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Abstract. The problem of electrical load forecasting 
presents some particularities, compared to the generic 
problem of time-series prediction. One of these 
particularities is that several values (corresponding to 
one day of consumption) are usually expected as the 
result of the prediction. In this paper, we propose an 
original method dividing the problem into three parts: 
prediction of the daily mean, of the daily standard 
deviation and of the normalized daily profile. For the 
mean and the standard deviation, radial function 
networks are used as nonlinear approximators. For the 
normalized profile, a method based on Kohonen maps is 
proposed. This method is applied to the prediction of 
the Polish electricity consumption. 

1. Introduction 

The problem of time series prediction consists in the 
forecasting of the next value of a series known at 
consecutive time steps. For example, one could try to 
predict financial market indexes, the number of spots on the 
sun surface, the degree of pollution in a city, etc. The 
prediction of the electric load is specific. For each day, we 
have 24 values (or more) of the electricity consumption. 
The problem is the prediction of the next 24 values of the 
time series i.e. the electric load of the next day. This 
problem is significantly more difficult; either the prediction 
is repeated 24 times or the 24 values are predicted 
simultaneously. 

A generic model of time series prediction is presented in 
Section 2. The use of such a generic method to predict the 
24 next values of electric load gives very bad results, 
because of the different time periods (annual, daily, etc.) 
encountered in electrical load series. We thus need an 
original method, more suited to this kind of problem. The 
solution we propose here is the splitting of the global 
problem into three simpler ones. The daily profile is 

characterized by three variables: the mean, the standard 
deviation and a normalized profile. Each of these three 
terms will be predicted independently. This general scheme 
is described in Section 3. The prediction of the mean and 
the standard deviation is done using radial basis function 
networks (RBF). These networks are presented in Section 4. 
To predict the normalized profile, we introduce a particular 
class of artificial neural networks, the Kohonen maps. 
These networks are described in Section 5 and their use for 
the prediction in Section 6. In Section 7, this method is 
applied to the prediction of the Polish electricity 
consumption. Although in some cases exogenous data (e.g. 
the daily temperature) can be used to improve the prediction 
of the electric load, we do not consider exogenous variable 
in the sequel. 

2. Time Series Prediction 

In this section, we will briefly describe a general 
forecasting method for this method, without exogenous 
variables [ 1,2,3,4,5]. We denote the series Yt, with t varying 
between 1 and n. A general notation for the dynamics of the 
process is: 

~/t+l "-- f(Yt, Yt-I  . . . . .  Y t - n '  0 )  , (1) 

where 0 is the set of parameters that makes it possible for 
the model f to approximate as well as possible the series. 
For example, in a Multi-Layer Perceptron (MLP), 0 is the 
set of synaptic weights [6,7]. For RBF, 0 will be described 
in details in Section 4. The vector Yt to Yt-n is called the 
regressor. It is obvious that the choice of the regressor and 
thus of n is capital. If this choice is badly done, the model 
will be vague or possibly biased. Several methods exist to 
choose the regressor. For example, one can use the optimal 
regressor obtained from a linear model. One can also use 
pruning methods [8], but these usually require extensive 
computations and are in most cases limited to a particular 
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model. Another technique for the determination of the 
regressor based on nonlinear projection is presented in [4]. 

The normalized profile nyt,i can then be obtained for each 
day using: 

Generally, a model is parameterised by a given number of 
parameters say M, the size of 0 in (1). Usually, when M is 
small, the model is not complex enough to capture the 
dynamics of the true system and in case of time series 
prediction, the prediction will not be accurate. On the 
contrary, if M is taken too large, the parameters also capture 
the noise contained in the learning data. This is the 
overfitting phenomenon. The prediction of the learning data 
will hence be very accurate (even the noise is "correctly" 
predicted) but on test data (the generalisation step) the 
model will be inaccurate. The goal is thus to determine the 
optimal number M of parameters. With this aim in view, the 
data Yt will be divided into a learning set LS and a 
validation set VS. Two different Mean Squared Errors are 
calculated: the Learning Mean Squared Error (LMSE) 

t )2 Z(.~ '  -Yt  
LMSE = t ~ L S  

N1 
(2) 

Yt,i -- }'l't . (6) nYt, i = St 

If predictions of I.tt, St and ny~i are reliable, the prediction of 
the next 24 hours becomes" 

~/t,i "-n~/t,i "St t ~ t  , i=  1,24. (7) 

The prediction of I-tt or S t is a classical problem of 
univariate time series prediction. The nonlinear model used 
for this purpose is the RBF network presented in Section 4. 
The prediction of ny~i will be detailed in Section 6. 

4. Radial Basis Functions Networks 

Given a set of inputs x i and a set of outputs yi, 
approximated by S'i. The approximation yi.of Yi with a RBF 
model [10,11] is a weighted sum of m Gaussian functions 

with N~ the dimension of the learning set, and the validation 
Mean Squared Error (VMSE) 

t )2 Z( .Y -Yt  
VMSE = t~vs 

N2 
(3) 

m 
~/i -Z~j(X)(xi ,Cj , (~ j  ) , 

j=l 

with ~ ( x i , C j , o j )  =e  

(8) 

(9) 

with N2 the dimension of the validation set. The optimal 
number of parameters M* that we will choose in our 
method is the one which gives the minimum VMSE error, 
while keeping the model parsimonious (with a small 
number of parameters). 

3. General Method 

The complexity of the RBF is related to the number of 
Gaussian kernels. The parameters that need to be 
determined are the position of the Gaussian kernels (Cj), 
their widths (o 1) and the weight factors (~j). The technique 
used to determine these parameters is developed in details 
in [12]. The following paragraphs summarize this 
technique. 

As mentioned in the introduction, the prediction of the next 
24 values of the electric load is a difficult problem. A 
solution to this problem has been developed in [9]. The 
fundamental steps of our method are based on this solution. 
The data are denoted Yt, i with index t representing the day 
and index i representing the hour (between 1 and 24). First, 
we calculate the mean ~ and the standard deviation St for 
each day of the data: 

24 
Z Yt,i 

1~ t = i - - I ,  i = 1 , 2 4  (4 )  
24 

The positions of the Gaussian kernels are chosen as a 
function of the distribution of xi in the input space. Where 
the density of inputs xi is low, is placed a small number of 
kernels; conversely, where the density is high, is used a 
larger number of kernels. The technique performing this 
operation is named vector quantization; the points that 
summarize the initial data (i.e. the centers of the kernels) 
are named centroids. Vector quantization consists in two 
steps. First, centroids are initialized at random in the input 
space. Then, for each input xi, the closest centroid is moved 
in the direction of xi using the following formula: 

Cj : -Cj  +(z(x i - C j ) ,  (10) 

I 24 )2 
Y (yti- t 

St = i=l 24 (5) 

with xj the considered point, Cj the centroid closest to X i and 
tx a parameter that decreases with time. The operation is 
repeated for all data xi. Further details on these quantization 
methods can be found in [ 13]. 
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The second set of parameters that need to be determined is 
the widths crj of the Gaussian kernels. We chose to work 
with a different width for each kernel. For this purpose, we 
define the Voronoi zone of a centroid as the area that is 
closer to this centroid (center of Gaussian kernel) than to 
any other one. In each Voronoi" zone, the standard deviation 
of the data is calculated. The width of the corresponding 
Gaussian kernel is the product of this standard deviation by 
a factor k. We will choose a value of the factor k that 
minimizes the VMSE defined in (3). This method for 
determining 6j has many advantages; the most important of 
these advantages is that different Gaussian kernels 
adequately cover the input space of the RBF. 

The last parameters to determine are the weight factors 3,j. 
As all other parameters are already fixed, they are simply 
determined by the least squares solution of a system of 
linear equations (8). The total number of parameters is 
equal to m*(n+ 1)+ 1 where n is the dimension of the input 
space and m the number of Gaussian kernels used in the 
RBF. 

5. Kohonen Maps 

Kohonen maps are a particular class of Artificial Neural 
Networks [14]. A Kohonen map is formed by a group of 
centroids that are linked together. Usually the map is a two- 
dimensional rectangle and the centroids are placed on a 
rectangular lattice. These centroids are numbered with 
respect to their position in the lattice. 

Kohonen maps perform two operations. First, they achieve 
a vector quantization similar to the one presented in Section 
3. In addition, the centroids are positioned in the input 
space in a way that they form a two-dimensional grid. The 
centroids are numbered according to their location in this 
grid. Kohonen maps preserve the topology: after learning, 
two points in the initial dataset that are close in the input 
space will be projected either on the same centroid (as in 
classical VQ), either on different centroids that have 
neighbouring locations in the grid. 

The topology-preservation property if often used for 
visualization purposes: the two-dimensional grid can be 
viewed as a two-dimensional space where data are 
projected by Kohonen's algorithm. In fact the data are not 
projected on the grid, but rather on the centroids 
themselves; if a continuous projection is needed, 
interpolation schemes between centroids may be used. 

6. Prediction of Normalized Profiles 

The normalized profiles nyt, i are 24-dimensional vectors 
obtained from (6). A Kohonen map is positioned in this 24- 
dimensional space. For reasons of simplicity, the Kohonen 
maps we are going to use are square; they are thus lattices 
of m by m centroids. To visualize the centroids obtained 

after learning of the map, each node of the grid 
(corresponding to a 24-dimensional centroid) is represented 
as a 24-points curve. As the 24 coordinated of each vector 
are sequentially organized in time in our application, this 
kind of representation is a natural way to illustrate a 
(normalized) daily electrical load. 

The square lattice is represented and at each node of the 
lattice the corresponding 24-dimensional centroid is drawn. 
(See Figure 10 for an example of this representation). 

The centroids that are obtained have two interesting 
properties. First, they summarize correctly the initial input. 
Secondly, two centroids that are close in the lattice are also 
close in the input space; their representations are thus very 
similar. 

For each profile nyt, i of a specific Voronoi zone A, the 
profile nyt+l,i (i.e. the following normalized profile in the 
time series) is determined. Next, the Voronoi zone B of this 
normalized profile nyt+l,i is searched. We will say that a 
transition exists between these two Voronoi zones. The 
probability transition between a Voronoi zone A and 
another zone B is the ratio between the number of transition 
from A to B, and, the number of data in A. The total 
probability transitions between the Voronoi zones are 
calculated using the learning set. The probability transitions 
between a specific Voronoi zone and the other centroids of 
a Kohonen map are shown in Figure 11. 

Once the Kohonen map is built on the normalized profiles 
ny~i and probability transitions for each Voronoi zone 
calculated, the prediction of a normalized profile nyt+l,i is 
the result of choosing the most probably transition whose 
origin is Voronoi zone A including nyt, i. The only parameter 
that has to be determined in this method is the number of 
centroids (m by m) in the grid. The parameter m that 
minimizes the VSME is chosen. 

7. Polish Electricity Consumption 

The series studied in this paper represents the electrical 
consumption in Poland during 2500 days [9] in the 90s. 
Unfortunately, the database has been previously scaled so 
that the units of the electricity consumption are unknown. 

The mean l.tt and the standard deviation St for each day of 
the data are computed according to (4) and (5). They are 
represented in Figures 2 and 3. The data are divided into a 
learning set (1500 points) and a validation set (1000 points). 
To determine the size of the regressor, linear models of 
increasing regressor size are built. According to (3) the 
VMSE of these models is calculated and the results are 
shown in Figure 3 for the prediction of l.tt and Figure 4 for 
the prediction of St. In Figure 3, the VMSE obtained with a 
linear model has a bend for a regressor size equal to 8; this 
value of the regressor is chosen for the prediction of ktt. 
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Similarly, according to Figure 4, a regressor size equal to 7 
is chosen for the prediction of St. 

Thereafter, RBF networks are used to improve the 
prediction of both ~ and St, while keeping the respective 
regressor sizes. For the prediction of ~,  the best RBF has 
90 centroids and a factor k equal to 7.5. The values of the 
VMSE with respect to the number of centroids and to 
parameter k are shown respectively in Figures 5 and 6. 
Similarly, for the prediction of St, the best RBF has 70 
centroids and a factor k equal to 2.25. The values of the 
VMSE with respect to the number of centroids and to 
parameter k are shown respectively in Figures 7 and 8. The 
improvement obtained with nonlinear models gives a 
decrease of the VMSE of 20% for the prediction of l.tt and 
24% for the prediction of St. 

For the prediction of the profile, the method described in 
Section 5 is performed with an increasing number of 
centroids in the Kohonen map. The value of the VMSE with 
respect to the number centroids is shown in Figure 9 (note 
that the size used in Figure 9 is the number of centroids in 
each direction of the map, so that the total number of 
centroids is the square of this size). The optimal size for the 
Kohonen map is equal to 8. The 8x8 map obtained after 
convergence of the Kohonen algorithm on the profiles (6) is 
represented in Figure 10. In Figure 11, we illustrate on the 
map, the probability transition between a profile and the 
next ones. 

Finally, we illustrate the daily profiles and their predictions 
in Figure 12 with a example picked up at random in the 
validation set. The real value of the normalized 
consumption is given by the solid line and its prediction 
corresponds to the dashed line. 

This approximation of the profile is very accurate and can 
be combined to the approximation of ~ and St to obtained 
the complete prediction using (7). The VMSE obtained by 
the whole procedure is low in comparison to forecastings 
obtained on the same data with traditional models. 

8. Conclusion 

In this paper, we considered the problem of forecasting the 
electrical load, and more particularly the 24 hourly 
electrical load values of the next day. The solution we 
propose consists in splitting the prediction of electric load 
problem into three simpler ones: univariate non-linear 
prediction of the daily mean and standard deviation, and 
multivariate prediction of the normalized daily profile. RBF 
neural networks are used for the two first predictions, and 
Kohonen maps for the third one. The use of this method 
avoids the need of re-using predicted values as inputs for a 
next forecasting, and therefore improves the accuracy of the 
prediction when several next values (here 24) are to be 
predicted. 

This paper shows the result obtained on the Polish 
electricity consumption. Similar results have been obtained 
on large companies electrical consumption, but cannot be 
illustrated for confidentiality reasons. 

Further work consists in taking into account exogenous 
variables (like temperatures or the day of the week) in the 
prediction model of normalized profiles. 
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Figure 1" The mean of the Polish Electricity consumption. 
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Figure 2: The standard deviation of the Polish Electricity 
consumption. 

7 

6.5 

6 

5.5 

5 
LU 
O~ 

4.5 
> 

4 

3.5 

3 

2.5 

2 

x 10 .3 
, 

i ! i 

Size of the Regressor 

Figure 3" VMSE of a linear model for the prediction of l,tt. 
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Figure 5: VMSE of a nonlinear model for the prediction of l.tt. 
(k fixed to 7.5) 
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Figure 6: VMSE of a nonlinear model for the prediction of l, tt. 
(Number of centroids fixed to 90) 
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Figure 8: VMSE of a nonlinear model for the prediction of S t. 
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Figure 9: VMSE model for the prediction of the normalized 
profile. 

x 10-4 
1.3 

_/--,~ _,r-,~ ~ ~ ~ ~ - , . , .~  --_,_/~ 

Figure 10: Kohonen map on the Polish profiles. 

~ ~ ~ ~ _ , , ~ 1 5 _ ~ / %  8% 

Figure 11" The probability transition between a profile and the 
next ones. 

2.5 

2 / ^ \  

.o 
15 
~5 1.5 

e-- 

~ 0.5 
.m 

Q. 
"O 0 

._ 
E -0.5 
0 
z 

-1 

-1 .% ~ 10 15 210 25 
Hour 

Figure 12: An Example of Normalized Profile (solid line) and its 
approximation (dashed line). 
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