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1.1 Summary

Dimensionality reduction aims at representing high-dimensional data into low-dimensionality space. In

order to make sense, the low-dimensional representation, or embedding, has to preserve some well-defined

structural properties of data. The general idea is that similar data items should be displayed close to each

other, whereas longer distances should separate dissimilar ones. This principle applies to data that can
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be either sampled from a manifold of the data space or distributed among several clusters. In both cases,

one generally agrees that rendering the local struture comes prior to reproducing the global arrangement of

data. In practice, the structural properties can be pairwise measurements such as dissimilarities (all kinds

of distances) or similarities (decreasing functions of distances). Relative proximities such as rank of sorted

distances can be used as well. Within this context, graphs can serve several purposes. For instance, they

can model the fact that (dis)similarities are missing or overlooked. Even if all pairwise dissimilarities are

available, one can consider that only the shortest ones are meaningful and reflect the local data structure.

Graphs corresponding to K-ary neighborhoods or ε-balls can be built and utilized to compute the length of

shortest paths or commute-time distances associated to random walks.

This chapter reviews some of the most prominent dimensionality reduction methods that rely on graphs.

These include several techniques based on geodesic distances, such as Isomap and its variants. Spectral

methods involving a graph Laplacian are described as well. More biologically inspired techniques, such as

the self-organizing map, identify a topographic mapping between a predefined graph and the data manifold.

Illustrative experiments focus on image data (scanned handwritten digits) and results are assessed using

rank-based quality criteria.

1.2 Introduction

The interpretation of high-dimensional data remains a difficult task, mainly because human vision is not

used to deal with spaces having more than three dimensions. Part of this difficulty stems from the curse

of dimensionality, a convenient expression that encompasses all weird and unexpected properties of high-

dimensional spaces. Dimensionality reduction (DR) aims at constructing an alternative low-dimensional

representation of data, in order to improve readability and interpretability. Of course, this low-dimensional

representation must be meaningful and faithful to the genuine data. In practice, the representation must

preserve important structural properties of the data set, such as relative proximities, similarities or dissim-

ilarities. The general idea is that dissimilar data items should be represented far from each other, whereas

similar ones should appear close to each other. Dimensionality reduction serves other purposes than just

data visualization. For instance, DR can be used in data compression and denoising. Dimensionality reduc-

tion can also preprocess data, with the hope that a simplified representation can accelerate any subsequent

processing or improve its outcome.

Linear DR is well known, with techniques such as principal component analysis [1] (PCA) and classical

metric multidimensional scaling [2, 3] (MDS). The former tries to preserve the covariances in the low-

dimensional space, whereas the latter attempts to reproduce the Gram matrix of pairwise dot products.

Nonlinear dimensionality reduction [4] (NLDR) emerged later, with nonlinear variants of multidimensional
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scaling [5, 6, 7] such as Sammon’s nonlinear mapping [8] (NLM) and curvilinear component analysis [9, 10]

(CCA). Most of these methods are based on the preservation of pairwise distances. Research in NLDR is

multidisciplinary and follows many approaches, ranging from artificial neural networks [11, 12, 13, 9, 14]

to spectral techniques [15, 16, 17, 18, 19, 20, 21]. If linear DR assumes that data are distributed within or

near a linear subspace, NLDR necessitates more complex models.

The most generic framework consists in assuming that data are sampled from a smooth manifold. For

this reason, modern NLDR is sometimes referred to as manifold learning [22, 20]. Under this hypothesis,

one seeks to re-embed the manifold in a space having the lowest possible dimensionality, without modifying

its topological properties. In practice, smooth manifolds are difficult to conciliate with the discrete nature of

data. In constrast, graph structures have proven to be very useful and tight connections between NLDR and

graph embedding [23, 24, 25] exist.

Another usual hypothesis is to assume that data are sampled from clusters rather than from a manifold.

Dimensionality reduction methods that emphasize clusters are often closely related to spectral clustering

[26, 27, 28, 29]. In this domain, graphs are very handy as well, with useful tools such as the Laplacian

matrix.

This chapter is organized as follows. Section 1.3 introduces the necessary notations and classical meth-

ods such as PCA and MDS. Section 1.4 details how graphs can help introducing nonlinearities in the DR

methods. Next, Sections 1.5 and 1.6 review some of the major DR methods that perform manifold learning

by using either distances (‘global’ methods) or similarities (‘local’ methods). Section 1.7 deals with graph

embedding, another paradigm used in nonlinear dimensionality reduction. Finally, Section 1.8 compares the

methods on a few examples, before Section 1.9 that draws the conclusions and sketches some perspectives

for the near future.

1.3 Classical methods

Let X= [xi]1≤i≤N denotes a multivariate data set, with xi ∈RM. Let Y = [yi]1≤i≤N denote its low-dimensional

representation, with yi ∈ RP and P < M. Dimensionality reduction aims at finding a tranformation T from

RM×N to RP×N that minimizes the reconstruction error defined by

E = ‖X−T −1(Y)‖2
2 , (1.1)

where Y = T (X) and ‖U‖2
2 = Tr(UT U) = Tr(UUT ) is the Frobenius norm of U. In other words, the

encoding-decoding process resulting from the successive application of T and T −1 should produce minimal

distortion.
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1.3.1 Principal component analysis

The simplest option for T is obviously a linear transformation. In principal component analysis [30, 31,

32, 33, 1], this transformation can be written as T (X) = VT
P(X−u1T ), where u is an offset and VP is an

orthogonal matrix (VT
PVP = I) with P columns. Orthogonality reduces the number of free parameters in VP

and provides the P-dimensional subspace of RM with a basis of orthonormal vectors. With such a linear

transformation, the reconstruction error can be rewritten as

E(u,VP;X) = ‖(X−u1T )−VPVT
P(X−u1T )‖2

2 (1.2)

= ‖(I−VPVT
P)(X−u1T )‖2

2 (1.3)

= Tr
(
(X−u1T )T (I−VPVT

P)(I−VPVT
P)(X−u1T )

)
(1.4)

= Tr
(
(X−u1T )T (I−VPVT

P)(X−u1T )
)

. (1.5)

In order to identify u, we can compute the partial derivative of the reconstruction error with respect to u and

equate it with zero. Defining E = X−u1T , we have

∂E(u,VP;X)

∂u
=

∂Tr(ET (I−VPVT
P)E)

∂E

∂ET

∂u
= 2(I−VPVT

P)E1 = 0 (1.6)

Assuming that I−VPVT
P has full rank, we have (X−u1T )1T = 0 and therefore u = X1T/N. The optimal

offset is thus the sample mean of X. Knowing this, we can simplify the transformation into T (X) = VT
PX if

we assume that X1 = 0. The reconstruction error is then rewritten as

E(VP;X) = ‖(I−VPVT
P)X‖2

2 = Tr(XXT )−Tr(VT
PXXT VP) , (1.7)

where the first term is constant. The second term can be minimized under the constraint VT
PVP = I using

Lagrange’s technique. The Lagrangian can be written as

L(VP,Λ;X) = Tr(VT
PXXT VP)+Tr(Λ(I−VT

PVP)) , (1.8)

where Λ is the diagonal matrix containing Lagrange’s multipliers. The partial derivative of L(VP,Λ;X) with

respect to VP is given by
∂L(VP,Λ;X)

∂VP
= 2XXT VP−2ΛVP . (1.9)

After equating the partial derivative with zero and rearranging the terms, we obtain ΛVP = XXT VP, which

turns out to be an eigenproblem. Without loss of generality and because X is centered, the product XXT can

be replaced with the sample covariance C(X) = XXT/N. The covariance matrix is symmetric and positive

semidefinite by construction. Its eigenvalues are therefore larger than or equal to zero. If we write the

eigenvalue decomposition as C(X) = VΛVT , then the solution of the maximization problem for a given P
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is provided by the eigenvectors in V that are associated with the P largest eigenvalues. These eigenvectors

give the columns of VP = [vi]1≤i≤P. The covariance in the P-dimensional subspace is given by

C(Y) = YYT/N = VT
PXXT VP/N = VT

PC(X)VP = VT
PVPΛVT

PVP = ΛP , (1.10)

where ΛP denotes the restriction of Λ to its first P rows and columns. As the covariance is diagonal in the

subspace, this shows that PCA also decorrelates the data set. Matrix VP is also the solution that minimizes

‖C(X)−VPΛPVT
P‖2

2. This shows that minimal reconstruction error is equivalent to variance preservation.

If VP maximizes Tr(VT
PXXT VP), then it also trivially maximizes Tr(XT VPVT

PX).

1.3.2 Multidimensional scaling

In the previous section, PCA requires the data set to be available in the form of coordinates in X. In contrast,

classical metric multidimensional scaling [2, 3](CMMDS) starts from the Gram matrix, which is defined as

G(X) = XT X and is positive semidefinite by construction. The aim and model of CMMDS are basically the

same as those of PCA. The solution remains the same as well, but it is computed differently. To see this,

let us use the singular value decomposition of X. It can be written as X = VSUT , where both U and V are

orthogonal matrices and S contains the singular values on its diagonal in descending order of magnitude.

The covariance matrix can be rewritten as C(X) = XXT/N = VSUT UST VT/N = V(SST/N)VT . The

last expression is equivalent to the eigenvalue decomposition of the covariance matrix if we rename the

product SST/N into Λ. Similarly, the Gram matrix can be rewritten as G(X) = XT X = UST VT VSUT =

U(ST S)UT . The last expression is equivalent to the eigenvalue decomposition of the Gram matrix and

shows the tight connection with the eigenvalue decomposition of the covariance matrix. The coordinates in

the P-dimensional subspace can be rewritten as Y = VT
PX = VPVSUT = SPUT , where SP is the restriction

of S to its P first columns. This shows that the coordinates are given by the P leading eigenvectors of the

Gram matrix, scaled by the square root of their associated eigenvalue.

Until here, we have assumed that X is centered in the Gram matrix. If it is not, then we need to compute

G(X) = (X− (X1/N)1T )T (X− (X1/N)1T ) = (I−11T/N)(XT X)(I−11T/N) . (1.11)

This shows that the Gram matrix can be centered as such, without explicitly knowing X. The centering ma-

trix I−11T/N is a powerful tool that can also be used if the data set consists of pairwise squared Euclidean

distances. In this case, we write

∆2(X) = [‖xi−x j‖2
2]1≤i, j≤N = diag(G(X))1T −2G(X)+1diag(G(X))T , (1.12)

where operator diag provides the column vector built from the diagonal entries of its argument. Double

centering, namely, multiplying the matrix of squared distances by the centering matrix on both the left and
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right sides, yields

(I−11T/N)∆2(X)(I−11T/N) =−2(I−11T/N)G(X)(I−11T/N) . (1.13)

This results from

diag(G(X))1T (I−11T/N) = diag(G(X))1T −diag(G(X))1T 11T/N (1.14)

= diag(G(X))1T −diag(G(X))1T (1.15)

= 00T (1.16)

and similarly (I−11T/N)1diag(G(X))T = 00T . Classical metric MDS is thus a flexible method that can

be applied to coordinates, pairwise dot products, or pairwise squared Euclidean distances. For a given P, it

can be shown that Y = SPUT minimizes a cost function called STRAIN [34] and defined as

E(Y;X) = ‖G(X)−G(Y)‖2
2 = ∑

i, j

(
xT

i x j−yT
i y j
)2

. (1.17)

In other words, CMMDS tries to preserve dot products in the linear subspace.

1.3.3 Nonlinear MDS and distance preservation

Given the close relationship between dot products and squared Euclidean distances, one might extend the

CMMDS principle to distance preservation. Unfortunately, distance preservation cannot be achieved with

spectral decomposition such as in PCA and CMMDS. It requires more generic optimization tools such

as gradient descent or ad hoc algorithms. As an advantage, these tools are quite flexible and allow for

more freedom in the definition of the cost function to be minimized. This freedom also means that the P-

dimensional coordinates are no longer constrained to a linear transformation of those in the M-dimensional

space. For instance, one can consider the STRESS function [6] defined as E(D;∆) = ‖∆(X)−∆(Y)‖2
2. If

δi j(X) and δi j(Y) denote the pairwise distance in the M- and P-dimensional space respectively, then a more

general form of the STRESS is given by

E(Y;X) = ∑
i, j

wi j(δi j(X)−δi j(X))2 , (1.18)

where wi j controls the weight of each difference of distances in the cost function. These weights can be

chosen arbitrarily or can depend on δi j and/or di j. The emphasis put on the preservation of small distances

can be reinforced by defining wi j = 1/δi j, such as in Sammon’s stress function, which is used in his nonlinear

mapping (NLM) technique [8]. Another possibility is to define wi j = f (δi j), where f is a non-increasing

positive function. For instance, in curvilinear component analysis (CCA) [10], we have wi j = H(λi− δi j),

where H is a step function and λi a width parameter.
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Yet another cost function for MDS is the squared stress, often shortened as SSTRESS [7], whose generic

definition is

E(Y;X) = ∑
i, j

wi j(δ
2
i j(X)−δ

2
i j(Y))2 . (1.19)

As distances are squared, the SSTRESS is actually closer to the STRAIN of CMMDS.

Various optimization procedures can be used to minimize these cost functions. Gradient descent with

a diagonal approximation of the Hessian is used in Sammon’s NLM, whereas CCA relies on a stochastic

gradient descent. Yet another technique consists of successive majorizations of the STRESS with convex

functions whose minimum can be computed analytically [34].

1.4 Nonlinearity through graphs

The projection of data onto linear subspaces, such as in the methods described in the previous section, might

be insufficient in many cases. As an emblematic example, let us consider a manifold looking like the thin

layer of jam in a Swiss roll cake (see Section 1.8 and Fig. 1.1 for an illustration). This data set is distributed

in a three-dimensional space on a surface shaped as a spiral. As a matter of fact, the underlying manifold

is a two-dimensional rectangular subspace, which actually corresponds to a latent parameterization of the

Swiss roll manifold. No linear projection is able to provide a satisfying representation of this latent space:

there is always the risk that pieces of the Swiss roll will be superimposed in the representation. Intuitively,

the solution to this problem would be to first unroll the manifold and to perform the projection afterwards.

All NLDR methods methods implement this intuition in some way. They explore the idea sketched at

the end of the previous section: local neighborhood relationships should be faithfully rendered in the low-

dimensional representation, whereas more distant relationships are less important. Unrolling the Swiss roll

puts this principle into practice: close points remain near each other, while the distances between non-

neighbors is increased. Graphs provide an efficient way to encode neighborhood relationships. For instance,

graphs can represent K-ary neighborhoods (the set of the K nearest neighbors around each data point) or

ε-ball neighborhoods (the set of all neighbors lying within a ball of radius ε centered on each data point).

However, graphs also generate sparsity, which has to be compensated for. The variety of NLDR methods

reflects the different possibilities to intelligently fill the holes left by sparsity.

Three categories of methods can be distinguished:

• Some methods start with pairwise distances, keep those associated with local neighborhoods only,

and replace the missing distances with values that facilitate manifold unfolding. Eventually, CMMDS

or any of its nonlinear variants can be used to compute the low-dimensional representation. Typical

methods in this category are Isomap [16] (and all other methods using graph distances [35, 36, 37, 38,
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39]) and maximum variance unfolding [20].

• Some methods define pairwise similarities (or affinities, proximities, vicinities, i.e. any positive quan-

tity that decreases with distance). Non-neighboring data items are generally given a null similarity,

which leads to a sparse similarity matrix. Next, the sparse similarity matrix is converted into a distance

matrix that can be processed by CMMDS. Typical methods in this category are Laplacian eigenmaps

[40, 18] and locally linear embedding [17, 22].

• Some methods rely on what could be called graph placement or graph embedding [24, 25]. These are

often ad hoc methods that are driven by mechanical concepts such as spring forces applied to masses.

A graph can be used to represent the masses and the springs that connect them. Two subcategories

exist. The graph can defined a priori in the low-dimensional space and placed in the high-dimensional

one or the graph can be built in a data-dependent way in the high-dimensional and the placement

achieved in the low-dimensional one. The self-organizing map [11, 41] belongs to the first subcate-

gory whereas force-directed placement, Isotop [42], and the exploratory observation machine (XOM)

[43]are in the second one.

1.5 Graph-based distances

Let us imagine a manifold made of a curved sheet of paper, which is embedded in our physical three-

dimensional world. The Swiss roll is an example of such manifold. Let us also consider the Euclidean dis-

tance between two relatively distant points of the manifold. Depending on the sheet curvature, the distance

will vary, although the sheet keeps the same size (paper does not allow any stretching or shrinking). This

shows that distance preservation makes little sense if the manifold to be embedded in a lower-dimensional

space needs some unfolding or unrolling. This issue arises because Euclidean distances measure lengths

along straight lines whereas the manifold occupies a nonlinear subspace. The solution to this problem is

obviously to compute distances ”as the ant crawls” instead of ”as the crow flies”. In other words, distances

should be computed along the manifold or, more accurately, along manifold geodesic curves. In a smooth

manifold, the geodesic curve between two points on the manifold is the smooth one-dimensional submani-

fold with the shortest length. The term geodesic distance refers to this length. In a manifold such as a sheet

of paper, geodesic distances are invariant to curvature changes. Therefore, geodesic distances capture the

internal structure of the manifold without influence from the way it is embedded.

As a matter of fact, geodesic distances cannot be evaluated if no analytical expression of the manifold

is available. However, if at least some points of the manifold are known, for instance through data set X,

then geodesic distances can be approximated by using a graph [44]. Each data vector xi is associated with
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a graph vertex and either K-ary neighborhoods or ε-ball neighborhoods provide the edges. Such a graph

yields a discrete representation of the manifold. Within this framework, the geodesic distance between xi

and x j can be approximated by the length of the shortest path that connects the two corresponding vertices.

Shortest paths and their lengths can be easily computed by Dijkstra’s or Floyd’s algorithms [45, 46].

At this point, we know that geodesic distances approximated by graph distances can characterize the

internal structure of a manifold. But how can we force its unfolding in view of dimensionality reduction?

The solution consists in trying to reproduce the graph distances measured in the high-dimensional space with

Euclidean distances in the low-dimensional space. In this way, geodesic curves are matched with straight

lines. In practice, several methods can perform this hybrid distance preservation. For instance, CMMDS can

be applied to the matrix containing all squared pairwise shortest path lengths (instead of squared Euclidean

distances). This method is known as Isomap [16]. Although CMMDS is purely linear, Isomap achieves a

nonlinear embedding: the computation of the shortest path lengths can be thought of as being equivalent to

applying a nonlinear transformation to the data. Nonlinear variants of CMMDS can be used as well, such as

Sammon’s nonlinear mapping [8] or curvilinear component analysis [10], for instance. This yields geodesic

Sammon mapping [37, 38] and curvilinear distance analysis [35, 36].

Graph distances have three main drawbacks. First, let us consider a smooth manifold M that is isometric

to some subset of a Euclidean space. Let us assume that ∆2
M(X) contains the actual squared geodesic

distances for some manifold points stored in X. If we compute −1/2(I−11T/N)∆2
M(X)(I−11T/N), then

we should end up with a valid Gram matrix, which is positive semidefinite. Unfortunately, this statement

does not hold true if geodesic distances are not exact. This means that if ∆2
G(X) contains shortest path

lengths for some graph G instead of geodesic distances, the product −1/2(I−11T/N)∆2
G(X)(I−11T/N)

will not necessarily be positive semidefinite. The spectral decomposition used in Isomap can thus yield

negative eigenvalues. In practice, their magnitude is often negligible and workarounds are described in the

literature [16, 47, 48]. This issue matters only for methods relying on spectral decomposition, while it is

negligible for methods that rely on a nonlinear variant of CMMDS such as Sammon’s NLM or CCA.

A second drawback arises with manifolds that are not isometric to some subset of a Euclidean space.

A piece of a spherical surface, for instance, is not isometric to a piece of plane. In this case, distance

preservation can only be imperfect. The weighting schemes used in the nonlinear variant of CMMDS can

partly address this issue. Isometry is also lost in the case of a non-convex manifold. For example, a sheet

of paper with a hole is not isometric to a piece of plane: some geodesic distances are forced to circumvent

the hole in the manifold. Again, a weighted distance preservation giving more importance to short distances

can help.

The third shortcoming of graph distances is related to the graph construction. If the value of the pa-

rameters K or ε is not appropriately chosen, there might be too few or too many edges in the graph. Too
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few edges typically lead to an overestimation of the actual geodesic distances (paths are zigzagging). In

some cases, the graph representation of the manifold can comprise disconnected parts, yielding to infinite

distances. Too many edges can cause significant underestimation of some geodesic distances. This could

happen if a ”short circuit” edge accidentally connects two points that are not actual neighbors.

If we compare graph distances to the corresponding Euclidean ones, ones sees that the former are longer

than or equal to the latter. We have seen that the use of these longer distances in CMMDS can be seen

as a way to unfold the manifold. However, Dijkstra’s and Floyd’s algorithms compute shortest paths in

a greedy way, without taking into account the objective of DR. This means that they build a matrix of

pairwise distances but there is no guarantee that this matrix is optimal for DR. For instance, in the case of

Isomap (CMMDS with graph distances), there is no explicit optimization of the Gram matrix such that the

eigenspectrum energy concentrates into a minimal number of eigenvalues.

This issue [48] is addressed in maximum variance unfolding (MVU) [20]. MVU starts with a neighbor-

hood graph (K nearest neighbors or ε-balls). Just as in Isomap, the idea to achieve manifold unfolding is to

stretch distances between non-neighboring data points. For this purpose, one considers a matrix of squared

pairwise distances ∆2(Y) = [δ2
i j(Y)]1≤i, j≤N and the simple objective function to be maximized:

E(Y) =
1

2N
1T ∆(Y)1 =

1
2N ∑

i, j
δ

2
i j(Y) , (1.20)

subject to δ2
i j(Y) = δ2

i j(X) = ‖xi− x j‖2
2 if xi ∼ x j. Additional constraints stem from the assumption that

∆(Y) contains the pairwise Euclidean distances for some P-dimensional representation Y of data set X.

In other words, ∆2(Y) must satisfy the equality ∆2(Y) = diag(G(Y))1T − 2G(Y)+1diag(GY)T , where

GY = XT X is the Gram matrix for some Y. Without loss of generality, one can assume that the mean of

Y is null, i.e. X1 = 0 and 1T G(Y)1 = 1T YT Y1 = 0. This helps to reformulate the problem with only the

Gram matrix. Indeed we can write

E(Y) =
1

2N
1T ∆2(Y)1 (1.21)

=
1

2N
1T (diag(G(Y))1T −2G(Y)+1diag(G(Y))T )1 (1.22)

=
1

2N
1T (diag(G(Y))1T +1diag(G(Y))T )1 = Tr(G(Y)) . (1.23)

In order for CMMDS to be applicable to matrix G(Y), the following constraints must be satisfied:

• To be a Gram matrix, G(Y) must be positive semidefinite.

• If G(Y) factorizes into centered coordinates, then the product 1T G(Y)1 is equal to 0.

• For all neighbors xi ∼ x j, we must have gii(Y)−2gi j(Y)+g j j(Y) = ‖xi−x j‖2
2.
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Provided the neighborhood graph is fully connected, the last set of constraints also controls the scale of

the embedding Y. Such a constrained optimization problem involving a positive semidefinite matrix can be

solved using semidefinite programming [49]. Once the optimal G(Y) is determined, an eigenvalue decom-

position such as in CMMDS can factorize it in order to identify Y.

Both Isomap and MVU can be decomposed in a two-step optimization procedure, where the second step

is CMMDS applied to a modified distance matrix. The difference resides in the first step of each method. In

Isomap, Dijkstra’s or Floyd’s algorithm minimizes the length of vertex-to-vertex paths. While this objective

proves to be useful to unfold a manifold, it is not directly related to DR. In contrast, MVU implements a

similar idea (distances must be stretched) in a more principled way, with an objective function that takes

into account the needs and constraints of the subsequent CMMDS step.

1.6 Graph-based similarities

The previous section has shown that graphs provide a handy framework to build dissimilarities that are more

relevant than the Euclidean distances when it comes to nonlinear manifold unfolding. However, graphs can

also formalize similarities, which are usually defined as decreasing positive functions of the corresponding

distances. Similarities provide therefore a very natural way to emphasize the local structure of data, such as

neighborhoods around each data point. In contrast, the global structure and large distances are associated

with small similarity values. If the latter are neglected, the matrix of pairwise similarities becomes sparse

and a graph can efficiently represent it.

1.6.1 Laplacian eigenmaps

In Laplacian eigenmaps [40, 18], the idea to achieve manifold unfolding is the dual of that of MVU. In-

stead of stretching the distances between non-neighboring data points, the distances between neighbors are

shrunk in the embedding space. For this purpose, the edges of the neighborhood graph are annotated with

similarities; non-neighboring points have null similarities. The simplest similarity definition is

wi j =

 1 if xi ∼ x j

0 otherwise
. (1.24)
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12 Image Processing and Analysing Graphs: Theory and Practice

As the neighborhood graph is undirected, matrix W = [wi j]1≤i, j≤N is symmetric in addition to be sparse.

The minimization of the distances between neighbors can be achieved with the cost function

E(Y;W) =
1
2 ∑

i, j
wi j‖yi−y j‖2

2 (1.25)

=
1
2 ∑

i, j
wi j(y

T
i yi +yT

j y j−2yT
i y j) (1.26)

= ∑
i

yT
i

(
∑

j
wi j

)
yi−∑

i, j
yT

i wi jy j (1.27)

= Tr(YT DY)−Tr(YT WY) = Tr(YLYT ) , (1.28)

where D is a diagonal matrix with dii = ∑ j w ji = ∑ j wi j and L = D−W is the unnormalized Laplacian

matrix of the graph whose edges are weighted with W.

The minimization of E(Y;W) admits the trivial solution Y = 00T . In order to avoid this, we impose the

scale constraint YDYT = I. This leads to the Lagrangian

L(Y,Λ;W) = Tr(YLYT )−Tr(Λ(YDYT − I) = Tr(YLYT )−Tr(YT ΛDY)+Tr(Λ) , (1.29)

The partial derivative with respect to Y is

∂L(Y,Λ;W)

∂Y
= 2YL−2YΛD . (1.30)

Equating the partial derivative to zero and rearranging the terms leads to LYT = ΛDYT , which is a gener-

alized eigenvalue problem. As D is diagonal, it is equivalent to L̃YT = ΛYT , where L̃ = D−1/2LD−1/2 =

I−D−1/2WD−1/2 is the normalized Laplacian. Both the unnormalized and normalized Laplacian matrices

are positive semidefinite. Notice that they are also singular since by construction L1 = D1−W1 = 0. The

multiplicity of the zero eigenvalue is given by the number of connected components in the graph. As we look

for a value of Y with P rows that minimizes E(Y;W), the solution is provided by the trailing P eigenvec-

tors of D−1/2LD−1/2, namely, those associated with the eigenvalues having the lowest nonzero magnitude.

Eventually, if L̃ = UΛUT , then X = UT
P , where UP denotes the restriction of U to its first P columns.

The embedding found by Laplacian eigenmaps corresponds to a multivariate extension of the solution

to a min-cut problem in a graph [50]. There are several variants to Laplacian eigenmaps, depending on

the way the graph edges are weighted. Moreover, the unnormalized Laplacian can replace the normalized

one. This amounts to changing the scale constraint to YYT = I. Let us also consider yet another scaling

possibility, namely Y = Ω
1/2
P UT

P , where ΩP is a diagonal matrix composed of the inverse of the nonzero

smallest P eigenvalues λ
−1
i in descending order. The corresponding Gram matrix is given by UPΩUT

P . If

we assume that the graph consists of a single connected component, then the zero eigenvalue has multi-

plicity one and L̃
+
= UN−1ΩUT

N−1 is the Moore-Penrose pseudo-inverse of L̃. This means that Laplacian
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Graph-based dimensionality reduction 13

eigenmaps is equivalent to CMMDS applied to a Gram matrix that is the pseudo-inverse of the normalized

Laplacian. The computation of the Laplacian and its inversion are equivalent to a nonlinear transformation

applied to the data set X and denoted by Z = φ(X). The Gram matrix in this space is given by G(Z) = L̃
+

and the corresponding Euclidean distances are 1diag(G(Z))T − 2G(Z)+ diag(G(Z))1T . These distances

are referred to as commute time distances [27, 51]. They are closely related to diffusion distances [28] and

also to the length (or duration) of random walks in a neighborhood graph whose edges are weighted with

transition probabilities. An analogy with electrical networks is possible as well [52], with graph edges being

resistances and the commute time distances being the globlal effective resistance between two given ver-

tices through the whole network. This analogy allows establishing a formal relationship between distances

(resistances) and similarities that are inversely proportional to distances (conductances); it also highlights

the duality between DR methods relying on a dense matrix of distances and those involving a sparse matrix

of similarities.

From a more general point of view, the notation G(Z) used above with Z = φ(X) translates the idea

that CMMDS can be applied to nonlinearly transformed coordinates. Most of the time, this transformation

remains implicit. For instance, commute time distances in Laplacian eigenmaps or geodesic distances in

Isomap induce an (hopefully useful) transformation that promotes CMMDS from a linear DR method to

a nonlinear one, while keeping many advantages, such as a convex optimization. Maximum variance un-

folding goes a step further and actually customizes tranformation φ. Along with locally linear embedding

described in the next section, all these spectral methods can be cast within the framework of kernel PCA

[15]. Kernel PCA is the ancestor of all spectral methods and relies on key properties of Mercer’s kernels.

Such a kernel is a smooth function κ(xi,x j) that is symmetric with respect to its arguments and induces

a scalar product in a so-called feature space F. In other words, we have κ(xi,x j) = 〈φ(xi),φ(x j)〉F where

φ : RM → F,x 7→ z = φ(x). Taken the other way round, this property allows φ to be induced from a given

Mercer kernel κ. In particular, one can build a matrix [κ(xi,x j)]1≤i, j≤N with the guarantee that it is a Gram

matrix in some feature space F. Sample mean removal in F can be performed indirectly as well, just by

pre- and postmultiplying the Gram matrix by centering matrix I−11T/N. Somewhat of a misnomer, kernel

PCA actually applies CMMDS to this ‘kernelized’ Gram matrix in order to identify Z and subsequently a

linear P-dimensional projection Y of Z with maximum variance. The pioneering work about kernel PCA

[15] establishes the theoretical framework of spectral NLDR but provides no clue as to which Mercer kernel

performs the best in practice.
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14 Image Processing and Analysing Graphs: Theory and Practice

1.6.2 Locally linear embedding

The idea behind locally linear embedding [17] (LLE) is to represent each data point as a regularized linear

mixture of its neighbors. For points sampled from a smooth manifold, the resulting linear coefficients

can be assumed to depend only upon local proximity relationships. Topological operations applied to the

manifold, such as unfolding and flattening, have thus a minor impact on these coefficients. Therefore, the

same coefficients could be reused to determine a new data embedding in a lower-dimensional space.

In practice, LLE relies on the availability of a neighborhood graph, built with K-ary neighborhoods or

ε-balls. The first step of LLE is to identify the reconstruction coefficients in the high-dimensional data space.

For this purpose, LLE uses a first cost function defined as

E(W;X) =
1
2 ∑

i

∥∥∥∥∥xi−∑
j

wi jx j

∥∥∥∥∥
2

2

=
1
2 ∑

i

∥∥∥∥∥∑j
wi j(xi−x j)

∥∥∥∥∥
2

2

, (1.31)

where W is subject to the following constraints: W1 = 1, wii = 0, and wi j = 0 if and only if xi and x j are not

neighbors. Each row of W can be identified separately. Let Gi denote the local Gram-like matrix involving

all neighbors of xi. It can be written as Gi = [(xk− xi)
T (xl − xi)]k,l , where xk ∼ xi and xl ∼ xi. If vector

wi contains the nonzero entries of the ith row of W, then we have wi = minw wT Giw with wT 1 = 1. The

solution is given by

wi =
Gi1

1T Gi1
. (1.32)

In order to avoid trivial solutions when the rank of Gi is lower than the number of neighbors K, it is advised

in [17, 22, 53] to replace Gi with Gi +(∆2 Tr/K)(Gi)I with ∆ = 0.1. This regularization scheme prevents

trivial solutions, such as wi j = 0 if xi ∼ x j. To some extent, W can be interpreted as a sparse similarity

matrix.

Once the reconstruction coefficients are known, a second cost function can be defined, where W is fixed

and coordinates are the unknown:

E(Y;W) = ∑
i

∥∥∥∥∥yi−∑
j

wi jy j

∥∥∥∥∥
2

2

(1.33)

= ∑
i

yT
i yi−2∑

i
yT

i

(
∑

j
wi jy j

)
+∑

i, j
wi jy

T
i yiwi j (1.34)

= Tr(YT Y)−2Tr(YT YWT )+Tr(WYT YWT ) (1.35)

= Tr(YIYT )−2Tr(YIWYT )+Tr(YWT WYT ) = Tr(Y(I−W)T (I−W)YT ) . (1.36)

The last equality shows that LLE is similar to Laplacian eigenmaps. The product M = (I−W)T (I−W) =

I− (WT +W−WT W) is symmetric and positive semidefinite by construction. This product has the same

structure as a normalized Laplacian matrix, with the diagonal elements of the first term being equal to the
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Graph-based dimensionality reduction 15

sum of the rows (or columns) of the second term. For the first term, we have diag I = 1, whereas the second

term leads to (WT +W−WT W)1 = WT 1+1−WT 1, knowing that W1 = 1. With respect to W, which

is generally not symmetric, the product in M can be seen as a kind of squared Laplacian.

The minimization of LLE’s second objective function can be achieved with a spectral decomposition of

M = UΛUT . The matrix M is singular, as M1 = (I−W)T (I−W)1 = 0 = 01. This shows that 1 is an

eigenvector of M with zero as associated eigenvalue. As in Laplacian eigenmaps, the multiplicity of the null

eigenvalue is given by the number of connected components in the neighborhood graph. The solution of the

minimization is formed by the transpose of the trailing P eigenvectors in U, namely, those associated with

the smallest strictly positive eigenvalues in Λ.

As with Laplacian eigenmaps, the solution can be rescaled in various ways. For instance, one might

consider Y = Λ
−1/2
P UT , where ΛP is a diagonal matrix made of the smallest nonzero P eigenvalues of Λ in

ascending order. This particular solution can be cast within the framework of CMMDS and corresponds to

a Gram matrix equal to the Moore-Penrose pseudo-inverse of M.

1.7 Graph embedding

This section deals with more heuristic ways to use graphs in dimensionality reduction. The described meth-

ods are of two kinds. In the first category, a predefined graph with a fixed planar representation is fitted

in the high-dimensional data space. The self-organizing maps are the most widely known example of this

kind. The second category works in the opposite direction. A graph is build in the high-dimensional space,

according to the data distribution; next this graph is embedded in a low-dimensional visualization space.

1.7.1 From LD to HD: self-organizing maps

A self-organizing map (SOM) [41] can be seen as a nonlinear generalization of PCA. As detailed in Section

1.3.1, the objective of PCA is to find a linear subspace that minimizes the reconstruction error. Let us assume

that this linear subspace is a two-dimensional plane. Intuitively, PCA places this plane amidst the cloud of

data points, by minimizing the distances between the points and their projection on the plane. In order to

extend PCA to nonlinear subspaces, one could replace the plane by some manifold. The SOM implements

this idea by substituting the continuous plane with a discretized representation such as an articulated grid.

Let us assume that a grid is defined by an undirected graph G= (V,E). Each vertex vi is equipped with

coordinates ξk in the M-dimensional data space and γk in the P-dimensional grid space. Each edge ekl is

weighted with a positive number wkl that indicates the distance between vk and vl . If no edge connects vk and

vl , then the distance is infinite. In order to obtain a simple and readable visualization of data, coordinates γk

are often chosen in such a way that the grid nodes are regularly placed within a rectangle. Direct neighbors
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16 Image Processing and Analysing Graphs: Theory and Practice

of vk are typically located on a square or a hexagon (honeycomb configuration).

In PCA, the objective function measures the distortion between the genuine data points and their projec-

tion on the linear subspace. In a SOM, data points are projected onto the closest grid node. Hence, several

data points can be associated with the same grid node, which plays a similar role as a centroid in a vector

quantization [54] technique or in K-means-like algorithms [55]. For each data point xi, the index of the clos-

est grid node is given by `= argmink ‖xi−ξk‖2. Just as in a K-means algorithm, the SOM tries to minimize

the distortion between the data and the grid nodes. In the SOM, however, an additional objective must be

reached concurrently: grid neighbors must remain as close as possible in the data space. These two concur-

rent objectives are difficult to formalize into a simple cost function, although some attempts exist [56]. For

this reason, an iterative and heuristic procedure is typically used to update the coordinates in Ξ = [ξk]1≤k≤Q.

The simplest procedure is inspired by biological considerations: the SOM works like a neural network that

progressively learns a set of patterns. In practice, the data set X contains the patterns, which are each pre-

sented several times to the SOM in random order. Let us assume that xi is considered. The first step is to

determine the closest grid node ξ` as described above. Next, all grid nodes will be updated according to

ξk← ξk +α f (wk`/σ)(xi−ξk) , (1.37)

where α is a learning rate (or step size), f is a positive decreasing function of its argument, and σ is a sort

of bandwidth (or neighborhood radius). The learning rate can be decreased either after each presentation

of a data vector or only between two complete sweeps of the whole data set. Function f can be a flipped

step function or a decreasing exponential. Parameter σ controls the grid elasticity. If σ is large, f (wk`/σ)

is maximal for k = ` and will not significantly decrease for close neighbors, which will thus closely follow

the movement of ξ`. On the contrary, if σ is low, ξ` has less influence on its neighbors. If the SOM is to

be compared to an assembly of springs and masses, then the lower σ is, the heavier the masses are and the

weaker the springs are.

Self-organizing maps are still widely used in various fields such as exploratory data analysis and data

visualization. There are many variants of the basic algorithm described above and many ways to display

[57] and assess its outcome [58, 59, 60, 61, 62]. There also probabilistic variants such as the generative

topographic mapping [63], which relies on a Bayesian approach and maximizes a log-likelihood by an

iterative expectation-maximization procedure. The neural gas algorithm [64, 65] works in a similar was

as the SOM, although it has no predefined graph structure; hence the neural gas does not provide a low-

dimensional representation.
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1.7.2 From HD to LD: Isotop

An SOM, as it is described in the previous section, has several shortcomings. First, it relies on centroids

(the grid nodes) like a K-means algorithm. This means that the SOM does not really provide a visualization

of each data point. Second, the SOM embeds a predefined graph in the data space, whereas one usually

expects a DR method to work the other way round by embedding the data set in a low-dimensional space.

There are actually many methods that address those two limitations. Most of these methods are loosely

related to the fields of graph embedding [23] and graph drawing [24, 25, 66]. Their general principle is

first to build a neighborhood graph in the high-dimensional data space and next to embed this graph in a

lower-dimensional visualization space using graph layout algorithms. Most of these algorithms are heuristic

and find their inspiration in mechanics. For instance, in a force-based layout, the graph vertices are masses

and edges are springs connecting them. The final layout or embedding then results from a free energy

minimization that equilibrates the mass-spring system. As an illustrative example, we describe hereafter

Isotop [67, 42, 4], a method that is very close to a SOM.

Let us assume that data set X is a sample drawn from some unknown distribution in a high-dimensional

space. In order to obtain a lower-dimensional representation Y of X, let us further assume that the support

of this distribution is a manifold that can be mapped into a low-dimensional space. Starting from this pair

of distributions, we can consider a new point with coordinates x and y in the high- and low-dimensional

spaces, respectively. If we want this point to have the same neighbors in both spaces, we can define the cost

function of Isotop as

E(Y;X,ρ,σ) = Ey

[
N

∑
i=1

f
(

δ(xi,x)

ρ

)(
1− exp

(
−‖yi−y‖2

2
2σ2

))
σ

2

]
, (1.38)

where Ey is the expectation with respect to y, δ(xi,x) is a distance between xi and x, and f is a monotically

decreasing function. Parameters ρ and σ are bandwidths that determine the neighborhood radii in each

space. The scaled upside-down Gaussian bell σ2(1− exp(−u2/σ2)) introduces adjustable saturation into

the quadratic factor u2. The gradient of the cost function can be written as

∂E(Y;X,ρ,σ)

∂yi
= Ey

[
f
(

δ(xi,x)

ρ

)
exp
(
−‖yi−y‖2

2
2σ2

)
(yi−y)

]
. (1.39)

If we adopt a stochastic gradient descent, we can drop the expectation and write the update

yi← yi−α f
(

δ(xi,x)

ρ

)
exp
(
−‖yi−y‖2

2
2σ2

)
(yi−y) , (1.40)

where α is a slowly decreasing step size. In practice, we still need to know the distribution of y and the value

of x for a given y. We can approximate the distribution with a mixture of unit variance Gaussians, namely

p(y) =
1
N

N

∑
i=1

1√
2π

exp(−‖y−yi‖2
2/2) , (1.41)
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and draw randomly generated instances of y from it. The distance between xi and x can be approximated

by δ(xi,x)≈ δ(xi,x j) = δi j(X), where j = argmini ‖y−yi‖2
2. All distances δi j(X) in the high-dimensional

space are known and can be Euclidean or correspond to the shortest paths in a neighborhood graph, like in

methods described in previous sections. In the case of shortest paths, the difference with a SOM becomes

obvious: the graph is established in the high-dimensional data space in a data-driven way, whereas the user

arbitrarily defines it in the low-dimensional visualization space. Apart from this key difference, Isotop and

a SOM share many common features. In both methods, coordinates are updated in an iterative way and the

amplitude of the update is modulated by a factor that depends on distances in a graph.

As most graph layout techniques are based on heuristic approaches, there are of course many possible

variants, such as the exploratory observation machine (XOM) [43].

1.8 Examples and comparisons

1.8.1 Quality assessment

Dimensionality reduction aims at providing a faithful representation of data. The algorithms described in

this chapter, among others, provide ways to obtain such a representation. However it is not obvious for

the user to decide which method best suits the problem. An objective evaluation of the data representation

quality is necessary. Nevertheless, using the cost function of a specific method as quality criterion obviously

biases any comparison result towards the chosen specific method. There is thus a need for criteria that are

as independent as possible from all methods.

Intuitively, a good representation should preserve neighborhood relationships: close points in the data

space should remain near each other in the representation, while distant points should remain far from

each other. This idea could be implemented very simply with a distance preservation criterion, such as

Sammon’s stress [8]. However, distance criteria prove to be too strict, since neighborhood relationships can

be preserved even if distances are stretched or shrunk. For this reason, modern quality criteria [68, 69, 70,

71, 72] involve sorted distances and ranked neighbors.

Let us define the rank of x j with respect to xi in the high-dimensional space as ri j(X) = |{k : δik(X)<

δi j(X) or (δik(X) = δi j(X) and 1 ≤ k < j ≤ N)}|, where |A| denotes the cardinality of set A. Intuitively,

the rank counts the number of points that are closer neighbors of xi than x j, including xi itself. The ranking

is established according to some given distances (Euclidean in the following experiments) and ties are cir-

cumvented by switching to point indices. Similarly, the rank of y j with respect to yi in the low-dimensional

space is ri j(Y) = |{k : δik(Y) < δi j(y) or (δik(Y) = δi j(Y) and 1 ≤ k < j ≤ N)}|. Hence, reflexive ranks

are set to zero (rii(X) = rii(Y) = 0) and ranks are unique, i.e. there are no ex aequo ranks: ri j(X) 6= rik(X)

for k 6= j, even if δi j(X) = δik(X). This means that nonreflexive ranks belong to {1, . . . ,N−1}. The nonre-
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flexive K-ary neighborhoods of xi and yi are denoted by NK
i (X) = { j : 1≤ ri j(X)≤ K} and NK

i (Y) = { j :

1≤ ri j(Y)≤ K}, respectively.

The co-ranking matrix [70] can then be defined as

Q = [qkl]1≤k,l≤N−1 with qkl = |{(i, j) : ri j(X) = k and ri j(Y) = l}| . (1.42)

The co-ranking matrix is the joint histogram of the ranks and is actually a sum of N permutation matrices

of size N− 1. With an appropriate gray scale, the co-ranking matrix can also be displayed and interpreted

in a similar way as a Shepard diagram [5]. Historically, this scatterplot has often been used to assess results

of multidimensional scaling and related methods [10]; it shows the distances δi j(X) with respect to the

corresponding distances δi j(Y), for all pairs (i, j), with i 6= j. The analogy between the co-ranking matrix

and Shepard’s diagram suggests that meaningful criteria should focus on the upper and lower triangle of the

co-ranking matrix Q. This can be done by considering the pair of criteria proposed in [71, 72]. They are

defined as

QNX(K) =
1

KN

K

∑
k=1

K

∑
l=1

qkl (1.43)

and

BNX(K) =
1

KN

K

∑
k=1

(
K

∑
l=k+1

qkl−
k−1

∑
l=1

qkl

)
. (1.44)

The first criterion assesses the overall quality of the embedding and varies between 0 and 1. It measures the

average agreement between the corresponding neighborhoods in the high- and low-dimensional spaces. To

see this, QNX(K) can be rewritten as

QNX(K) =
1

KN

N

∑
i=1
|NK

i (X)∩NK
i (Y)| . (1.45)

The second criterion assesses the balance between the upper and lower triangles of the upper left K-by-K

block of the co-ranking matrix. This criterion is useful to distinguish two different types of errors: distant

points in the data space that become erroneously neighbors in the visualization space and neighbors that are

mistakenly represented too far away. In the case of a nonlinear manifold, the first error type occurs e.g. if

two distant patches are superimposed in the visualization (BNX(K) will be positive), whereas the second

error type happens e.g. with torn patches (BNX(K) will be negative).

1.8.2 Data sets

Two typical data sets illustrate the methods described in the previous sections. The first one is an academic

example based on the so-called Swiss roll [16], which is a 2D manifold embedded in a 3D space. The Swiss

roll basically looks like a rectangular piece of plane curved as a spiral. The parametric equations are:

x =
[√

ucos(3π
√

u),
√

usin(3π
√

u),πv
]T

, (1.46)
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where u and v are uniformly distributed between 0 and 1. The distribution of x on the Swiss roll is uniform

as well. To add some difficulty to the exercise, a disc in the center of the curved rectangle is removed, as

shown in Fig. 1.1 (left). There are approximately 950 points in the data set.
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Figure 1.1: (left) About 950 points sampled from a Swiss roll with a hole. The color varies with respect to

the spiral radius. (right) A 20-by-30 SOM learned on the Swiss roll sample.

The second data set includes about 1000 images of handwritten digits. They are randomly drawn from

the MNIST data base [73]. Typical images are shown in Fig. 1.2. Each image contains 282 pixels with a gray

Figure 1.2: Examples of scanned handwritten digits randomly drawn from the MNIST database. Each image

is 28 pixels wide and 28 pixels high. Gray levels range from 0 to 1.

level ranging from 0 to 1. All images are converted into 784-dimensional vectors. Classical metric MDS is

used to preprocess the data set: 97.5% of the total variance is preserved, leading to a reduced dimensionality

about 200, depending on the random sample. This allows a first drastic reduction of the dimensionality with

almost no loss of information or structure, which is intended to accelerate all subsequent computations.

For both data sets, two-dimensional representations are computed with NLDR methods. In the case of

the Swiss roll, the embedding dimensionality is thus in agreement with the intrinsic dimensionality of the

underlying manifold. In contrast, the degrees of freedom in the MNIST data base are expected to be much
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more numerous and a good 2D visualization is much more difficult to obtain.

1.8.3 Methods

The compared methods are CMMDS, Sammon’s NLM, CCA, Isotop, a 20-by-30 SOM, LLE, Laplacian

eigenmaps, and MVU. The first four methods are used successively with Euclidean distances and geodesic

distances. The latter are computed with K-ary neighborhoods, where K = 7. All data points outside of

the largest connected component are discarded. The same value of K is used for other methods involving

K-ary neighborhoods (LLE and Laplacian eigenmaps). In order to reduce the huge computational cost of

MVU, we used the faster variant described in [74], with K = 5 and 5% of data points randomly chosen to

be landmarks. All methods run with default parameter values if not otherwise specified.

1.8.4 Results

Figure 1.3 shows a visual representation of the two-dimensional embeddings of the Swiss roll obtained with

the twelve considered methods. In the particular case of the SOM, only grid nodes have coordinates both

in the high- and low-dimensional space. As a simple workaround to this limitation, data points are given

the same coordinates as their closest grid nodes in the high-dimensional space. Grid nodes that are never

selected as the closest one are shown as a blank cell. The configuration of the SOM in the data space is

visible in Fig. 1.1 (right).

The quality assessment curves are shown in Fig. 1.4, for a neighborhood size K ranging from 1 to

300. The solid and dashed lines refer to QNX(K) (above, with baseline K/(N− 1)) and BNX(K) (below,

with baseline 0), respectively. As can be seen, for distance-based methods, the use of graph distances

yield a better unfolding of the Swiss roll than Euclidean ones. Among these methods, CCA performs the

best, followed by Sammon’s NLM and finally CMMDS. This shows that a global minimum found by a

spectral optimization technique such as in CMMDS does not systematically outperform methods relying

on gradient descent. Other spectral methods, such as LLE, Laplacian eigenmaps, and MVU work well

though the quality of their results is slightly lower. In particular, MVU suffers from convergence issues in

its semidefinite programming step (the constraints are apparently too tight and no solution is found). The

SOM achieves an intermediate performance; due to the inherent vector quantization in this method, small

neighborhoods (K < 20) are not well preserved (rank information is lost for all data points sharing the same

closest grid node). Back to Fig. 1.3, we see that methods showing a negative value for BNX(K) are those

that are able to actually unfold the Swiss roll. Among those methods, CCA with graph distance is the only

method able to faithfully render the true latent space of the Swiss roll: a rectangle with a circular hole. Other

distance-based methods tend to stretch the hole; this effect is caused by an overestimation of the distances,
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as geodesic paths are forced to circumvent the hole.

As to the handwritten digit images, the 2D visualizations computed with the various NLDR methods

are shown in Fig. 1.5. Each visualization consists of an array of 20-by-20 bins decorated with thumbnail

images. Each thumbnail is the average of all images falling in the corresponding bin. If dissimilar images

are gathered in the same bin, the thumbnail looks blurred. Empty bins are left blank. The shape of the

embedding provided by the SOM trivially depends on the chosen grid. As can be seen, methods relying

on (stochastic) gradient descent, such as Sammon’s NLM, CCA, and Isotop, yield disc-shaped embeddings.

In contrast, spectral methods involving a sparse similarity matrix such as LLE and Laplacian eigenmaps

tend to produce spiky embeddings. Knowing that the data set is likely to be clustered (one cluster for

each of the ten digits), the objective functions of these methods tend to increase the distances between the

clusters. In Laplacian eigenmaps this effect results from minimizing the distances between neighbors, while

keeping a fixed variance for all points; this remains valid for LLE, due to their close relationship. Maximal

distances from one cluster to all others are obtained in a hyper-pyramidal configuration; for ten clusters, such

a configuration spans at least nine dimensions. The linear projection of a hyper-pyramid look exactly like the

spiky embeddings observed in Fig. 1.5, with three corners correctly represented in two dimensions and all

others collapsed in the center. This reasoning is indirectly confirmed by looking at the eigenvalue spectrum

involved in these methods, showing that variance actually spreads out across many dimensions. This is a

fundamental difference between spectral and non-spectral methods: the former prune dimensions only after

nonlinear transformation of data, whereas the latter are directly forced to work in a low-dimensional space.

Quality assessment curves are displayed in Fig. 1.6. As expected, the overall performance level is lower

than for the Swiss roll, as the intrinsic dimensionality of data is much higher than two. For small values of

K, hardly half of the neighbors are preserved, as indicated by QNX(K). The best two methods are CCA with

graph distances and the SOM; they outperform all others by far. For small neighborhood sizes, the SOM

is hindered by its inherent vector quantization. As with the Swiss roll, the methods with the highest values

of QNX(K) are also those with the lower BNX(K). The third method is Isotop with graph distances. In this

example, Isotop is much faster than the SOM, because the computation of closest points is much cheaper

in the low-dimensional visualization space than in the high-dimensional data space. Spectral methods yield

lower performances. The semidefinite programming step in MVU does not succeed in finding a satisfying

solution. Sammon’s NLM with Euclidean distances performs the worst and also hardly converges.

1.9 Conclusions

Dimensionality reduction proves to be a powerful tool for data visualization and exploratory analysis. From

early linear techniques such as PCA and CMMDS to modern nonlinear methods, more than a century has
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passed. As shown in this chapter, the use of graphs is an important breakthrough in the domain and largely

contributes to a significant performance leap. Methods relying on graphs can be categorized with respect

to mainly two criteria, namely the data properties they consider (dissimilarities or similarities) and their

optimization technique (spectral or non-spectral). For instance, Isomap and MVU involve graph distances

(shortest paths and specifically optimized distances, respectively) and a spectral optimization (CMMDS).

Sammon’s nonlinear mapping and CCA can use shortest paths as well, but they work with a pseudo-Newton

optimization and stochastic gradient descent, respectively. Spectral methods based on similarities are for

instance Laplacian eigenmaps, LLE, and their variants. Isotop and the SOM also entail similarities, but they

rely on heuristic optimization schemes. Spectral methods provide strong theoretical guarantees, such as the

capability to find a global minimum. In practice, however, non-spectral techniques often outperform them,

thanks to a greater flexibility and the possibility to handle more relevant or more complex cost functions.

If distance preservation has been extensively investigated for quite some time, the use of similarities

remains largely unexplored. Spectral methods that uses sparse matrices of pairwise similarities, such as

Laplacian eigenmaps and LLE, eventually seem to be more suited to clustering problems than to dimension-

ality reduction. On the other hand, non-spectral methods like Isotop and the SOM lack sound theoretical

foundations or are impeded by their inherent vector quantization. In the near future, progress is likely to

stem from more elaborate similarity preservation schemes, such as those developed in [75, 76, 77]. There is

a hope that while naturally enforcing the preservation of the local structure, carefully designed similarities

[78] can also address important issues such as the phenomenon of distance concentration [79].
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Figure 1.3: Two-dimensional embeddings of the Swiss roll with various NLDR methods. Distance-based

methods use either Euclidean norm (‘Eucl.’) or shortest paths in a neighborhood graph (‘Graph’).
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Figure 1.4: Quality assessment curves for the two-dimensional embeddings of the Swiss roll with various

NLDR methods.
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Figure 1.5: Two-dimensional embeddings of the handwritten digits with various NLDR methods. Distance-

based methods use either Euclidean norm (‘Eucl.’) or shortest paths in a neighborhood graph (‘Graph’).
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Figure 1.6: Quality assessment curves for the two-dimensional embeddings of the handwritten digits with

various NLDR methods.
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Index

affinity, 8

ball, 7, 9

bandwidth, 16, 17

Bayesian, 16

CCA, see component, 6, 9, 21, 23

centered, 5

centering

double, 5

matrix, 5, 13

centroid, 17

cluster, 2, 3, 23

spectral clustering, 3

CMMDS, see multidimensional scaling, 6, 7, 9–11, 13, 15, 20–

22

co-ranking matrix, 19

component

connected, 12, 15, 21

curvilinear, 3, 6, 9

principal, 2, 4

concentration, 23

conductance, 13

constraint, 10–12, 14

coordinate, 5, 6, 10, 15–18

centered, 5

nonlinearly transformed, 13

coordinates, 14

cost function, 6, 7, 12, 14, 17, 18, 23

covariance, 4, 5

curvature, 8

data

high-dimensional, 1, 2

representation, 2, 18

set, 19, 20

visualization, 2, 15, 16, 22

decoding, 3

decorrelation, 5

derivative

partial, 4, 12

diffusion, 13

Dijkstra, 9–11

dimensionality

curse of, 2

intrinsic, 20

reduction, 1–3, 15, 18, 22, 23

linear, 2, 3

nonlinear, 2

dissimilarity, 2, 11, 23

distance, 1, 3, 7, 15, 17, 19, 23

commute time, 2, 13

commute-time, 13

concentration, 23

diffusion, 13

Euclidean, 5, 8–11, 21

squared, 6, 9

geodesic, 2, 8–10, 13, 21

graph, 7, 9, 10, 22

infinite, 10, 15

matrix

dense, 13

squared, 5, 9

preservation, 6, 8, 9, 18, 23

weighted, 9

sorted, 18

distortion, 16

distribution, 15, 17, 20

support, 17

dot product, 2, 6, 13

DR, see dimensionality, 2, 3, 10, 11, 17
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linear, 2

eigenproblem, 4

eigenspectrum, 10

eigenvalue, 4, 5, 9, 11, 22

multiplicity, 12, 15

problem, 12

eigenvector, 5, 15

leading, 5

trailing, 12, 15

embedding, 1, 3, 9, 11, 14, 17

graph, 3, 8

locally linear, 8, 14

spiky, 22

encoding, 3

expectation, 17

expectation-maximization, 16

exploratory

analysis, 22

data analysis, 16

observation machine, 8, 18

Floyd, 9–11

force, 8

geodesic

curve, 8

distance, see distance

gradient, 17

descent, 6

stochastic, 7, 17, 22, 23

Gram matrix, 2, 5, 9, 10, 12, 13, 15

graph, 3, 7, 11, 23

construction, 8, 9, 15

distance, 7

drawing, 17

edge, 13

embedding, 8, 15, 17

layout, 17, 18

placement, 8

undirected, 12, 15

vertex, 17

grid, 15

elasticity, 16

node, 16, 17

handwritten digit, 2, 20

histogram

joint, 19

honeycomb, 16

Isomap, 7, 9–11, 13

isometry, 9

Isotop, 8, 17, 18, 21, 23

K-means, 16, 17

kernel, 13

Lagrange, 4

multiplier, 4

Lagrangian, 4, 12

landmark, 21

Laplacian

eigenmaps, 8, 11–14, 21, 23

matrix, 2, 3

normalized, 12–14

unnormalized, 12

learning

manifold, 3

rate, 16

likelihood, 16

LLE, 14, 21, 23

locally linear, 13

majorization, 7

manifold, 2, 3, 7–9, 15, 17

disconnected, 10

learning, 3

non-convex, 9

smooth, 3, 9, 14

submanifold, 2

underlying, 20

unfolding, 7, 8, 10, 11

map

self-organizing, 2, 8, 15, 16

mapping

nonlinear, 6, 9, 23
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Sammon’s nonlinear mapping, 3

topographic, 16

topographic mapping, 2

mass, 8, 16, 17

MDS, see multidimensional scaling, 3, 9, 20

Mercer kernel, 13

min-cut, 12

MNIST, 20

Moore-Penrose, 15

multidimensional scaling, 3, 19

metric

classical, 2, 5

MVU, see variance, 11, 21

neighborhood, 7, 11, 19

K-ary, 2, 7, 9, 10, 14, 19, 21

ε-ball, 2, 7, 10, 14

graph, 10, 11, 13–15, 17, 18

radius, 16, 17

relationship, 7, 18

network

electrical, 13

neural, 3, 16

NLDR, see see dimensionality, 3, 7, 13, 20

NLM, see Sammon, 6, 9, 21

optimization, 7, 23

constrained, 11

convex, 13

heuristic, 15–18, 23

non-spectral, 23

pseudo-Newton, 23

spectral, 23

orthogonal, 4, 5

parameter, 21

path, 10, 11

shortest, 9, 18, 23

PCA, see component, 3, 5, 6, 15, 22

kernel, 13

permutation

matrix, 19

pixel, 20

placement

force-directed, 8

graph, 8

principal component analysis, see component

projection, 7, 15, 16

proximity, 2, 8

pseudo-inverse, 15

quality, 18

assessment, 18, 21, 22

criterion, 18, 19

random walk, 2, 13

rank, 2, 14, 18

ex aequo, 18

nonreflexive, 18

quality criteria, 2

reconstruction, 3–5, 15

coefficient, 14

regularization, 14

representation

discrete, 9, 15

two-dimensional, 20

resistance, 13

Sammon, see mapping, 6, 9, 18, 21, 23

scatterplot, 19

semidefinite programming, 11, 22

Shepard

diagram, 19

similarity, 2, 3, 8, 11, 23

matrix, 22

sparse, 8, 13, 14, 23

preservation, 23

singular value, 5

SOM, 15–18, 21, 23

space

Euclidean, 9

feature, 13

high-dimensional, 1, 2, 8, 9, 15, 17–19

latent, 7, 21

low-dimensional, 1

visualization, 19

Graph-Based Dimensionality Reduction. John A. Lee, Michel Verleysen, Image Processing and Analysis with Graphs: Theory and Practice, 
Olivier Lézoray, Leo Grady (Eds.), CRC Press, pp. 351-382, 2012. NON-FINAL VERSION.



38 Image Processing and Analysing Graphs: Theory and Practice

sparse, 12–14, 22, 23

sparsity, 7

spiral, 7, 19

spring, 8, 16, 17

SSTRESS, 7

step

function, 16

size, 17

STRAIN, 6, 7

STRESS, 6, 7

stress, 6, 18

squared, 7

subspace, 4, 5

linear, 3, 6, 7, 15, 16

nonlinear, 8, 15

Swiss roll, 7, 8, 19, 21

topology, 3

unfolding

manifold, 7

maximum variance, 8

variance, 22

maximum variance unfolding, 8, 10, 13

preservation, 5, 20

vector quantization, 16, 23

vicinity, 8

visualization, 2, 15, 19, 22

space, 15

weight, 6, 9, 12, 13, 15

XOM, 8, 18
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