
A Supervised Wavelet Transform Algorithm for R Spike
Detection in Noisy ECGs�

G. de Lannoy, A. de Decker, and M. Verleysen
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Abstract. The wavelet transform is a widely used pre-filtering step for subse-
quent R spike detection by thresholding of the coefficients. The time-frequency
decomposition is indeed a powerful tool to analyze non-stationary signals. Still,
current methods use consecutive wavelet scales in an a priori restricted range and
may therefore lack adaptativity. This paper introduces a supervised learning al-
gorithm which learns the optimal scales for each dataset using the annotations
provided by physicians on a small training set. For each record, this method al-
lows a specific set of non consecutive scales to be selected, based on the record’s
characteristics. The selected scales are then used for the decomposition of the
original long-term ECG signal recording and a hard thresholding rule is applied
on the derivative of the wavelet coefficients to label the R spikes. This algorithm
has been tested on the MIT-BIH arrhythmia database and obtains an average sen-
sitivity rate of 99.7% and average positive predictivity rate of 99.7%.

1 Introduction

In the framework of biomedical engineering, the analysis of the electrocardiogram
(ECG) is one of the most widely studied topics. The easy recording and visual in-
terpretation of the non-invasive electrocardiogram signal is a powerful way for medi-
cal professionals to extract important information about the clinical condition of their
patients.

The ECG is a measure of the electrical activity associated with the heart. It is charac-
terized by a time-variant cyclic occurrence of patterns with different frequency content
(QRS complexes, P and T waves). The P wave corresponds to the contraction of the
atria, the QRS complex to the contraction of the ventricles and the T wave to their re-
polarization. Because the ventricles contain more muscle mass than the atria, the QRS
complex is more intensive than the P wave. The QRS wave is therefore the most repre-
sentative feature of the ECG. Furthermore, once the QRS complex has been identified,
other features of interest can be more easily detected.

Analyzing ECGs for a long time can lead to errors and misinterpretations. This is the
reason why automatic feature extraction of the ECG signal can help physicians in their
diagnosis for early detection of cardiac troubles. The feature extraction mainly consists
in the automatic annotation of the different waves in the recording, the most impor-
tant of them being the QRS. One of the main application of the QRS detection is the
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heart rate variability (HRV) analysis [29]. HRV measures have been proven successful
in diagnosing cardiac abnormalities and neuropathies or evaluating the actions of the
autonomic nervous system on the heart [1]. However, HRV measures heavily rely on
the accuracy of the QRS feature detection on the digitalized ECG signal.

Automatic feature extraction and especially R spike detection is thus a milestone for
ECG analysis. However, it is a difficult task in real situations: (1) The physiological
variations due to the patient and its disease make the ECG a non-stationary signal. (2)
Other ECG components such as the P or T wave looking like QRS complexes often
lead to wrong detections. (3) There are many sources of noise that pollute the ECG
signal such as power line interferences, muscular artifacts, poor electrode contacts and
baseline wanderings due to respiration. These three problems highly compromise the
detection of R spikes.

The detection of QRS complexes in the ECG has been conducted by many re-
searchers in the past years. However, to our knowledge, none of the current algorithms
are able to automatically learn their parameters using pre-labeled beats provided by
physicians. The aim of this paper is to introduce a new algorithm for R peak detection
that does not blindly detect beats but learns and propagates the annotations provided by
physicians on a small portion of the signal, which is often wanted in real situations. Our
contribution consists in the design and experiment of a supervised learning algorithm
for an optimal and automatic signal decomposition and subsequent optimal R spike
detection. The associated detection method by hard thresholding rule is also presented.
The algorithm does not require any pre-processing of the signal and can also be adapted
for the detection of other features such as the P or T wave.

The following of this paper is structured as follows. After this introduction, Sect. 2
gives a brief literature review about the state of the art on ECG feature detection and
especially the QRS detection. Section 3 provides a summary of the theory about the
continuous wavelet transform used in this paper. Section 4 introduces the methodology
followed by the algorithm and Sect. 5 shows the experiments and results obtained on a
real public database.

2 State of the Art

Due to the non-stationarity of the ECG signal, the physiological conditions and the
presence of many artifacts, finding a robust and general algorithm for ECG feature
detection is a tough task. A lot of work has been published in the literature about the
detection of various interesting ECG features such as P waves, QRS waves, T waves,
QT intervals or abnormal beats by numerous techniques [2,25,26]. This paper focuses
on R spike detection only.

For this purpose, several approaches using different signal processing methods have
been reported previously: template matching [12], mathematical models [24], signal
envelop [23], matched filters [18], ECG slope criterion [4], dynamic time warping [30],
syntactic methods [19], hidden Markov models [10], neural networks [31,27], adapta-
tive thresholding [16,9] and geometrical approach [28].

In all cases, using a pre-filtering step prior to beat detection is required for the elimina-
tion of artifacts in the signal. The time-frequency decompositions by wavelet transform
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(WT) seem the most intuitive tool for ECG filtering [2]. The WT is naturally appropriate
for analyzing non-stationary signals because it allows precise time-frequency representa-
tion of the signal with a low computational complexity. A lot of work has been published
in past years on the use of the WT for QRS detection. In 1995, [20] used an algorithm
based on finding the maxima larger than a threshold obtained from the pre-processed
initial beats. Later, [17] produced a method allocating a R peak at a point being the local
maxima of several consecutive dyadic wavelet scales. In both these methods, a post-
processing allowed to eliminate false R detections. Based on these two publications, a
lot of other researches were published on the beat detection using a WT filtering step
[27,13,22,2,8,7].

The main problem of the WT is that one has to choose the mother wavelet and the
scales used to analyze the signal on an empirical basis. While the mother wavelet can
easily be chosen based on its characteristics and resemblance with a QRS wave, the
ideal scale(s) at which the QRS are matched is harder to guess a priori. Current al-
gorithms blindly search for QRS complexes in a limited number of consecutive scales
selected in a range of a priori fixed scales. However, the shape of the QRS pattern can be
varying between patients but also with time. One or several consecutive fixed wavelet
scales may not be enough to match all complexes at once in a dataset. In this paper, we
propose a new supervised learning algorithm based on the continuous wavelet transform
that overcomes these issues. It only relies on the annotations provided by physicians on
a small portion of the signal in order to select the optimal subset of non-consecutive
scales for each dataset.

3 Theoretical Background

The continuous wavelet transform (CWT) is a tool which produces a time-frequency
decomposition of a signal x(t) by the convolution of this signal with a so-called wavelet
function.

A wavelet function ψ(t) is a function with several properties. It must be a function
of finite energy, that is

E =

∫ +∞

−∞
|ψ(t)|2dt < ∞ , (1)

and it must have a zero mean.
From a wavelet function, one can obtain a family of time-scale waveforms by trans-

lation and scaling

ψa,b(t) =
1√
a
ψ

( t− b

a

)
, (2)

where a > 0 represents the scale factor, b the translation and a, b ∈ R. When a = 1
and b = 0, the wavelet is called the mother wavelet.

The wavelet transform of a function x(t) ∈ L2(R) is a projection of this function on
the wavelet basis {ψa,b} :

T (a, b) =
∫ +∞

−∞
x(t)ψa,b(t)dt . (3)
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For each a, the wavelet coefficients T (a, b) are signals (that depend on b) which repre-
sent the matching degree between wavelet ψa,b(t) and the analyzed function x(t).

The signal energy at a specific scale and position can be calculated as

E(a, b) = |T (a, b)|2 . (4)

The two-dimensional wavelet energy density function is called the scalogram.
The CWT is a suitable tool for ECG analysis because of this time-frequency repre-

sentation of the signal. With the multiscale feature of WTs, the QRS complex can be
distinguished from high P or T waves, noise, baseline drift, and artifacts. The impor-
tant time aspect of the non-stationary ECG signal is kept. Moreover, very efficient im-
plementations of the algorithm exist and a low computational complexity is required,
allowing real-time analysis. With the aim of a QRS detection, an appropriate mother
wavelet must be chosen. It must match nicely with a QRS complex, in order to empha-
sizes these complexes and to filter the useless noise. For more details on the wavelet
transform and on the standard wavelet functions available, the interested reader can
consult [21,2,11].

4 Methodology

4.1 General Description

The detection of R spikes is a tough task due to the complexity of the ECG signal. The
aim of the algorithm introduced here is to automatically find the best subset of wavelet
scales for subsequent optimal R detection. For each dataset, this subset is selected on
a short training sample by a supervised learning procedure. The CWT at the selected
scales is then computed on the complete dataset. Finally, R spikes are detected by a
hard thresholding rule on the selected wavelet coefficients.

4.2 Supervised Pre-filtering

The algorithm uses a supervised learning approach: it will use the labeled information
that is provided and learn the best way to adapt to the problem. Here, the labeled infor-
mation that is provided is the location of the R peaks in a training dataset.

Each dataset consists in a long-term ECG signal recording (for example 24 hours).
With such long recording, the problem is that a manual extraction of the R peaks cannot
be performed, as detailed in the Introduction. However, asking a specialist to annotate
a small part of the signal by indicating the R peaks is perfectly feasible; this annotated
part will consist in labeled segments of one minute each, taken at random locations
over the entire dataset. Choosing random locations along the signal is a way to obtain
a representative training set maximizing the probability to include all types of beats
contained in the recordings. The CWT is then computed on the training set in a wide
(therefore non restrictive) range of 50 fixed scales defined as {si}, 1 ≤ i ≤ 50. The
mother wavelet ψ(t) that was used in our experiments is the mexican hat wavelet, for its
similarity with the regular morphology of the QRS complex. The wavelet is represented
Fig. 1. It is defined as the second derivative of the gaussian probability density function:

ψ(t) =
1√

2πσ3

(
1 − t2

σ2

)
e

−t2

2σ2 . (5)
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Fig. 1. The Mexican hat mother wavelet

In order to select the appropriate scales among the wide range of wavelet scales, one
needs a criterion. A natural criterion is the percentage of correct R peaks detection
on the annotated parts of the signal using the coefficients of the wavelet transform at
the trial scales in the set {ψ(t)i}. A stepwise forward method automatically selects
the best subset {ak} ⊂ {si} of scales on the basis of the detection rate. It involves
starting with an empty subset, trying out at each step the trial scales one by one and
including them to the model if the detection rate is improved. The procedure stops
when no scale left in {si} can improve the detection rate. In addition, at each step, the
scales previously selected in {ak} are individually challenged: if their removal does
not decrease the detection rate, the scale is now useless and therefore removed from
the model.

The set {ak} of scales coming from the selection is thus made of the scales giving
the best R detection when combined together. The selected set of scales is then used
for R spike detection on the complete original long-term recording. Figure 2 shows an
original ECG segment and the coefficients of the first selected wavelet scale.

Fig. 2. Example of an original ECG segment (upper plot), the first selected wavelet scale (middle
plot) and its squared derivative (lower plot)
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4.3 Detection of R Spikes

The supervised pre-filtering procedure extracted {ak} ⊂ {si}, the best subset of scales
on the training set. Note that the scales in the subset are not necessarily consecutive,
which means that different QRS shapes can be matched at different scale levels. The
CWT is computed on the whole signal at the scales {ak}.

Because of the non-stationarity of the signal, a moving window of 5 seconds length
with an overlap of one second is used to cut T (ak, b) into J parts, 1 ≤ j ≤ J . For each
ak and bj , the R spikes are detected on T (ak, bj) by a hard thresholding rule, where
index bj scans the jth window. Let us define

D(ak, bj) =
(d|T (ak, bj)|2

dbj

)2

. (6)

In order to emphasize the importance of the pre-filtering step by the CWT over the
detection procedure itself, the thresholding method is a very simple non-parametric
one. The threshold th(ak, j) is estimated as the mean of D(ak, bj). As D(ak, bj) has
sharp peaks in the slopes of the QRS complexes, the intervals I(ak, j) satisfying

D(ak, bj) > th(ak, j) (7)

belong to QRS complexes. The R spikes are then defined as the maxima of |T (ak, bj)|2
in each of the I(ak, j) intervals. All the R spikes obtained at each scale k are then
merged together.

4.4 Post-processing

A last step of post-processing makes sure that T waves or Q and S spikes have not been
wrongly labeled as a R. If two or more R spikes were detected in a window smaller
than 250ms (two heartbeats cannot physiologically happen in less than 250ms [9]), the
algorithm keeps only the peak which has the highest value on the original ECG.

5 Results and Validation

The learning of the model on the training set and the assessment of performances
must be done using an annotated database. The public standard MIT-BIH arrhythmia
database [14] was used in this work. It contains 48 half-hour recordings of annotated
ECG with a sampling rate of 360Hz and 11-bit resolution over a 10-mV range. The
recorded signals contain different wave types and only a robust algorithm can perform
well on all datasets together. Some datasets include very few artifacts and clear R peaks,
but others make the detection of the R spike more difficult because of (1) abnormal QRS
shapes or P and T waves, (2) low signal-to-noise ratio, (3) heavy baseline drifts, (4) lots
of non normal beats such as premature ventricular contraction, left bundle branch block
beat, atrial premature contraction etc... Among the 48 available datasets, the four ones
including paced beats were a priori rejected because they consist in a special case. After
visual inspection of the data, datasets 207 and 208 were also rejected. The reason is that
a representative training set of five times one minute would be hard to extract randomly
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as several minutes of these two datasets contain only non-labeled parts looking like a
sinus wave.

The performances were assessed by evaluating two parameters as suggested in [19].
The sensitivity is measured as

TP

TP + FN
(8)

and the positive predictivity as
TP

TP + FP
, (9)

where TP is the number of true positive detections, FN the number of false negatives
and FP the number of false positives. The error rate is also reported. It is computed by

FN + FP

nQRS
, (10)

where nQRS is the total number of QRS labeled in a dataset. On the database, the al-
gorithm obtains an average sensitivity rate of 99.7% and average positive predictivity
rate of 99.7%. The average error rate is below one percent. To our knowledge, only
the R spike detectors based on Li’s algorithm obtained comparable results with a sen-
sitivity and a positive predictivity between 99.7% and 99.9% [22,20,6]. However, this
algorithm makes use of several heuristic rules and requires the setting of many empir-
ical parameters. Our algorithm achieves comparable performances with a very simple
non-parametric thresholding method and without the need for a more advanced post-
processing stage such as those used in these articles. These results demonstrate the
importance of an optimal pre-filtering step over the detection method.

6 Conclusions

In this paper, a supervised learning algorithm for the automatic detection of R peaks in
ECG is introduced. It uses the multiscale feature of the continuous wavelet transform
(CWT) to emphasize the QRS complex over high P or T waves, noise, baseline drift and
artifacts. The CWT keeps the important time aspect of the non-stationary ECG signal.
Moreover, very efficient implementations of the CWT exist and a low computational
complexity is required, allowing real-time analysis. This algorithm learns and propa-
gates the annotations provided by a physician on a small annotated segment. For this
purpose, the method selects the best subset of wavelet scales on a representative training
set by a stepwise forward procedure. The forward procedure allows to select scales that
are not necessarily consecutive and it does not a priori restrict the range of computed
scales on an empirical basis. It allows a complete different set of scales to be selected
for each ECG signal, based on its characteristics. The selected scales are then used on
the original long-term ECG signal recording and a hard thresholding rule is applied on
the derivative of the wavelet coefficients to label the R spikes. The method is robust and
does not require any pre-processing stage. The selection procedure can be generalized
in order to detect other ECG features such as the P and T wave.

Experiments on the public annotated MIT-BIH database lead to a sensitivity of 99.7%
and a positive predictivity of 99.7% without the need of an advanced post-processing
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stage on the detected peaks. To our knowledge, only three R spike detectors based on
WT reported in the literature obtained comparable results, while requiring a more com-
plex thresholding and post-processing stage.

Further works will include: (1) The development of a more advanced thresholding
rule that takes the peaks detected so far into account; (2) the use of a more advanced
post-processing stage to eliminate wrong detections; (3) the design of an automatic
selection of the best mother wavelet by the same learning methodology; (4) the gener-
alization of the method for the detection of other ECG features such as P or T wave.

Acknowledgements. This work was partly supported by the Belgian “Région Wal-
lonne” ADVENS convention 4994 project and by the Belgian “Région de Bruxelles-
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