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a b s t r a c t

This paper uses Mutual Information as an alternative variable selection method for quantita-

tive structure–property relationships data. To evaluate the performance of this criterion, the

enantioselectivity of 67 molecules, in three different chiral stationary phases, is modelled.

Partial Least Squares together with three commonly used variable selection techniques was

evaluated and then compared with the results obtained when using Mutual Information

together with Support Vector Machines. The results show not only that variable selection
eywords:

nantioseparation

utual Information

ariable selection

is a necessary step in quantitative structure–property relationship modelling, but also that

Mutual Information associated with Support Vector Machines is a valuable alternative to

Partial Least Squares together with correlation between the explanatory and the response

variables or Genetic Algorithms. This study also demonstrates that by producing models

that use a rather small set of variables the interpretation can be also be improved.

[2].
. Introduction

n the pharmaceutical field, molecular chirality plays a main
ole in the activity of drugs, which makes the identifica-
ion and separation of enantiomers extremely important. The
nantiomers of a given compound only differ in their opti-
al activity and their interaction with other chiral molecules.
hus, when interacting with other chiral molecules, enan-

iomers should be regarded as different chemical compounds,
s they may show significant differences in their interactions.
ence, developing techniques that allow the identification,

eparation and quantification of enantiomers is very impor-
ant for the pharmaceutical analysis.
High-performance liquid chromatography (HPLC) with chi-
al stationary phases (CSPs) is one of the most widely used
echniques to perform the direct separation of enantiomers

∗ Corresponding author. Tel.: +32 2 477 47 34; fax: +32 2 477 47 35.
E-mail address: yvanvdh@vub.ac.be (Y.V. Heyden).

003-2670/$ – see front matter © 2007 Published by Elsevier B.V.
oi:10.1016/j.aca.2007.08.048
© 2007 Published by Elsevier B.V.

[1]. However, at present, the choice of a CSP to perform the
chiral separation of a substance is still a trial and error task,
making the selection time consuming and uneconomic. Thus,
the development of models that are able to predict whether or
not a certain CSP is able to perform a given chiral separation
would be of great benefit.

Molecular descriptors have been used to study the relation-
ships that exist between the structure of organic compounds
and many of their physical, chemical and biological proper-
ties. They are numbers that characterize the constitution and
configuration of the molecule and can be used to build a model
that allows predicting some interesting molecular properties
The simplicity in the determination of molecular descrip-
tors, that nowadays computer software provides, allows the
calculation of hundreds of descriptors for a single molecule.

mailto:yvanvdh@vub.ac.be
dx.doi.org/10.1016/j.aca.2007.08.048
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the new incoming data, and b the regression coefficient vector,
that can be calculated according to Eq. (4):
38 a n a l y t i c a c h i m i c a

Therefore, the quantitative analysis of these large amounts of
data leads to an increasing use of chemometrical techniques,
such as multivariate calibration methods, in the quantitative
structure–activity relationships (QSAR) field. Nevertheless,
and even if chemometrical techniques are able to deal with
large datasets, sometimes it is essential to reduce the num-
ber of variables that are used to model a certain property, as
there are some methods, like multiple linear regression (MLR),
that are unable to deal with data containing more variables
than objects. Indeed using techniques that allow the selection
of a reduced set of variables containing the most important
information enables, not only a better interpretation and com-
prehension of the model, but also a better model itself, as the
exclusion of uninformative variables can be seen as elimina-
tion of noise.

The Mutual Information (MI) is a statistical measure of the
relation that exists between two variables. Unlike other para-
metric estimators, such as the correlation, the MI does not
make any assumption about what type of relation could exist
between the variables. It can thus be used in a wide range of
contexts, including for the selection of variables.

The aim of this study is first to demonstrate that MI
can be applied to quantitative structure–property relationship
(QSPR) data, as an alternative variable selection technique,
and secondly that even though the number of variables is
significantly reduced, it is still possible to produce mod-
els with a good performance and that can be interpreted.
Finally, the last goal is to demonstrate that different groups
of molecular descriptors can lead to models with similar
predictive power. This second property opens the possibil-
ity to an intelligent selection of molecular descriptors, since
some are easier to obtain than others, for a similar prediction
power.

This paper will show that the MI can be used as an
interesting alternative for variable selection, when a nonlin-
ear prediction model is used. For this purpose, after a brief
description of the molecular descriptors in Section 2.1, Section
2.2.1 will remind the conventional linear Partial Least Squares
(PLS) method, Section 2.2.2 will explain the use of the MI for
variable selection, and Section 2.2.3 will describe Support Vec-
tor Machines (SVMs).

2. Theory

2.1. Molecular descriptors

Molecular descriptors have seen a great increase on their use,
especially in the field of QSAR. The success of QSAR encour-
aged scientists, particularly in the pharmaceutical area, to
investigate the relation between molecular parameters and
properties other than activity.

A molecular descriptor is a number extracted from a
defined molecular representation or a well-specified exper-
imental procedure, i.e., it is a value that results from the
transformation of the information contained in a sym-

bolic representation of a molecule, or from a standardized
experiment. This leads to a classification of the molecular
descriptors in two main groups, experimental descriptors,
such as dipole moment, and theoretical descriptors, like GET-
a 6 0 2 ( 2 0 0 7 ) 37–46

AWAY descriptors, which are calculated based on the symbolic
representation of the molecule [2].

Since a molecule can be represented in different ways, the-
oretical molecular descriptors are divided in 0D-, 1D-, 2D-, 3D-
and 4D-descriptors [2]. In this study, all types of descriptors,
except for 4D-descriptors, are used.

The main advantage of using 0-, 1- and 2D descriptors is
that the user does not have to optimize the geometry of the
molecule, which is a time consuming task. However, because
they do not consider the molecule as a three-dimensional
object, information like the spherosity of a molecule cannot
be accessed.

2.2. Methods

2.2.1. Partial Least Squares (PLS)
The theory of PLS has been thoroughly discussed in numerous
publications [3–5]. Here, only a short description will be made.

The aim of Partial Least Squares is to model the relation-
ship between X and y by using a set of latent variables that
maximize the covariance between them. PLS is a latent vari-
ables regression method, i.e. the model regression vector is
estimated by means of factors, which are linear combinations
of the original variables. The PLS factors are computed in order
to maximize the covariance between X and y. Hence, X infor-
mation orthogonal to y is not extracted by the PLS approach,
and the corresponding models usually use less factors than
their PCR equivalent. The PLS model can be written as:

X = TPT + E (1)

y = TqT + f (2)

where y (m × 1) is the vector of responses T (m × r) is the score
matrix, P (n × r), and q (1 × r) are the loading matrix and vector,
E and f are the X residual matrix and y residual vector after the
projection of X and y, respectively, m represents the number of
objects, r is the number of selected factors, and n is the number
of variables. These components can then be used for visual
inspection of the data. The dimensionality of the model, m, i.e.,
the optimal number of PLS components, can be determined
using cross-validation (CV).

For new data, it is possible to predict the response based
on the PLS model that was previously built. The predicted y

values (
ˆ
y) can be determined by:

ˆ
y = my + (xnew − mX)Tb (3)

where my and mX are the mean of y and X, respectively, xnew
b = W(PTW)
−1

q (4)

where W is the matrix of the loading weights, and P and q
have the same meaning as in Eqs. (1) and (2).
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.2.2. Mutual Information
hen a large number of descriptors are available, it is usually

ot a good idea to use all of them as inputs to a prediction
classification or regression) model. Indeed too many inputs
ead to the so-called curse of dimensionality, an expression
hat gathers all difficulties linked to the fact that design-
ng a model in a high-dimensional space is much more
ifficult than in a lower-dimensional one. For example, the
umber of data necessary (in theory) to build a model with
predefined quality grows exponentially with the number

f inputs, although in practice more than a few tens or
undreds of data are seldom available in chemometric appli-
ations.

There is thus a need to reduce the number of inputs
o a model. This can be done by selecting the most rel-
vant ones from the initial set (in this case, the set of
olecular descriptors). To assess the relevance of variables,

wo ingredients are necessary. First, a measure is needed
o assess in an objective way to which extend a variable,
r a set of variables, is relevant to the problem. Second,
nce this measure is available, one has to build succes-
ive candidate variables sets and assess them individually.
he most relevant set is then chosen. However, as all com-
inations of variables cannot be used as candidate sets
ecause of computational reasons, this means that a pro-
edure has to be chosen to scan possible sets among all
ossible ones. The relevance criterion and the selection
rocedure are detailed in the following paragraphs. As a
easure of relevance, the correlation (between each of the

nputs or molecular descriptors, and the quantity to pre-
ict) might be used. Nevertheless the correlation suffers
rom two drawbacks. First, it is restricted to the measure
f linear relations; as an example, the correlation between

uniform centered random variable and the same vari-
ble to the power two is zero, while there is obviously a
elation between both of them. Second, the correlation is
sually limited to two variables, while there is a need (see

orward procedure below) for a measure between groups of
ariables.

The MI is a better measure of the relations between vari-
bles (therefore, of the relevance of a variable as input to a
rediction model). The MI is based on Shannon’s informa-
ion theory [6]. More information about the MI concepts and
efinition can be found in [7–9]. The MI estimator works on
ormalized variables x and y, and therefore, even though the
I values are not limited by an upper value (such as the cor-

elation which is bounded by 1, for example), comparisons
etween estimated MI are relevant. In the following variable
election procedure, only comparisons between MI values are
erformed.

An important comment must be made here. If a linear pre-
iction model is built after the variable selection, there is no
eed to use a nonlinear relevance measure such as the MI.

ndeed, methods such as PLS provide an optimal choice of the
actors, given the fact that the subsequent prediction model
s chosen (in this case, a linear regression on the factors). The

nterest of a nonlinear criterion like MI rises when a nonlinear
rediction model, a priori more powerful than a linear one, is
sed. In this case, the use of a linear selection criterion would
e suboptimal.
6 0 2 ( 2 0 0 7 ) 37–46 39

The concept of MI is particularly suited to measure the rel-
evance of a variable x for predicting y, i.e. of the adequacy
of x as input to a model aiming at predicting y. However, the
exact measure of the MI is not possible in practice. Indeed,
the exact measure of MI is possible only when the probabil-
ity density functions (PDF) of x and y are known. In practice,
the PDF are not known (we only know a few samples, not the
distribution of data) and must be estimated. MI estimators
have thus been developed to compute an approximation of
the MI between x and y, i.e., I(x,y), in the finite sample case.
Histograms and kernels may be used for that purpose. How-
ever, a recently published k-nearest neighbours (k-NN) based
estimator gives better performances in particular when x is a
vector instead of a scalar variable [7]. This estimator is used
in this work. It necessitates to fix k, i.e. the number of neigh-
bours in the k-NN procedure embedded in the MI estimator.
The choice of k will be discussed in Section 3 of this paper.

Once a relevance criterion for variables is defined, a proce-
dure to select the variables has to be designed. Let us denote
by {xi}, 1 ≤ i ≤ n the set of all variables (among which a few
of them should be selected). The first variable x1 to select is
obviously the one that maximizes the MI with the response
y to predict. To select the second variable, two options are
possible. First, the second variable may be selected as the
one that maximizes the MI with y, with the exception of x1

(already selected). This choice may however lead to a vari-
able x2 that is highly correlated (or highly similar in terms
of Mutual Information) with the first selected variable x1.
Although the MI with y is important, the information added
by x2 may be small, as x1 is already known. Another option
is therefore to select x2 such that the MI between the group
{x1, x2} and i is large. These two options will be referred to as
ranking and forward procedures, respectively, in the following.
The two procedures have advantages and drawbacks. The for-
ward procedure selects variables that are as independent as
possible between them, maximizing the information added in
the set. However, it may fail when the important information
is contained in the differences between xi variables, even if
the variables themselves are largely dependent. As, it will be
shown in Section 3 of this paper, both procedures may lead to
interesting results, and should thus be considered.

2.2.3. Support Vector Machines for regression
Support Vector Machines (SVMs) can be applied both to clas-
sification and regression tasks, as several works have shown
[10–12]. The number of SVM applications has been growing in
the last years, mainly due to their ability to model complex
non-linear relationships by using a suitable kernel function,
which transforms the input space to a higher-dimensional
feature space where the non-linear relationships can be rep-
resented in a linear form.

The theory of Support Vector Regression (SVR), i.e., SVM
applied to regression, has been developed by Vapnik in 1995
and is extensively described in the literature [10,13,14]. Here,
only a brief description is included.
In SVR, given a training set X and the property of interest
(output variable) y, which in this case are the matrix of molec-
ular descriptors and the selectivities (˛) of the molecules in a
certain CSP, respectively, the predicted value of the selectivity
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Fig. 1 – Structure of the molecules used.
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Fig. 2 – Left: In SVR a tube with radius ε is fitted to the data. Predictions that are larger than ±ε are taken into account by �

and �*, respectively. The black dots represent the support vectors, which are located outside of the ε tube. Right: The
ε tole
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different CSPs, the time that a given enantiomer is retained
-insensitive loss function showing that deviations from the
see text).

ˆ
y) for an unknown molecule will be determined as:

ˆ = f(x, ˇ, ˇ∗) =
∑n

i=1
(ˇi − ˇi∗)K(x, xi) + e, (5)

here ˇ and ˇ* are the Lagrange multipliers, e is bias and K
x,xi) a generic kernel function. The kernel map function trans-
orms the input space into a high-dimensional feature space
n which the solution for the problem is linear. Several kernel
unctions can be used, among which the radial basis function
RBF) (K(x, xi) = exp(−�‖x − xi‖2)) and the polynomial are the

ost employed. In this study RBF kernels are used [15].
Vectors ˇ and ˇ* are the solutions of the following con-

trained quadratic programming problem:

maximize
∑n

i=1
yi(ˇ

∗
i + ˇi) − ε

∑n

i=1
(ˇ∗

i + ˇi)

−1
2

∑n

i=1

∑n

j=1
(ˇ∗

i + ˇi)(ˇ
∗
j + ˇj)K(xi,xj

) (6)

ubject to:

0 ≤ ˇi, ˇ∗
i

≤ C i = 1, 2, . . . , n

n∑

i=1

ˇ∗
i =

n∑

i=1

ˇi

, (7)

here ε is the size of the ε-insensitive zone of the loss func-
ion which penalises errors that are larger than ±ε. Predictions
eviating more than ±ε are taken into account by the slack
ariables (� and �*) (see Fig. 1). It should be noted that ε does
ot indicate the desired predicted error of the model, but is
characteristic of the prediction error penalty. C is a regu-

arization constant which is used to determine the trade-off
etween the model complexity and the amount up to which

eviations larger than ε are tolerated.

Most of the elements of vectors ˇ and ˇ* are equal to zero
10]. The non-zero values are associated to a few xi that are
alled support vectors.
rance band are penalised. The slopes are determined by C

The choice of the necessary parameters for the applica-
tion of SVM to regression (�, ε and C) must be done by the
user.

3. Experimental results

3.1. Dataset

The molecules used in this study were selected from the liter-
ature and consists of 67 hydantoins (Fig. 2), separated on HPLC
columns with three urea-linked �-arylalkylaminine derived
CSPs [16]. For all CSPs, the mobile phase used was ispropanol-
n-hexane, with composition 20:80 (v/v) for the first and second
(datasets 1 and 2), and 10:90 (v/v) for the third (dataset 3).

3.2. Descriptors

The calculation of the descriptors for each molecule was based
on their geometrical structure optimized using Hyperchem®

6.03 professional software (Hypercube, Gainesville, FL, USA).
Geometry optimization was done using the Molecular
Mechanics Force Field method (MM+) and the Polak–Ribière
conjugate gradient algorithm with an RMS gradient of
0.05 kcal (Å mol)−1 as stopping criterion. The matrices with
the positions of the atoms, as Cartesian coordinates, result-
ing from the geometrical representation of the molecule,
were used to calculate the molecular descriptors. For
each substance, 1630 descriptors were calculated with
Dragon 5.0 Professional version [17]. From these 313 were
deleted since they presented constant or nearly constant
values.

Since the molecules used are the same, the descriptors,
i.e., the X matrix used in the study, are always the same. The
difference between datasets is the response variable. By using
by CSP is different and thus, different selectivity values are
obtained.

The data used in this study is available to download from
http://www.ucl.ac.be/mlg/index.php?page=DataBases.

http://www.ucl.ac.be/mlg/index.php?page=DataBases
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4. Results and discussion

4.1. Modelling selectivity

To model the ˛ of the enantiomeric separations of the
67 molecules, three different methodologies were used:
PLS, associated with different variable selection techniques,
stepwise-MLR and SVM together with MI. The results of
stepwise-MLR are not shown here as the models obtained
clearly over-fitted.

The samples were divided into calibration (40 samples) and
test (27 samples) sets by using the DUPLEX algorithm [18]. For
all methodologies and CSPs the same training and testing sets
were used.

4.1.1. Partial Least Squares
The PLS models for ˛ were built by using the calibration set
and considering all variables, i.e., 1317 molecular descriptors,
and then were tested by using the remaining samples. The
optimal number of factors, when building the model with the
calibration set, was determined using both Leave One Out
CV (LOOCV) [19] and Monte Carlo CV (MCCV) [20], the latter
to prevent over-fitting. Table 1 shows the results obtained.
It can be seen that the Root Mean Squared Error of MCCV
(RMSEMCCV) is always higher than the Root Mean Squared
Error of Prediction, for the test set, (RMSEP). The main rea-
son for this behaviour is that when some of the samples, in
particular samples 9, 16 and 35, of the calibration set, are left
out during the CV procedure, they are very badly predicted,
increasing enormously the RMSEMCCV. The reason for the
special behaviour of these samples is not yet known.

Since a model built with 1317 variables is impossible to
interpret, three variable selection techniques that are com-
monly associated with PLS were applied. For each variable
selection technique, 12 variables were selected. The reason for
choosing 12 variables, besides comparison purposes, is given

in Section 4.1.2.

The first technique applied was the selection of the vari-
ables corresponding to the highest absolute b coefficients. The
variables selected for each dataset are given in Table 2.

Table 1 – PLS results for the three datasets, using different varia

Dataset Variable selection No. of fa

1 None 6
b-values 2
Correlation 4
GA 3

2 None 6
b-values 3
Correlation 3
GA 6

3 None 2
b-values 1
Correlation 1
GA 2

The number of variables chosen with the variables selection techniques w
2 between 1 and 8.44, and for dataset 3 between 1 and 3.39.
a 6 0 2 ( 2 0 0 7 ) 37–46

From the results presented in Table 1 it can be seen
that by decreasing the number of variables considered, from
the initial 1317 (no variable selection) to the 12 variables
with the highest b coefficients, the RMSEMCCV is improved,
and the number of latent variables needed to build the
model is reduced, but the RMSEP increases for both dataset
1 and 2.

The second variable selection technique that was taken
into account was the correlation between the molecular
descriptors and the response. Thus, the 12 variables that pre-
sented the highest absolute correlation values were kept (see
Table 2). Table 1 shows again a decrease of both the RMSEMCCV
and the number of factors, and also of the RMSEP. When com-
paring the results obtained using the b coefficients and the
correlations, it can be seen that correlation performs better.
When looking at the descriptors selected by both techniques,
with the exception of dataset 3, quite different descriptors can
be found.

Finally, genetic algorithms were used to select the best
set of 12 variables to model ˛ for each dataset. The best
set of descriptors, i.e., the one that presented the smallest
RMSEMCCV, was chosen after 10 runs, having each run 500
generations. The results shown in Table 1 demonstrate that
by using PLS coupled with GA it is possible to obtain models
with a better RMSEMCCV but, with the exception of dataset 3,
no improvement of the RMSEP. Concerning the variables that
are selected (see Table 2) it can be seen that there are hardly
any variables in common between those that were kept using
GA and the other techniques.

Even though the results obtained for PLS-GA, when con-
sidering the RMSEMCCV, are much better that those obtained
when using the complete dataset and interpretation of the
12 variables selected in each model is now possible, there
is still the problem of reproducibility of the GA results.
Also, the use of the variables with the highest correlation
together with PLS provides better results, then when no vari-
able selection is considered. Nevertheless, the fact that the

selected variables might have also a high correlation between
themselves is not being taken into account, meaning that
it can happen that some variables are providing the same
information.

ble selection techniques

ctors RMSEMCCV RMSEP

1.27 0.73
0.97 0.93
0.87 0.60
0.80 0.82

1.18 0.87
0.93 1.23
0.98 0.78
0.69 1.49

0.56 0.48
0.48 0.48
0.50 0.46
0.46 0.45

as 12. For dataset 1 the y-values vary between 1 and 6.45, for dataset
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Thus, to try to solve this problem MI was used to determine
the most informative variables to model ˛.

4.1.2. Variable selection with Mutual Information
To model the ˛ of the enantiomeric separations of the 67
molecules, for the three different CSPs, both ranking and for-
ward procedures for the MI were applied in order to select the
most suitable variables to describe the selectivity (see Fig. 3).
For both procedures the MI was estimated using six neigh-
bours, i.e., k = 6 in the procedure described in [4]. The choice
of k = 6 was based on references [9,21].

The selection of the variables was done using the calibra-

tion sets, i.e., 40 molecules, and that the maximum number
of variables that could be extracted was 12. This maximum
number of variables has been set in order not only to limit the
computation time of the MI estimator, but also the complexity

Fig. 3 – (a) Ranking and (b) forward procedures to determine
the MI for dataset 1 using k = 6. Solid black and grey lines:
MI calculated for the molecular descriptors and random
variables respectively, (—) cut-off (maximum value of MI for
the random variables); (�) optimal number of variables
selected, i.e., group of descriptors that gives the maximum
information.
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Table 3 – Variables selected by the MI for k = 6 and for k between 5 and 7 for the ranking (average) procedure

Dataset Procedure 0D 1D 2D 3D Others

1 Ranking – – ESpm01d, GGI3, MWC10, EEig05x, GGI2,
ESpm07u, ESpm05u, MWC07, Qindex, MWC08,
ESpm09u, MWC04

– –

Forward – nCOOR, O-060,
C-005, C-008,
C-001

ESpm01d – LAI

Ranking
(average)

– – GGI3, ESpm01d, MWC10, GGI2, ESpm07u,
EEig05x, Qindex, ESpm05u, ESpm09u, MWC09,
MWC07, ESpm11u

– –

2 Ranking nO, Mp H-047 JGI9, MWC02, MWC03, X5A, SEigp, SEigv,
Qindex, MWC08

R8m –

Forward – O-060, C-008 JGI9 – Hypnotic-50
Ranking
(average)

nO H-047 JGI9, MWC03, MWC02, SEigv, T(O..O), SEigp,
X5A, Qindex, MWC08

R8m –

3 Ranking Mv, ARR – PW5, X5A, MWC10, MWC04, GGI3, X4A, RBF R7v+, R7p+, MEcc –
Forward – nCOOR, C-026 RBF G(N..P) Psychotic-50
Ranking
(average)

Mv, ARR nCs, H-052 RBF, X5A, PW5, MWC10, X1A, X4A R7p+, MEcc –

es) co
0D, 1D, 2D, 3D and others (charge descriptors and molecular properti
and explanation of the descriptors can be found in [2].

of the final models. In addition, when the forward procedure is
used, the quality of the MI estimator decreases with the num-
ber of variables. It is thus reasonable to fix a limit that takes
both the computation time and accuracy issues into account.

Fig. 3 shows how the descriptors for dataset 1 are selected
by each procedure. In the ranking procedure (Fig. 3a), the 12
variables with the highest MI are kept, while in forward proce-
dure (Fig. 3b), the optimal number of variables is determined
by the maximum value of MI, which in this example is seven.

Table 3 shows the number of variables selected for each
dataset.

4.1.3. Support Vector Machines for regression
For comparison purposes, three SVM models, one for each
dataset, using all variables, i.e., the initial 1317 molecular

descriptors, were built. The models were built using the LIB-
SVM package [15] and a grid search to optimize ( (width of the
Gaussian) and C (the error weight). The parameter ( (insensi-
tivity) was kept constant and equal to 0.1 in all models. This

Table 4 – Parameters and errors of the SVM models using all va
selected by MI

Dataset Procedure No. of selected variables

1 None None
Ranking 12
Forward 7
Average 12

2 None None
Ranking 12
Forward 4
Average 12

3 None None
Ranking 12
Forward 5
Average 12
rrespond to the type of molecular descriptor selected. The definition

option was taken due to the fact that a full optimization of (, C
and ( would have been extremely time consuming. The results
obtained from this partial optimization were satisfactory, and
can be seen in Table 4.

The variables selected by the MI using both the ranking
and forward procedures (see Table 3) are then used to build
SVM models, using 10-fold CV. The choice of SVM as modelling
technique is related with the fact that when using MI as a
variable selection technique, the choice of the variables to be
kept is done in a non-linear way. Therefore, SVM was chosen,
since it is a modelling technique that is able to deal with non-
linear relationships.

As can be seen in Table 4 the Root Mean Squared Error
of Cross-Validation (RMSECV) is always higher than the
RMSEP. The reason for this behaviour was already explained

in the previous section. Also the reduction of the num-
ber of variables, in particular in dataset 1, improves the
models, as it is possible to see a decrease of the errors
values.

riables, i.e., 1317 molecular descriptors, and those

� C RMSECV RMSEP

8.3 × 10−7 16,384 1.05 0.77
0.37 256 0.80 0.65
3.4 × 10−4 512 0.92 0.31
0.37 222.86 0.79 0.73

6.9 × 10−6 4,096 1.05 0.74
0.14 5.28 1.01 0.80
0.02 128 0.99 0.95
0.14 4.59 0.91 0.78

1.6 × 10−3 4 0.45 0.38
0.27 4 0.48 0.44
0.33 3.78 0.34 0.35
0.29 4 0.47 0.42



c t a

t
d
f
f
i
o
t
e
˛

w
d
a
t
m
m

d
s
p
t
m
t

b
o
r
r
a
r
m
w

a
p
t
T
i
e
r
a
t

4
F
a
i
e
t
c
d
fi
p

o
d
n
n
n
t

a n a l y t i c a c h i m i c a a

It can be seen in Table 4 that again, by doing a variable selec-
ion, the models are improved and that, with the exception of
ataset 2, the RMSEP is higher for the ranking procedure than
or the forward. It can also be verified that the RMSEP obtained
or the dataset 1 (forward procedure) and dataset 3 (both rank-
ng and forward procedures) are comparable or better to those
f PLS together with GA or correlation (see Table 1), and that
he variables selected by using each method are quite differ-
nt. In fact, for dataset 1, if someone wants to determine the
of a new enantiomeric separation using the model obtained
ith PLS-GA he has to determine 0D, 1D, 2D and 3D molecular
escriptors, while for the SVM-MI model only 2D descriptors
re necessary. This means that the last model will be easier
o use, as there is no need of optimizing the geometry of the

olecule to determine the necessary variables to apply the
odel.
When comparing the variables selected by the MI proce-

ure (Table 3) it is seen that, except for dataset 2, the variables
elected by the ranking procedure originate models with lower
redictive power, i.e., RMSEP, which shows that the selec-
ion of variables based on their combined information is a

ore efficient technique. The definition and explanation of
he descriptors can be found in [2].

As it was mentioned before, MI was applied using k = 6,
ased on references [9,21]. Nevertheless, there is so far no way
f finding the optimal k value. Therefore, the MI, using the
anking procedure, between the explanatory variables and the
esponse was also calculated on the calibration set using k = 5
nd k = 7. To try to make the variable selection using MI more
obust, the average of the MI for k between 5 and 7 was deter-

ined, and the 12 variables that presented the highest values
ere kept (Table 3).

The models obtained by using the average MI and SVM
re, in general, better than those determined for the ranking
rocedure with k = 6, and they are as good as or better than
hose found with PLS-correlation or PLS-GA. When comparing
ables 2 and 3 it can be seen that MI always selects a major-
ty of 2D-descriptors, while for GA and correlation, with the
xception of dataset 1, it is 3D. The variables selected by the
anking procedure using the average between k = 5 and k = 7
nd k = 6 have at least nine variables in common, which shows
hat the initial choice of k = 6 was suitable.

.1.4. Interpretation of the best models
or each dataset the model that presented the best predictive
bility was chosen to be interpreted. Therefore, in the follow-
ng paragraphs, a short description of the variables used in
ach of these models will be made. It should be noticed that
his description is organized in groups, i.e., GETAWAY, 2D auto-
orrelations, etc., and not individually. This option was taken
ue to the fact that an individual interpretation is rather dif-
cult, as for theoretical molecular descriptors not always is
ossible to directly link them to physicochemical properties.

The model with the best performance for dataset 1 was
btained when using SVM together with the forward proce-
ure for the MI. This model contains seven variables (Table 3):

COOR, O-060, C-005, C-008, C-001, ESpm01d and LAI. The
COOR is a functional group counts descriptor related with the
umber of aliphatic esters in the molecule [17]. The descrip-
ors O-060, C-005, C-008 and C-001 belong to the atom-centred
6 0 2 ( 2 0 0 7 ) 37–46 45

fragments group. They give information about the number of
predefined structural features in the molecule, which in this
case are Al–O–Ar/Ar–O–Ar/R..O..R/R–O–C = X, for O-060, CH3X,
for C-005, CHR2X, for C-008 and CH3R/CH4, for C-001 (R rep-
resents any group linked through the carbon atom, X any
electronegative atom (O, N, S, P, Se, halogens) and Ar an aro-
matic group) [2,17]. The ESpm01d is an edge adjacency index
and it corresponds to the first spectral moment from the edge
adjacency matrix weighted by dipole moments [2,17]. This
descriptor accounts for size of the molecule and heteroatoms.
The last descriptor selected in this model, LAI, is a molecu-
lar property named Lipinski alert index, which is a drug-like
index.

For dataset 2, the model that has the best predictive ability
was that obtained using SVM without variable selection. Since
for this model, 1317 variables are considered, it is impossible to
make any kind of interpretation based on the most important
descriptors.

The best model for dataset 3 was found when using SVM
together with the forward procedure for the MI. The five
variables selected for the model are nCOOR, which was also
selected for best model of dataset 1, C-026, RBF, G(N..P) and
Psychotic-50 (Table 3). The descriptor C-026 is an atom-centred
fragments group, and, as said before, it provides information
about the number of predefined structural features in the
molecule, which in this case is R–CX–R [2,17]. The constitu-
tional descriptor RBF determines the rotatable bond fraction of
the molecule [17]. G(N..P) is a geometrical descriptor that esti-
mates the sum of geometrical distances between N..P. Finally,
the molecular property Psychotic-50 is a drug-like index and it
gives information about the Ghose–Viswanadhan–Wendoloski
antipsychotic-like index at 50% [17].

5. Conclusion

It was seen that the reduction of the initial set of variables
provides models with better predictive power. Of the three
variable selection techniques applied together with PLS, cor-
relation is the one that gives the best results. The selection
of variables based on the b coefficients results in models with
similar or worse predictive abilities. Concerning GA, only for
dataset 3, slightly better results than those obtained using
correlation were found.

This study shows that MI can be used as an alternative vari-
able selection technique for QSPR data. MI is able to provide
reduced subsets of variables, with similar predictive power to
those obtained with the correlation between the variables and
the response, with the advantages of being reproducible, fast
to calculate and consider groups of variables instead of each
one individually. SVM together with the forward procedure
produced the best models for datasets 1 and 3. These results
show that by considering the information provided by groups
of variables not only more accurate models can be found, but
also smaller, making their interpretation possible.

The MI estimator used in this study relies on an internal

parameter k for which there is no clear choice, and therefore
is a limitation. However, the choice of k = 6 seems to provide
good results, and the average of the MI values, for the rank-
ing procedure, for k values between 5 and 7 appears to be a
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good alternative to cope with the problem. Nevertheless, more
effort should be put in trying to find a way to determine the
optimal k value.

It can also be seen that 0-, 1-, and 2D-descriptors can pro-
vide similar information to 3D, and therefore one can avoid
the time consuming determination of 3D-descriptors.
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[7] A. Kraskov, H. Stögbauer, P. Grassberger, Phys. Rev. E69 (2004)
066138.

[8] N. Benoudjit, D. Francois, M. Meurens, M. Verleysen,
Chemom. Intell. Lab. Syst. 74 (2004) 243–251.
a 6 0 2 ( 2 0 0 7 ) 37–46

[9] F. Rossi, A. Lendasse, D. François, V. Wertz, M. Verleysen,
Chemom. Intell. Lab. Syst. 80 (2006) 215–226.

[10] N. Cristianini, J. Shawe-Taylor, An Introduction to Support
Vector Machines and Other Kernel-Based Learning Methods,
Cambridge University Press, 2003.

[11] C.J.C. Burges, Data Min. Knowledge Discov. 2 (1998) 121–167.
[12] S.R. Gunn, Support Vector Machines for Classification and

Regression (Technical Report), University of Southampton,
UK, 1998.

[13] V. Vapnik, The Nature of Statistical Learning Theory,
Springer, New York, 1995.

[14] A.L. Smola, B. Schölkopf, A Tutorial on Support Vector
Regression, NeuroCOLT2 Technical Report Series,
NC2-TR-1998-030, Royal Holloway University of London, UK,
1998.

[15] C.-C. Chang, C.-J. Lin, LIBSVM: A Library for Support Vector
Machines, 2001 (software available to download on:
http://www.csie.ntu.edu.tm/∼cjilin/libsvm).

[16] W.H. Pirkle, M. Ho Hyun, J. Chromatogr. 322 (1985)
295–307.

[17] R. Todeschini, V. Consonni, A. Mauri, M. Pavan, Dragon
Professional Version 5.0, Milano Chemometrics and QSAR
Research Group, 2004 (software available on:
http://www.talete.mi.it/dragon.htm).

[18] R.D. Snee, Technometrics 19 (1977) 415–428.

[19] R.R. Picard, R.D. Cook, J. Am. Stat. Assoc. 79 (1984) 575–583.
[20] Q.S. Xu, Y.Z. Liang, Chemom. Intell. Lab. Syst. 56 (2001)

1–11.
[21] S. Harald, K. Alexander, A.A. Sergey, G. Peter, Phys. Rev. E 70

(2004), 066123, 1–17.

http://www.csie.ntu.edu.tm/~cjilin/libsvm
http://www.talete.mi.it/dragon.htm

	Modelling the quality of enantiomeric separations using Mutual Information as an alternative variable selection technique
	Introduction
	Theory
	Molecular descriptors
	Methods
	Partial Least Squares (PLS)
	Mutual Information
	Support Vector Machines for regression


	Experimental results
	Dataset
	Descriptors

	Results and discussion
	Modelling selectivity
	Partial Least Squares
	Variable selection with Mutual Information
	Support Vector Machines for regression
	Interpretation of the best models


	Conclusion
	References


