(t) y(t) w(t) y(t)
—>» System > —>» System

Predict y(t) from past u(), y() data Predict y(t) from past y() data only




What kind of dynamical models ?

State-space models

with measured input:

rty1 = Axi+ Buy+ Key
Yt = Cx + e

Input/output models

with measured input:

Yt +a1Yt—1 + ...+ anYi—n
= biut—1+ ... +Ut—m

+e+creig_1+ ...+ cpei_p

without measured input:

i1 = Amt -+ Ket
Yt = Cwt+ e

without measured input:

Yt +a1Yt—1 + ...+ anYi—n

= et t+crei—1+ ...+ cpei_p
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|dentification in the engineering world:
The two milestone papers of 1965

« Ho and Kalman (1965), "Effective construction of linear state-
variable models from input-output data’, Regelungstechnik, Vol.
12, pp. 545-548.

Gave birth to realization theory =3 subspace identification
» Astrom and Bohlin (1965), "Numerical identification of linear
dynamic systems from normal operating records’, Proc. IFAC

Symp on Self Adaptive Systems, Teddington, UK.

Gave birth to Prediction Error Identification (PEI)




Realization theory
How to go from an infinite description of a system
H(z) = 2, Hpz™"
to a finite description :

H(z)=C(zI — A)~'B

{H,,Hs,Hs,...} = {A,B,C} with A € R"X" B¢ R"X™m C ¢ RPX"

Two aspects :
- find the McMillan degree of H(z) — dim A
- find the parameters of A, B, C.

o o)
Li41
— Hiug_ <
Yt kz_:l UL —E {yt

ACEt -+ B’LLt




Key tool: the Hankel matrix

Hl Hz H3 H4 C
H2 H3 H4 H5 CA 0
H=|H, H, Hy Hg ... | =| CcaA?2 ||[B AB A’B ..|]

If the McMillan degree of H(z) is n, then
1. rank H=n
2. 3 A, B,C such that H, = CA*'B with A € R"*X", B € R**X™,C € RPX"




Stochastic realization theory (1970-1975)
(Akaike, 1974)

Combines realization theory and innovations theory

Given the covariance sequence {Rg, R1, R>,...} of a zero-mean stochastic pro-
cess {y:}, where R, = E{y:y! .}, find a minimal Markovian representation for

{ye}:

Tiy1 = Az + Keg (1)
Yt = Cx+ &

where ¢; is a zero-mean white noise sequence, i.e. find the state-space matrices
{A, K, C} with n = dim(A) minimal, such that the covariance of the output of
(1) is exactly Ry.

Solution based on the Hankel matrix formed from the R,..

Basis for subspace identification, developed much later




ARMAX, Likelihood function and the
Prediction Error framework

Astrém and Bohlin (1965)
e Input-output formulation : the ARMAX model structure
Az Yy = B(z7YHuy + AC(z Ve, {et} : i.i.d.
e Prediction errors {e;}: C(z7 Ve = A(z7 Yy — B(z7Hu

e Likelihood function for a Gaussian p.d.f.:

N
1
L(6) = ~33 ) €7(0) — Nlog X + constant
t=1

N
1
- - 2 — -
max L(0) <= min 5 ;:1 e;(0) min VN (0)

6

A~ 2 A
= 2 _
arg min VN(B), A= —Vn(O)

e = adoptV(0) = 3 Ziil e2(0) as a reasonable criterion even in the absence
of a Gaussian probability function: Prediction Error framework; originally
suggested by Gauss (1809): see Astrom (1980).




State of the art around 1975

Two fundamentally different approaches:
- State-space model: by Hankel matrix factorization. Projection
methods. Easy but not optimal. No need for parametrization.

- 1/0 model : by minimization of PE criterion. Slower but opti-
mal. Requires choice of model structure. Allows characterization of
variance errors through Fisher information matrix.

After 1975 the parametric (prediction error) approach took over the field.

Main driving force behind the success of PE methods: Lennart Ljung, and
software development (with increased computation speed)

Hankel matrix approach re-emerged after 1990: subspace state-space
methods.
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Prediction Error Identification in one slide

True system S : y; = Go(2)us + Ho(2)ey
——

Model set M : y; = G(z,0)us + H(z,0)es

Model < predictor: §y:—1(0) = H '(2,0)G(z,0)us + (1 — H ' (2,0))y,
Prediction error: €:(0) = y¢ — Utjt—1(0)

Criterion Vn (8, ZV) = &~ S, [|e:(0)]]?

The parameter estimate: On = arg mingep, Vn (0, ZN)

Transfer function estimates: G(z,0n), H(z,0n)

If 360, : G(Z, 90) = Go(Z) and H(Z, 00) = Ho(Z), then:

VIN(On — 60) "=5° N(0, Py)




Prior
information Objective Data ZV

Choice of model
structure M(0)

\ 4

Selection of a particular
model by minimization
of a criterion Vx (60, ZN)

A

On = arg min Vy (6, ZN)

\4

Validation of a <
selected model

No

Yes




Key new concept:

identification as a design problem (1986)
(Gevers&lLjung,1986; Wahlberg&Ljung,1986)

Basic observation:

every model is at best an approximation of the exact system
—> |t contains errors

Two aspects:

* Model structure and criterion should be tuned towards the
application of the model

e Experiment should be tuned towards the application criterion

Prediction Error Identification is well suited to this design view




Example

When a system y; = Go(z)us + vy is modeled by a model structure
y: = G(z,0)u; + €, the PE criterion minimizes

N 1 " . :
On — argminVv(0) = 2—/ {| G(e7%,0) — Go(e7®) |? @y (w) + Py (w)} dw
T J—x
— If the application is to have a good model in a narrow bandwidth defined by

a bandpass filter W (e?«), then open loop identification with an input spectrum
b, (w) = |W(e?*)|2®,(w) will meet that objective.




1965 - 2000: what had been accomplished?

e Both approaches have been developed:
*» Parametric Prediction Error approach
*» Non-parametric state-space (subspace) approach

e A frequency domain approach has been developed, showing
advantages of periodic excitation

e Theory is for the most part well understood
e Field of applications have been enormously widened

* Model Predictive Control has become the standard for most
control applications

e Progress in nonlinear system identification




Bottlenecks and limitations

e Modeling and identification is still the most costly part of any
advanced control design

e Model building accounts for 50% to 75% of total cost in an
advanced control project

* Major bottleneck: search for the best model structure

e Prediction error criterion is non-convex: problem of local minima
e |[dentification of MIMO systems is still a difficult task

e Nonlinear identification is still in its infancy

e |dentification of structured systems (e.g. distributed and
networked control systems)

20




A I IR I

Outline

The origins of system identification

1965: the birth of identification in engineering

The parametric Prediction Error framework

Search for the model structure: key stumbling block
Major challenge today: reduce the cost of identification
Non-parametric approaches

Reducing the cost of the experiment
Application-oriented experiment design

Present research areas

Conclusions

21




Key stumbling block in PE identification:
choice of model structure

Prior info Objective Data ZN

Choice of model
structure M (0)

\ 4

\ 4
Selection of a particular
model by minimization
of a criterion Vi (0, ZN)

A

On = arg min Vy (0, ZN)

\4

Validation <
No of the model

Yes

Y

End

22




lllustration (courtesy Pintelon, Schoukens, Ljung)

7000 data are generated by a «true» BJ system:

0.0947 + 0.2463z~1 + 0.0947z 2 1+ 0.776z1

— U + e
Ye 1 — 0.53762—! + 0.73572—2  ° ' 1_0.15842-1 °

Apply the standard procedure of the Matlab Sl toolbox:

e Split data set into two (estimation and validation data set)

e Estimate delay: d=0

e Initial guess with N4SID: yields state-space model m3 of order 3

e Compare with state-space models of order 1 and 2: m1 and m2
e Fits on validated data:

= m1: 57.6 % fit
=» m2: 86.1 % fit
= m3: 87.1 % fit

Fit = part of the output variation that is explained by the model

23




Analysis of model m3:

Correlation function of residuals. Output y1
16 :

Cross corr. function between input u1 and residuals from output y1
- 0.1 - -

0.05¢
0.5} 1
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Conclusion of the analysis

e Common poles and zeros in /O and noise model
e Eliminate common poles and zeroes and try BJ model of order 2

* This yields an estimated model with fit 87.2%

0.0902 + 0.2493z~1 4+ 0.0912z"2 1+ 0.9726z"1
Yt = — — U + — €t
1 —0.53772—1 + 0.73572—2 1—0.1579z1

Correlation function of residuals. Output y1  Cross corr. function between input u1 and residuals from output y1
1¢ - - 0.05 - - -

>3 - {ﬁ @M (
0 f oY \@J f (g
0 (\UAOF\(.)(I)UO( )( \ﬂ(\‘L( )/\“\/‘\f\f'\f'\(')\ud\} % %
(@)

~05 - - ~0.05
0 10 20 30 ~40  -20 0 20 40

lag lag

N~

O
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Major goal of present research:
reducing the cost of the identification

What is the cost of modeling and identification ?

1. Man-hour costs

=== Reduce human intervention, particularly expert
intervention. User-friendly identification.

2. Cost of the experiment

=== Reduce experiment time and performance
degradation during data collection.

Optimal experiment design.
3. Cost of estimating useless system properties
=== (Cost of complexity.
Application-oriented experiment design

27
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Steps towards user-friendly identification

Main idea;

* first compute a nonparametric estimate of the
system and noise distribution

* use these as a starting point for more efficient
parametric PE identification

Two possible strategies:
* state-space subspace identification
* CVA (Larimore, 1990, 1996)

* N4SID (Van Overschee and De Moor, 1994)
* MOESP (Verhaegen, 1994)

e nonparametric frequency domain identification
(VUB group: Pintelon, Schoukens, Rolain, Vandersteen, et al.)

29




Key step in the subspace methods

e An estimate of the Hankel matrix of impulse responses is
obtained from |/O data.

e Recall the basic tool y(t) = > o, Hg u(t — k)

_Hl H2 H3 H4 C
H, Hs H, Hy ... CA ;
H=|H, H Hy Hg ...|=|cCca?2 ||B AB A’B ..

e Perform an SVD of the Hankel matrix
e Truncate by deleting all singular values below some threshold

e This fixes the order of the state space system, i.e. size of A
e A second LS step is needed to compute the remaining matrices

30




Estimation of the Frequency Response Function G(ei)

Time versus frequency domain identification

System and noise model:

y(t) = Go(2)u(t) + v(t) = Go(2)u(t) + Ho(2)e(t)

Time domain PE criterion:

Vn(0) = & Yty (H(2,0)[y(t) — G(2,0)u(t)])’
Frequency domain PE criterion:

V() = £ 50w, (H (K, 0)[Y (k) — G(k, 0)U (K)])®
where G(k, 0) = G(e??7%/N), H(k,0) = H(eI?>"*/N) and

X (k) = St a(t)e 927k N = DFT of x(t)

31




Precise frequency domain formulation

For a finite recordt =10,...,N — 1:

y(t) = Go(q)u(t) +ta(t) + Ho(q)e(t) + tu(t).

Frequency domain formulation:

Y (k) Go(Q2)U (k) + Te (%) + Ho(Q)E(K) + T (k)
Go(Q)U (k) + Ho(U)E(k) +  T(%)
N—_——

leakage term

Frequency domain criterion becomes:

Viv(6) = & z,i_ﬁﬂ (H,;1<0>[Y<k> — GLOU(K) - Tk<e>1)2

32




The Local Polynomial Method (LPM)
(VUB group: Schoukens, Pintelon, Barbé, Rolain, Vandersteen, 2009)

Y (k) = Go(S%)U (k) + Ho (%) E(K) +  T()
——
leakage term
Observation: Go(Q2x) and T(€2g) are smooth rational functions.

R
Go(Utr) = Go()+ > gs(k)r,

s=1

R
To(Qetr) = To(u)+ Y te(k)r®, forr=0,%1,...,+n

s=1
Define
( Or 2 [Go(%) g1(K) ... gr(k); To(Q) ti(k) ... tr(k)]" j
We can estimate 8, k=1,..., N from local measurements

(Uk —n),...,UK),...,U(k+n); Y(k—n),...,Y(k),...,Y(k+n)}

over a local frequency window of size 2n around Q.

33




Benefits of the Local Polynomial Method (LPM)

Excellent nonparametric estimate of G(£2;)

Plus nonparametric estimate of f(ﬂk), and of @v(ﬂk) from residuals
Requires little or no expert user intervention
Both are very useful starting points for parametric estimates

+ G() gives good idea of what Go(£2) looks like

+ ®, (%) can be used to simplify the criterion for estimation of G(£2, 6):

PN [Y (k) —Gi(O)U (k) —T()]”

Risk of local minima with the latter criterion is greatly reduced (Schoukens
et al; CDC-ECC2011)

34




R I I I I

Outline

The origins of system identification

1965: the birth of identification in engineering

The parametric Prediction Error framework

Search for the model structure: key stumbling block
Major challenge today: reduce the cost of identification
Non-parametric approaches

Reducing the cost of the experiment
Application-oriented experiment design

Present research areas

Conclusions

35




Least costly identification for robust control

Classical design:
Minimize a measure of the
uncertainty subject to constraints

Minimize the identification cost
subject to a required quality

Cheapest cost:

Can be the length of the experiment,
the applied signal energy, or the
perturbation cost.

Bombois, Scorletti, Gevers, Van den Hof, Hildebrand, 2004-2006

36




The dual approach to experiment design

lllustration with open loop design

Classical approach:

minq,u(w) det(Pg) or
o subjectto [7_ @, (w)dw < «
Ming, () [~ Var{G(e’*,0n)}dw

Dual approach:

JI, Var{G(e™,0n)} <~ or

Ming () | ®.(w)dw subject to o
JZ. Var{C(G(e’*,0n))} < v

37




Application to least costly experiment design

Disturbance rejection problem

Normal operation:

y: = Go(2)us + vt . 1 _
ur = —C(2)ye } Y= Fe@G. Ut T

During identification, an excitation signal r; is added:

ye = S(2)v + gg(z)S(z)rg
uy = —C(2)S(z)ve+ S(z)ry
——

u’l"

— Performance degradation cost due to y” and u":

N T
N ™ 0 N 12 12
= 5| (oglGo(e7)S(e™)|* + au|S(e7)|?) @r(w) dw

w
min J, subjectto || (2)

o <~ VO € DOy, P,
N, &, (w) 1+C(G(0))G(9)” =7 € ( N 9)

38




[ But is it all worth the effort ? J

lllustration with Landau’s flexible transmission system
(Bombois, Scorletti, 2012)

Experiment design objective
Perform closed-loop identification with fixed controller C;; while

e minimizing performance degradation J,. due to external ®,.(w):

Jr = BuVar{u,} + ByVar{y.}
e maintaining accuracy required by robust control objective:
|Go(e7) — G(e7%,0N)| < Taam(w) Vw W.p.95%

Purpose: use this model to design a better controller

39




Step 1: obtain a cheap initial model

Open-loop experiment with 100 data yields G+

Magnitude (dB)

Bode Diagram

30 ‘ ——————— ‘ ——————— ‘ 10° ¢
10 F
10° b
107
107 : :
_5:)0’2 | - ‘10"1 | - ‘1c‘)° | S ‘101 10 10° ® 10" 10
Frequency (rad/sec)
|Go(e7°)| and |Ginit(e7)] |Go(e7) — Ginit(€7¥)] and ragpm (w)

e G;nit does not satisfy quality constraint for robust control design

e but will be used to compute an optimal ®,.(w)

40




Step 2: computation of closed-loop optimal experiment

Ginit 1S Used to solve the closed-loop optimal design problem.

Two suboptimal solutions for ®,.(w) are sought:
e white noise: ®,(w) = constant
e &, q10(w) = Z,toz_lo cr eI¢% >0

Closed-loop identification (500 data) with these 2 suboptimal spectra:
e with white noise: = J, =22

e with optimal ®,.19(w): = J, =9.3

We note that the performance degradation induced by the (sub)
optimal excitation signal is more than two times smaller than
with white noise excitation

41




15

10

&

o

-5

-10

15

101

-5+

10

-15

Some comparisons:

‘ 10° ¢
56 1 60 1 5;0 260 ZéO 3(;0 3é0 4(;0 4!')0 500 7
10° |
10_1:*
56 160 1;30 260 250 360 séo 460 4éo s00 107 —— —— e e
10 10 10 10
Output perturbation y,. induced by Tadm(w) cOMpared with |Go(e9*) — G(e7*, On)|
®, 10 and by ®, = white obtained with ®,. ;¢ (dotted) and ®,. = white (dashed)

Alternatively, the (sub)optimal excitation allows us to achieve the same
required accuracy in a much shorter time

42
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Basic concepts
(Hjalmarsson, ECC 09 plenary)

A. Waterbed effect - fundamental limitation (Rojas, Welsh, Agiiero, 2009)

For open loop identification with OE model:

[ T N RV ar (G, ) = g

Discussion:

e Energy cost for open loop identification is ffw N®, (w)dw

Requiring low variance everywhere is expensive

Cost is proportional to number of parameters and to noise variance

To get Var{G(e’*,0n)} < 2 Vw requires NE[u?(t)] > yngo?.

sup,, Var{G(e’*,0n)} > xpiaim

= Do not waste your energy at frequencies where you do not need it !!

44




B. Performance degradation and acceptable models
(Gevers & Ljung, 1986; Hjalmarsson, 2009)

Let J be the quantity of interest for the application

With true system: J(Sp); with a model: J(M (0)). Assume M (6p) = Sp.

Performance degradation measure: differentiable function
Vapp(e) = ||j(M(0)) - J(S())“ such that Vapp(HO) = 0.

Set of acceptable models for the application:

{ Dapp 2 {9 : Vapp(0) < %} (v= accuracy) J

Example 1: step response application
With true 0 : yt(00),t =1,..., N

With estimated On : y:(On),t =1,...,N
= Vapp(0) = & Y1e1 [¥:(60) — y(6N)]?

Example 2: steady-state gain for FIR(n) system
= Vapp(0) = 21— 0 — S0y O]?

45




C. Identification uncertainty set

Define identification criterion and assume system is in model set:

Via(0) 2 1{E[e,(6)]2 — 62}. Note that V;4(6o) = 0.

V;a(0) = (0 — 09)T1(00)(0 — o) defines ellipsoid

With probability o, 85 € D;4 (identification uncertainty set):

[ Dia = {0 : NV;q(0) < 02x2%(ng)} where ng =# parametersJ

¢ x2(n) = (B+ vn)? = O(n)

D. Identification with minimal cost

In open loop:  min /_,, N®,(w)dw such that Diy C Dayp

46




Interpretation of D;q C Dy

Let Vopp(0) be three times differentiable. Then:

Dopp = {0 : (0 — 00)TV, (80)(6 — 6o) < 1}
while

D;a

Q

{o: Sy @ = 00" T(00)(0 = 00) < 1}

Therefore:
Dig C Dapp <= [ N.I(60) > ~v.02.x2(ng).V,,, (60) J

identification effort:
data length x information matrix

47




Application-oriented experiment design

Dig C Dapp < [N.I(Ho) > ~.02.x2(ng).V,,,,(60) J
N——

7

identification effort:
data length x information matrix

If V;;)p(eo) is singular, of rank m < ng, then I(6y) can be singular

and x2 (ng) replaced by x2 (m) = identification cost is reduced.

Example: estimation of steady state gain of FIR(n) system
* Y = ZZ;& Orui_1 + et
e Compare white noise input u with variance o2 with constant input u; = o,.

e With constant input, same precision is obtained with n times less input
energy (ex: required data length is n times smaller)

See also Martensson and Hjalmarsson, 2011

48




Application-oriented experiment design

Dia C Dapp <=>[ N.I(6o) > 7.02.X§(n9).V;;p(90)J
N——

7

identification effort:
data length x information matrix

Acceptable performance set

Q-@-Q

|dentification uncertainty
set

Optimal experiment: make N.I(6p) = v.02.x2(ns).V,  (6o)

The two ellipsoids coincide.
Usuallly not possible !

49
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Active research areas

They can be broadly classified in two categories

1. Improving the quality of the estimate

e Regularization methods, Bayesian methods
e Minimizing the Mean Square Error

e Bias-variance trade-off

e Optimal model order selection

2. Experiment design questions

e Optimal experiment design
+ Open loop, closed loop, joint closed loop design
+ Linear systems and nonlinear systems

+ Parametrization of all input spectra

e |Informative experiments and identifiability
+ For networks of dynamical systems
+ For classes of nonlinear models
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1. Regularisation, Bayesian estimation and kernel methods

Connects «classical» system identification with machine learning
and Bayesian estimation.

Simple introduction: consider a linear regression model
YN = PNO+ VN

Least squares estimate:

6 = argming || Yy — ®n0||? = (2L &) 1YN

®1 P may be singular or ill-conditioned
— add regularization term:

6 = arg min ||Yx — dNO||2 +~0T P10
= P®T(®P® +~I)" 'Yy

52




Regularisation, Bayesian estimation, kernel methods (cont’d)

Much present research is on the search for the best regularization term

and on the interpretation: see the excellent survey paper
Pillonetto, Dinuzzo, Chen, De Nicolao, Ljung, 2014

e Kernel-based approach: function estimation in infinite-dimensional space
with added regularization term. Introduced into system identification by
Pillonetto and De Nicolao, 2010

» Empirical Bayes approach: impulse response is modeled as a zero-mean
Gaussian process; the parameters of the pdf are estimated by Max
Likelihood: Rasmussen and Williams, 2006

 This idea was first proposed in the stochastic embedding approach:
Goodwin, Gevers, Ninness, 1992. Connection is established in Ljung, Goodwin,
Aguero, 2014

A key element of the discussion is the model order selection
problem which is closely linked to the bias-variance tradeoft.
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2. Optimal experiment design questions

Key references for optimal experiment design: Goodwin & Payne, 1977; Zarrop,1979

Joint optimal experiment design problem for closed-loop linear systems:

min J, where J can be
C,,;d(z), ‘I",-(w)

e quality criterion. Ex: J = [7_Var(C(Gn(w)))dw or Var(G) < v(w) Yw
e or cost criterion. Ex: J = [T &, (w)dw

Always subject to constraints.

Examples: [* &, (w)dw < o, or |Py(w)| < a Vw

(%7
Tt Ut
~ﬁ>—‘ Cia Go — Yt

Optimal solution for integral criteria and integral constraints only:
Hildebrand, Gevers, Solari, 2014

A\ 4

Solution over a restricted set of spectra for integral and pointwise constraints:
Hjalmarsson & Jansson, 2008
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Open loop design for classes of nonlinear systems

Optimal input design for nonlinear systems is very hard.

Optimal or suboptimal solutions are obtained by
4+ restricting the class of model structures
4+ restricting the class of inputs

Example:

e Model class: Nonlinear FIR

yt(g) == GNL(uta Ut—19eeeyUt—nt1y 9)

e Input signal: finite set of possible values
ur € {uy,...,us}

Larsson, Hjalmarsson and Rojas, 2010; De Cock, Gevers, Schoukens, 2014
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Parametrization of all input spectra yielding the same covariance

Consider open loop identification and an OE model structure:
Yt = G(Z,O)’U/t + e; with dlm(e) =n

Then the normalized asymptotic covariance matrix of 6 can be written as

Pl 1 [7 (BG(ejw,9)> (aG(eJ'w,a)

1 &, (w)dw + M.
o | 90 90 ) (w)dw +

Then the set of all achievable Py (for all possible ®,,(w))

can be parametrized as a linear combination of n matrices:

P, =miRi+ ... +m,R, + M,

This gives a parametrization of all spectra yielding the same covariance Ps.

Mahata, 2013
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3. Informative experiments and identifiability

|dentification of dynamic systems within networks

V2 V3 Vs
*%—'_ Gy sl Ok | G [T T e w;: measured

e v;. unmeasured

0 0 |e
G ™ Gys

0 -
GI 5

All kinds of interesting questions, that can be summed up as:

e Identifiability and experiment design questions:
Example: which signals do | need to identify G9,?
Answer: w, and ws suffice

e Accuracy questions:
Example: do | get a better estimate of GY, if | also measure ws?

Answer: yes, by simultaneously estimating G9, and G3,.
Van den Hof, Dankers, Heuberger, Bombois, 2013, 2014
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|dentifiability and informativity for nonlinear systems

e For the very broad model class
r = f(z,u,0), y = h(z,u,0)
Sufficient conditions for identifiability of 6
based on application of the Ritt algorithm: Ljung and Glad, 1994

Powerful but huge computational requirements.

e For nonlinear model classes that are affine in 6

Recent results on identifiability and informative experiments:

Gevers, Bazanella, Coutinho, Dasgupta, 2014
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Conclusions

< System identification in engineering started almost 50 years ago
¢ Enormous progress has been accomplished
¢ It is still the major task in any advanced control project
¢ Major challenge today: reduce the cost of identification
« Make it more user friendly and data-driven
* Optimize the experiment: less time, less energy
* Tune the experiment towards the application: don’t waste !
¢ Many research challenges remain, new ones have appeared:
« Structured systems
* Nonlinear systems
 Large distributed and network controlled systems
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