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Abstract

Obstetricians were asking the engineering support to study
more extensively any technical possibility to electronically
get some useful information from the whole PQRST com-
plex of the fetal electrocardiogram (fECG) in order to iden-
tify eventual sign of fetal distress (FD). The latter should
indeed be found as a more reliable information for the clin-
ician with the potential benefit of increasing the sensibility
as well as the specificity of the diagnosis of FD. A way to
achieve this goal is Blind Source Separation. In this case,
the extraction of an estimation of the fetal PQRST com-
plex can be solved using Independent Component Analy-
sis on signals recorded through electrodes located on the
pregnant woman abdomen. Today, neither theoretical nor
simulation considerations were investigated to determine
an optimal number and location of these electrodes, despite
possible important consequences on the extraction perfor-
mances. We propose here a method to identify the location
of electrodes (depending of the position of the fetus) that
drive electrical components due to the fetus by analyzing
the (joint and marginal) density functions of the recorded
signals. This result allows to evaluate the ‘interesting’
sensors, therefore allowing electrode selection when many
sensors are involved in the measure. We show several sim-
ulation results on artificial signals.
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1 Introduction

In the everyday clinical practice, the fetal heart rate vari-
ability (FHRV) analysis does not render the obstetricians
sufficiently able to get an accurate diagnosis of fetal dis-
tress (FD). As a consequence, the analysis of this parameter
taken alone has led in some cases to unnecessary caesarean
deliveries and the clinicians were asking for a more reliable
test. The fetal electrocardiogram (fECG) should be of in-
terest in helping them to further evaluate the well-being of
the future newborn. In the time being, the PQRST complex

(Figure 1) can be catch through an invasive sensor located
on the fetal scalp [1]. Of course, this method of measuring
the fECG can only be applied during the labour, when the
fetal membranes have been broken. Many researchers have
tried to respond the clinician’s needs. They have devel-
oped a non-invasive technique to extract the fECG signal,
in order to render it able to analyze the well-being of the
fetus during the labour, and even more during the whole
pregnancy. Blind Source Separation (BSS) is one of the
methods that were recently investigated [2, 3, 4] to mea-
sure the fECG by a non-invasive manner. It consists in the
extraction of original independent sources from mixtures of
them. In this application, the sources are the fECG and ma-
ternal electrocardiogram (mECG), diaphragm and uterus
and the mixtures are recorded through electrodes located
on the pregnant woman abdomen (potentials measured on
the mother’s skin are the sum of electrical fields). BSS can
be achieved by Independent Component Analysis (ICA),
under mild assumptions.

The problem of an optimal placement of the elec-
trodes is important, because it can really influence the qual-
ity of the extracted signal [3]. Similarly, the number of
sensors to be used is not known. We propose here to an-
alyze signals recorded by a 10-by-10 grid of electrodes
(100 sensors) placed around the pregnant woman’s ab-
domen ([5], see Figure 2). We emphasize the difficulty of a
frequency-domain analysis; we show that an analysis based
on marginal and joint densities of the recorded signals al-
lows to identify the ones that have fetal components. In [3],
a density-based criterion was applied to select electrodes in
order to improve the performances of the separation algo-
rithm.

This paper is organized as follows: in the next sec-
tion, we discuss the method commonly used to diagnose
the well-being of a fetus. BSS is briefly introduced in sec-
tion 3. In section 4, artificial ECG signals are presented,
together with a map of the electrodes on the grid. Sections
5 and 6 present the frequency and density specificities of
the signals. In sections 7 and 8, we introduce intuitive cri-
terions to identify interesting electrodes, and in particular
the mutual information concept. In section 9, we empha-
size that a variable selection algorithm inspired from mu-
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tual information leads to select signals from the grid which
drive effectively an important fetal contribution.

2 Diagnosis of the fetal well-being

In this section, we emphasize the interest of recording the
whole fECG complex, in order to improve the quality of the
fetal surveillance in comparison with the classical method
of the FHRV analysis.

2.1 Fetal Heart Rate Variability

Until few years, it was thought that a monitoring laid on
the FHRV allowed to identify every fetus suffering from
FD. This method - also called the cardiotocographic ap-
proach (CTG) - was however unable to bring up in some
clinical circumstances both sufficient and acceptable sen-
sibility and specificity leading to an unacceptable increase
of cesarean deliveries which could have been avoidable. It
explains that despite of 30 years of clinical experience, the
absolute benefits which can be got from the CTG surveil-
lance is still under debate. An alternative to the sole use of
the FHRV analysis could be found by the combination of
the latter with the waveform analysis of the fECG.

2.2 The PQRST complex of the ECG signal

The PQRST complex (see Figure 1) is an electric signal
produced by the contraction of the heart’s muscle called
myocardium. It is composed of three parts:

• the P -wave reflects the contraction of the auricles;

• the QRS-complex is associated with the contraction
of the ventricles. Due to the magnitude of the R-wave,
it is extremely reliable;

• the T -wave, which corresponds to the repolarisation
phase which follows each heart contraction.

The delay associated to the R-R interval leads to the heart-
beats frequency.

P

Q S

T

R

P

Q S

T

R

ST

� ���

� ��� ���

R-R

P

Q S

T

R

P

Q S

T

R

P

Q S

T

R

P

Q S

T

R

ST

� ���

� ��� ���

R-R

Figure 1. Temporal structure of an ECG (about 2 sec for a
sain fetus): the PQRST complex.

2.3 ST analysis

Many technical reports on the ST -segment morphology
(translating the fetal myocardium activity) and on the

|T |
|QRS| ratio of the fetal ECG (see Figure 1) confirm its diag-
nostic reliability. However, this method has a drawback in
regards with the FHRV analysis : it requires the capture of
the ECG complex, and not only a measure of instantaneous
frequency. Today, as already mentioned in the introduc-
tion, this signal can be catched during the labour through a
sensor located on the scalp of the fetus (after the breaking
of the fetal membranes). Physicians are interested to have
this signal even before the labour, requiring a non-invasive
measurement, which can be achieved by Blind Source Sep-
aration.

3 ICA and Blind Source Separation

Independent Component Analysis (ICA) consists in
blindly recovering statistically independent sources (s =
[s1, . . . , sm]T ) from linear and instantaneous mixtures of
them (x = [x1, . . . , xm]T ), which could be translate in ma-
trix formalism as:

x = As . (1)

Under this hypothesis, ICA can thus solve the Blind Source
Separation (BSS) problem (see e.g. [6, 7]). This requires
to find an inverting matrix W such that ŝ = Wx = WAs,
with WA equal to the identity matrix, up to a permutation
and a diagonal-scale matrix. Each estimated source is thus
close from an original one (ŝj = αisi), and a whitening
of the observed signals implies σ2

ŝj
= 1, with 1 6 i, j 6

m. By definition, the statistical independence between the
sources implies that the product of the marginal densities
(PDF) psi

equals the joint density (JPDF) p:

m∏
i=1

psi
(si) = p(s) . (2)

In the extraction of the fECG signal, the observed signals
are recorded by sensors located on the abdomen of the
pregnant woman. Next, fECG is extracted by an ICA al-
gorithm (see a.o. [8, 9]).

4 Artificial fECG signals

The signals of the electrodes (temporal structure of three
of them are given in Figure 3) are the combinations of the
electrical fields generated by several independent simulated
sources: the maternal heart, the fetal heart, the uterus and
the diaphragm. For each of these components, equations of
an electrical model are derived.

The shape of the maternal abdomen is considered to
be formed by a parabolic function surrounding a middle
axis. The difficulty of the task is that an accurate model
of the heart is needed because the model has to provide
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the orientation of the heart dipole. This is achieved by us-
ing a template ECG data file recorded at a sampling rate of
500 Hz (the heart rate is 70 beats/mn). The signal was re-
sampled so that a fetal heart rate was built at about twice
the maternal one. Similar manipulations follow for the
uterus and the diaphragm. The bioelectrical properties of
the uterus are derived from [10]. The bioelectrical model of
the diaphragm consists of 6 dipoles, symmetrically located
over the uterus. The exact position as well as the amplitude
can change over time. The resulting (from superimposition
of fECG, mECG, uterus and diaphragm signals) electrical
field at the surface allows to simulate signals observed on
electrodes according to their locations (see Figure 2).

Figure 2. 3D representation of a 100 electrodes grid: loca-
tion and labelling of the sensors.

Figure 3 shows three recorded signals on sensors 50,
6 and 36 (see Figure 2 for electrodes labelling). The first
one catches approximately the pure PQRST complex of the
mother, the two others catch components due to the fetal
heartbeats.

5 Frequency specificities of recorded signals

As explained in the introduction, one can be interested in
detecting signals that have a fetal contribution. The first
idea is to analyze signals in the frequency domain, by a
Fourier transform (Figure 4).

In general, the frequency of the fetal heartbeats
(fHB) is quite close to twice the frequency of the mother’s
one (fHM ): fHB

fHM
' 2. This ratio can decrease in patho-

logical cases until values very close to one. Unfortunately,
in this case, the corresponding patterns in the signal power
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Figure 3. Mixed artificial signals. First row: reference sig-
nal, recorded by sensor 50 (mECG PQRST complex); Sec-
ond row: signals 6 and 36 (compressed in width for a better
fetal component visibility).
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Figure 4. Left: two ‘recorded’ signals (sensors 81 and 6);
Right: their power spectrum, computed by the FFT.

spectrum are very close, so that no really interesting infor-
mation about the fetal contribution can be extracted from a
frequency analysis.

6 Density specificities of the recorded signals

The analysis of probability density functions (PDF) can cir-
cumvent the problem encountered in the frequency domain.
Indeed, the analysis of the joint PDF (JPDF) between sig-
nals and a reference can give interesting information. Con-
sider the joint densities between a reference Ref and elec-
trode signals. The reference is chosen here as the closest
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signal from the pure mECG, which is easy to find by exter-
nal means. The left column of Figure 5 shows respectively
the JPDF of Ref with itself (top), and then the JPDF be-
tween Ref and electrode 6 (middle) and electrode 36 (bot-
tom) (the right column shows zooms around the origin, the
latter being indicated by the intersection of the dotted x and
y axes).

The information of a fetal component in signals can
be checked by analyzing the conditional densities (CPDF)
p(X|Y = 0) of the JPDF. Indeed, while the reference sig-
nal (Y = Ref ) takes values around zero, the other one
could take values different from zero, due to the fetal R-
wave. The presence of the asymmetry of p(X|Y = 0)
points out a fetal contribution in the X signal. Note that
the large ‘ellipse’ visible on the left figure in the second
row indicates a slight phase shift between the mother’s R-
waves in both signals, contrarily to the graph in the third
row. The only case where this analysis may fail is when
both the phases and the frequencies of the mother and the
fetus signals are synchronized.

Figure 5. Left: joint density functions p(X,Y ) of
‘recorded’ signals, with Y = Ref being the signal coming
from sensor 50 (pure mECG).; Right: zooms around the
origin. First row: p(Ref,Ref), second row: p(6, Ref),
third row: p(36, Ref). Dotted lines indicate the x and y
axes. Fetal contribution are visible on the two last rows:
the conditional densities p(X|Y = 0) are highly asymmet-
ric (see text). For clarity, the sign of signals is inverted to
show the JPDF in the first quadrant, and level curves are
shown in a limited range.

7 From conditional pdf disymetries to mu-
tual information

In the previous section, we shown that the asymmetry of the
CPDF p(X|Y = 0) contains relevant information about the

fetal contribution in signals. Several criterions could be de-
rived in order to measure this disymetry. One of those could
be the following: fold up both parts of the PDF (X = 0 be-
ing the folding axe), subtract them and measure this differ-
ence. However, this measure has drawbacks, in particular
the problem of the offset between X and Y . Actually, a
measure of deviation between two PDF f and q could be
a very convenient criterion. One of those measures is the
Kullback-Leibler divergence (KLd)1:

KL(f, q) =

∫
f(x)log

f(x)

q(x)
dx . (3)

In this application, f could be chosen as the reference, and
q the PDF of other electrodes. Another way to measure the
deviation between PDF is to measure their (in)dependence.
This time, we compute the mutual information [11] I be-
tween a specific signal (X) and Ref (Y ), which is actu-
ally the KLd between the joint density of X and Y and the
product of their marginal densities:

I(X,Y ) =

∫
p(x, y)log

p(x, y)

pX(x)pY (y)
dxdy . (4)

Note that I(X,Y ) > 0 with equality if and only if X and Y
are independent (see eq. 2). If the joint density is quite far
from the product of the marginal densities, one can suppose
that the signals are also ‘quite different’ from an informa-
tion theory point of view (i.e. ‘quite independent’). Indeed,
a signal with high fetal component must be ‘quite different’
from the pure mECG signal (recall that Ref is taken as the
pure mECG signal).

8 Sensors classification using mutual infor-
mation

In order to identify electrodes with high fetal contributions,
we propose to compute the normalized mutual informa-
tion of each electrodes with respect to Ref : NI(X) =
I(X,Ref)/I(Ref,Ref). In practice, the PDF’s pX , pY

and JPDF p are unknown and were estimated in this case
with a Parzen estimator [12] with Gaussian kernels2.

The method consists - to estimate a one-dimensional
PDF - of a sum of T basis kernels Φt(µ, σ2, η) (T being
the number of samples of X), centered on µ = X(t) in the
magnitude space (σ2 is the variance of the kernels, which
must be chosen a priori):

Φt(η, µ, σ2) =
1√
2πσ

e
(η−µ)2

2σ2 (5)

Then, the estimation p̂X equals:

p̂X(η) =
1

T

T∑
i=1

Φi(η,X(i), σ2) (6)

1Note that by convention : 0 log 0 = 0.
2Other kernels can be used.
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A similar method was derived for the estimation of
the JPDF p. The variance σ2 of the kernels must be chosen
large enough to avoid overfitting, but small enough to be
sufficiently accurate, in order to achieve p̂X ' pX and p̂ '
p. The choice of σ2 is thus directly linked to the variance
of X and to the number of samples.

Figure 6 shows NI(xi) for different values of σ2. The
steps in the curves correspond to changes of row (see elec-
trode map in Figure 2), especially in the middle of the grid.
The signals which are the most independent from the ref-
erence (sensor 50) are located in the bottom and the top of
the grid (low NI).
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Figure 6. Normalized mutual information between elec-
trode 50 (reference) and each electrode for several values
of the smoothing parameter σ2.

The relevance of NI as a measure of the fetal con-
tribution can be proved on a very simple classification
rule. Four well-chosen thresholds on the NI (see Figure 7,
where σ has been fixed to 0.02) allows to classify the elec-
trodes in four classes. The means of the signals in each
class (Figure 8) show that the fetal contribution is different
for each class. This demonstrates that the mutual informa-
tion between the pure mECG signal and xi content effec-
tively the information about the fetal contributions in the
recorded signals xi.

Some very simple electrode selection algorithms
could be derived from this threshold method, but they
present several drawbacks: the choice of the number of
class, the numerical values of the thresholds, etc.

9 Electrodes selection as a preprocessing to
ICA

In order to circumvent the drawbacks of a simple threshold
classification method, with the number of classes a priori
fixed, another algorithm is used to select signals which will
be processed by ICA.
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Figure 7. Normalized mutual information between elec-
trode 50 and each electrode (σ = 0.02). Classification
thresholds are indicated by dotted lines.
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Figure 8. Means of signals in each class.

In [3], an electrode selection algorithm is developed
for this application (the (J)PDF’s were estimated as ex-
plained in section 8). Briefly, the algorithm select m′ sig-
nals among a set of m mixtures (x1, . . . , xm). The first
signal U1 = Ref must be chosen by another means. The
zth selected mixture Uz = xk is the most independent sig-
nals (among the m−(z−1) still unselected mixtures) from
the z − 1th already selected Uj’s, i.e. the one which min-
imizes

∑z−1

j=1
I(Uj , Uz). We stop the algorithm when m′

signals are selected (z = m′).
Using this algorithm, the three first selected signals

(after the reference) were respectively signals from classes
1, 2 and 3. This paper demonstrates that this method select
signals with respect to their fetal contributions, as the sim-
ple threshold classification. Furthermore, a performance
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analysis proves that this algorithm can increase the sepa-
ration quality, from the Signal-Interference Ratio point of
view.

10 Conclusion

The physicians are interested in measuring the whole fe-
tal PQRST signal by a non-invasive manner. Recently,
this problem was addressed using Blind Source Separa-
tion, where the fetal ECG is one of the desired sources.
This problem can be solved with ICA, by the processing of
several signals recorded through electrodes located on the
pregnant woman’s abdomen.

In [3], the authors have shown that a selection of
those electrodes can improve the separation because (i)
from a computational complexity point-of-view, the num-
ber of signals to process by ICA is downsized and (ii) form
a correlation or a Signal-Interference Ratio (SIR) point of
view, some results have shown that sometimes processing
only particular recorded signals among all available ones
can improve the separation performances. We have empha-
sized here that actually, this selection is done with respect
to the fetal contribution appearing in the measured signals.

This paper discusses the detection of such contribu-
tions. It is shown why, in pathological situations (where
the frequencies of fetal heartbeats and mother’s ones are
similar), a frequency-domain analysis of signals could be
irrelevant. We propose a density-based approach, more ro-
bust to frequency mismatches. From these densities, we
derive a measure of deviation laid on the mutual informa-
tion between signals.

In this work, we have demonstrated that the evalu-
ation of the mutual informations I(mECG, xi) between
signals xi and an a priori well-chosen reference (mECG)
is able to detect fetal contributions in xi: classification of
signals with respect to their fetal components becomes pos-
sible. The electrodes selection algorithm developed in [3]
is based on I(mECG, xi), and gives promising results.

The statistical processing of electrodes (estimation of
marginal, conditional or joint density functions and their
analysis, mutual information, . . . ), is thus a powerful tool
in order to analyse biomedical signals.
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