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1 Similarity search

Many data analysis methods (classification tools, clustering
algorithms, ...) make use of asimilarity measureon data.
For example the well-knownk-NN classifier determines the
class of a new data element according to its ‘similarity’ with
other elements for which the class label is known.

In many cases, those data are embedded (described) in a
metric space (often a Euclidean space) and the similarity
between two data elements is measured by the distance be-
tween their respective vector representations in the space.

A growing number of applications now involve complex
data that require a high number of numerical components to
be completely described. Those data have to be embedded
in high-dimensional spaces (from tens to thousands dimen-
sions). Examples are spectrophotometric data, gene expres-
sion data, texts, pictures, etc.

2 The concentration of measure phenomenon

It is well known that the Euclidean norm is subject to the
concentration phenomenon, which expresses that the re-
spective norms of two randomly chosen vectors in a high-
dimensional space will be very similar, with a high proba-
bility. That leads to question the relevance of the Euclidean
distance as a measure of similarity for complex data.

It can indeed be shown that, ifx = [x1, · · · , xd] is a random
variable in<d,

lim
d→∞

Std(‖x‖)
E(‖x‖)

= 0. (1)

The equation says that when dimensionality grows, the stan-
dard deviation of the norm (or Euclidean distance to ori-
gin) of a random vector gets small compared to the expected
value of the norm. This means that the norm of a high di-
mensional vector becomes nearly a constant independant on
the coordinates of the vector !

Furthermore, Beyer [1] have proved that for any randomx =
[x1, · · · , xd] ∈ <d surrounded by other pointsyi ∈ <d,

lim
d→∞

maxi(d(x, yi))−mini(d(x, yi))
mini(d(x, yi))

= 0. (2)

In other words, the distances from a point to its nearest
and farthest neighbours respectively, tend to be quite sim-
ilar when dimension is high...

3 Practical considerations

The above-mentioned results were obtained from a theoret-
ical viewpoint. We need to further investigate whether the
intuition of irrelevance of the Euclidean norm as a similarity
measure in high-dimensional spaces does have an impact in
practical cases. The following questions are thus of interest.

Has the concentration phenomenon an impact on the stabil-
ity of a nearest neighbour search ?Indeed we would like
that if a data elementx is similar toy, theny would be sim-
ilar to x. In other words, ifx is the nearest neighbour ofy,
y should be among the closest neighbours ofx.

Will the use of some other metric less subject to concentra-
tion help ? It can be shown that Minkowski metrics

‖x‖p =

(∑
i

(xi)p

) 1
p

have slower convergence rates to concentration whenp is
small. Will a nearest neighbour search be more stable if the
value ofp is well chosen ?

What impact has concentration on robustness to noise ?If
two ideal elements are similar, we would like the corre-
sponding observed data to be similar too. Are all Minkowski
norms equally robust to noise ?

How influent is the intrinsic dimensionality of the data?Re-
sults (1) and (2) rely on the independance of the components
xi. Is concentration observed when there are dependences ?

Answering those questions will help improving the global
performances of data analysis methods that rely on data sim-
ilarity estimation.
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