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Abstract

Data from spectrophotometers form spectra that are sets of a great number of exploitable variables in quantitative chemical analysis;

calibration models using chemometric methods must be established to exploit these variables. In order to design these calibration models

which are specific to each analyzed parameter, it is advisable to select a reduced number of spectral variables. This paper presents a new

incremental method (step by step) for the selection of spectral variables, using linear regression or neural networks, and based on an objective

validation (external) of the calibration model; this validation is carried out on data that are independent from those used during calibration.

The advantages of the method are discussed and highlighted, in comparison to the current calibration methods used in quantitative chemical

analysis by spectrophotometry.

D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, qualitative and quantitative applications

of infrared spectroscopy in various chemical field including

the pharmaceutical [1], food [2] and textile industries [3]

have grown dramatically [4]. The chemical analysis by

spectrophotometry rests on the fast acquisition of a great

number of spectral data (several hundred, even several

thousands).

From a chemometric point of view, the spectral data

have remarkable characteristics, which make necessary

their treatment by specific methods. The matrix X of the

data may comprise more variables (spectral data) than

observations (spectra). Certain columns (variables) of the

matrix X can be practically represented as linear combina-

tions of other columns. This situation is called collinearity,
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and is the source of many problems [5,6]. Studies have

shown that if collinearity is present among the variables, the

prediction results can get poor (see, for example, Ref. [7]).

Therefore, there is a need to select variables among the

candidate ones, in order to build a still suitable model with

as few variables as possible. Reducing the number of

variables also helps to avoid the well-known overfitting

phenomenon, encountered in non-linear modelling but also

in linear modelling when the number of observations is

limited. In principle, all possible combinations of candidate

variables should be tried for calculating a suitable model. If

the original data set contains n variables, an extensive

search of all possible subsets would require the design of

2n� 1 different models. This value grows exponentially,

making an exhaustive search impractical even for moderate

values of n.

In this work, we will first present the usual techniques for

the selection of variables in the context of linear regression

methods: stepwise multiple linear regression (SMLR), prin-

cipal components regression (PCR) and partial least squares

regression (PLSR). Then, we will propose to incorporate

non-linear regression models (RBF networks with radial

basis functions) in the variable selection process, through an

incremental procedure based on a validation criterion.
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Lastly, we will present a comparison of prediction results

between the different techniques.
2. Experimental and computational techniques

2.1. Variable selection: state of the art

The problem of variable selection can be defined as

follows: given a set of candidate variables, select a subset

that performs best (according to some criterion) in a

prediction system. More specifically, let X be the original

set of spectral data, containing n different variables (col-

umns of X) and m observations or spectra (rows of X).

The objective is to find a subset of the columns of X,

ZpX containing d variables representing the best model

[6].

The methods for spectral variables selection using linear

regression models usually used in spectrophotometric anal-

ysis are the following ones:

� Stepwise multiple linear regression (SMLR) procedure:

the spectral variables are selected among the n available

variables by respecting a criterion of optimization such as

the test of assumption based on Fisher’s law. At each step

the F-to-enter values for all variables not yet in the model

are checked and the variable with the highest significant

F value is entered. Moreover, after each step the F-to-

remove values for all variables already in the model are

tested. If a variable is detected that does no longer

significantly contribute to the regression it is rejected.

The procedure is continued until no more variable fulfils

the criterion to be entered or to be removed [5,8].

Instead of selecting a subset of all available variables, a

number of orthogonal linear combinations of these variables

can be used to reduce the dimensionality of matrix X.

� Principal component regression (PCR): it first consists of

applying a principal components analysis (PCA) to the

matrix of the spectral data. The PCA replaces the origin

spectral variables, strongly redundant, by principal

components (linear combinations of the origin variables),

which contain almost the totality of the information; the

principal components have the advantage of being

uncorrelated. The scores of the most important principal

components are then used as inputs for a multiple linear

regression (MLR) [6].
� Partial least squares regression (PLSR) is based on

principal components of both the matrix of the spectral

data X and the dependent variables Y. The PLS

components are calculated in order of importance by

maximizing the covariance between Y and linear

combinations of the X variables [6]. The properties of

partial least squares regression and examples of its use

have been dealt with extensively in the literature [9–12].
All these models make the assumption of the existence of a

linear relation between the selected or built variables on one

hand, and the characteristic to be predicted on the other.

This might not be the case in the reality of certain applica-

tions, leading to a need for using non-linear models instead

of linear ones. In the literature, some authors use as inputs of

the non-linear models the PCA or PLS score vectors [6].

Others use incremental SMLR-like methods, but use a

selection criterion based on a learning set instead of a

validation one.

2.2. Variables selection and validation by non-linear models

Given these limitations, we propose a method for vari-

ables selection based on the three following principles:

1. Use of a non-linear regression model (artificial neural

network);

2. Choice of the variables based on an incremental

procedure (forward–backward selection);

3. Choice of the variables according to an error criterion

computed on a validation set.

The combination of these three principles will lead respec-

tively to enhanced calibration capabilities (compared to

linear models), to an efficient compromise between ineffi-

cient and exhaustive searches of the variables to select, and

to an objective assessment of the performances (and objec-

tive comparisons between models as a corollary).

2.2.1. Artificial neural networks

As linear models may not be sufficient to approximate a

non-linear, real characteristic, non-linear models should be

considered in many cases. With respect to linear methods,

non-linear ones offer more capabilities, often at the price of

an increased complexity.

Artificial neural networks (ANN) are largely used in

applications involving classification or function approxima-

tion. Lately, it has been proved that several classes of ANN

are universal function approximators [13]. Therefore, they

are widely used for function interpolation [14,15] and gain

more and more attention from chemists; they have already

found numerous applications in data modelling (calibration

and pattern recognition problems) [16].

Radial-basis function networks (RBFN) can be used for a

wide range of applications primarily because they can

approximate any regular function [13] and their training is

faster compared to multilayer perceptrons (MLP).

MLP are trained by supervised techniques: the weights

are computed by minimizing a non-linear cost function. On

the contrary, the training of RBF networks can be split into

an unsupervised part and a linear supervised part. Unsuper-

vised updating techniques are straightforward and relatively

fast. Moreover, the supervised part of the learning consists

in solving a linear problem, which is therefore also fast, with

the supplementary benefit of avoiding the problem of local
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minima usually encountered when using multilayer percep-

trons [16,17].

2.2.2. Radial basis function networks

Several models of RBFN exist: with or without linear

and constant terms, with or without normalization, etc.. . .
An RBF network is a two-layered ANN. Consider an

unknown function f(x):Rd!R. RBF networks approxi-

mate f(x) by a weighted sum of d-dimensional radial

activation functions (plus linear and independent terms).

The radial basis functions are centered on well-positioned

data points, called centers; the centers can be regarded as the

nodes of the hidden layer. Usually, the positions of the

centers and the widths of the radial basis functions are

obtained by an unsupervised learning rule, whereas the

weights of the output layer are calculated by a supervised,

single-shot process using pseudo-inverse matrices or singu-

lar value decomposition (SVD).

Suppose we want to approximate a function f(x) with a

set of K radial basis functions /j(x), centred on the centers cj
and defined by

/j : R
d ! R : /jðxiÞ ¼ /jðNxi � cjNÞ; ð1Þ

where N�N denotes the Euclidean distance, cjaRd and

1V jVK.

The approximation of the function f(x) may be expressed

as a linear combination of the radial basis functions [18]:

f̂ ðxÞ ¼
XK
j¼1

kj/jðNxi � cjNÞ þ
Xd
i¼1

aixi þ b; ð2Þ

where kj, ai and b are the weights for the radial functions,

linear and independent terms, respectively.

A typical choice for the radial basis functions is a set of

multi-dimensional Gaussian kernels:

/jðNxi � cjNÞ ¼ exp � 1

2

Nxi � cjN

rj

� �2
 !

; ð3Þ

where rj is the width factor of the jth hidden unit (basis

function) in the hidden layer.

2.2.3. RBFN learning strategies

Once the number and the general shape of the radial basis

functions /j(xi) are chosen, the RBF network has to be

trained properly. Given a training data set T of size NT,

T ¼ fðxp; ypÞaRd 
R; 1VpVNT : yp ¼ f ðxpÞg; ð4Þ

the training algorithm consists in finding the parameters cj,

rj, kj, ai and b such that f̂(x) fits the unknown function f(x)

as close as possible. Often, the training algorithm is

decoupled into a three-stage procedure:

1. determining the centres cj of the Gaussian kernels,

2. computing the widths rj of the Gaussian kernels,

3. computing the weights kj and independent terms ai and b.
During the first two, stages only the inputs xp of the training

data set T are used. The parameters are thus adapted

according to an unsupervised updating rule. In the third

step, the weights kj, independent terms ai and b are

calculated with respect to the corresponding desired outputs;

meanwhile cj and rj remain fixed. Moody and Darken [19]

proposed to use k-means clustering algorithm to find the

location of the centers cj. Other authors use a stochastic

online process (Competitive learning) method, which leads

to similar results, with the advantage of being adaptive

(continuous learning, even with evolving input data). The

principle is:

1. to initialise the centers for example through a random

choice in the training data set;

2. to use recursively all data points xp, and move the closest

center cj to data point xp (best matching unit [BMU])

according to

cjðt þ 1Þ ¼ cjðtÞ þ aðtÞðNxi � cjNÞ ð5Þ

where a(t) is a time decreasing adaptation factor,

0 < a(t) < 1.

The second stage of the training process involves the

computation of the Gaussian function widths, while fixing

the degree of overlapping between the Gaussian kernels. It

allows finding a compromise between locality and smooth-

ness of the function f̂ (x). First, we compute the standard

deviations rj
c of each data cluster4 in a classical way.

Subsequently, we determine a width scaling factor w,

common to all Gaussian kernels. The widths of the kernels

are then defined as [20,21]:

bj; rj ¼ wrc
j : ð6Þ

By inserting the width scaling factor, the approximation

function f̂ (x) is smoothed such that the generalization

process is more efficient, as we allow an optimal over-

lapping of the Gaussian kernels. The choice of the optimal

width factor is obtained by the following heuristic.

Consider a width factor set Q. We evaluate, successively,

for each value wlaQ the error criterion, chosen as the

normalized mean square error (NMSE) on a validation set

(see Eq. (11)). The optimal wopt corresponds to the smallest

error:

bl;NMSEV ðwoptÞVNMSEV ðwlÞ: ð7Þ

Once the basis function parameters are determined, the

transformat ion between the input data and the

corresponding outputs of the hidden units is fixed. The

network can thus be viewed as an equivalent single-layer

network with linear output units. The output is calculated by



Table 1

Comparisons of results on the wine database for the five procedures

described (see text)

Calibration model Number of variables NMSEV

PCR 30 0.0030

PLSR 12 0.0052

SMLR 14 0.0390

FBS-lin 17 0.0012

FBS-RBFN 20 0.0009
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a linear combination (i.e., a weighted sum) of the radial

basis function plus the independent terms.

W ¼ uþy ¼ ðuTuÞ�1uT y; ð8Þ

where W=[k1k2. . .EK a1a2. . .ad b]T is the column vector of

kj weight factors, independent terms ai, and b, and y is the

column vectors of yp training data outputs. Moreover

u ¼

/11 /12 . . . /1K x11 x12 . . . x1d 1

/21 /22 . . . /2K x21 x22 . . . x2d 1

/31 /32 . . . /3K x31 x32 . . . x3d 1

. . .

/m1 /m2 . . . /mK xm1 xm2 . . . xmd 1

2
6666666666664

3
7777777777775
ð9Þ

where /ij ¼ exp
�Nxi�cjN

2

2r2
j

� �
values and u+=(uTu)� 1uT

denotes the pseudo-inverse of u. In practice, to avoid

possible numerical difficulties due to an ill-conditioned

matrix uTu, singular value decomposition (SVD) is usually

used to find the weights and independent terms instead of

computing explicitly the pseudo-inverse matrix.

2.2.4. Forward–backward selection

We propose a method of spectral data selection based on

a criterion of validation known as ‘forward backward

selection’. The selection of the spectral data is divided into

two stages, as follows.

The first stage is the forward selection. It starts with the

construction of the n possible models each using one single

variable. We calculate the error criterion for each of these

models and we choose the one that minimizes the criterion.

This leads to the choice of the first variable. Secondly, we

keep this variable, and build n� 1 models by adding one of

the remaining spectral variables. The error criterion for each

one of these models is calculated, and we choose the model

that minimizes this criterion. A second variable is then

selected. We continue this process until the value of the

error criterion increases. As detailed below, it is therefore

necessary to evaluate the error criterion on a validation set,

independent from the training set. By validation set, we

mean a set of samples not used for training (fitting the

calibration model). Depending on the research discipline,

some authors use the words ‘external validation set’, ‘ex-

ternal set’ or ‘prediction set’; the important concept is that

the samples used to validate a method must be independent

from those used for training, regardless of the terminology.

Only the use of a validation set will ensure an objective

evaluation of the error resulting from each model. More-

over, only the error on a validation set will increase when

the number of selected variables is too large, leading to the

well-known overfitting phenomenon.
The second stage is the backward selection. It consists in

eliminating the least significant spectral data already select-

ed in the first stage. If u spectral variables were selected

after of the first stage, u models are built by removing one of

the selected variables. The error criterion is calculated on

each of these models, and the one with the lower error is

selected. Once the model is chosen, we compare its error to

the error of the model obtained at the preceding stage. If the

new error criterion is lower, then the eliminated spectral

variable is not significant and may be removed. The process

is then repeated on the remaining spectral variables. The

backward selection is stopped when the lower error among

all models calculated at one step is higher than the error at

the previous step.

As mentioned above, at each step of the forward–

backward selection algorithm, the error of several models

must be evaluated on data independent from the ones used

for learning. This is achieved through the use of a validation

set V, containing NV spectra:

V ¼ fðxq; yqÞaRd 
R; 1VqVNV : yq ¼ f ðxqÞg ð10Þ

The error criterion can be chosen as the normalized mean

square error defined as [22]:

NMSEV ¼

1
NV

XNV

q¼1

ðf̂ ðxqÞ � yqÞ2

1
NTþNV

XNTþNV

j¼1

ðyj � ȳÞ2
; ð11Þ

where NT, NV are the number of samples included in the

training set and the validation set, respectively, f̂(xq) is the

value predicted by the model and yq is the actual value

corresponding to spectrum q. Note that Eq. (11) normalizes

the errors with respect to the standard deviation of y values

in the combined learning and validation sets, the reason

being to use as much data as possible to estimate this

standard deviation. As this estimation does not depend on

the model, the comparison of performances between models

remains objective, whatever is the set used to estimate this

standard deviation.

The combination of the three principles quoted above

(non-linear regression, incremental procedure and choice

based on a validation set) allows on one hand to benefit

from the capabilities of non-linear methods to predict a

physical phenomenon which is probably not linear, and on



Fig. 1. Forward–backward selection with linear model on the wine samples.
Fig. 3. Predicted alcohol concentration according to actual alcohol

concentration for the wine samples with FBS-lin model.
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the other hand to avoid overfitting. This procedure of

variable selection thus offers, potentially, better perform-

ances when these performances are objectively measured on

data independent from the learning set. This will be illus-

trated in the Results section.

2.3. Data sets

Two data sets were chosen to illustrate this study. The

first data set relates to the determination of the alcohol

concentration in wine samples measured by mid infrared

spectroscopy. The training and validation sets contain 94

and 30 spectra, respectively, with 256 spectral variables that

are the absorbance (log1/T) at 256 wavenumbers between

4000 and 400 cm� 1 (where T is light transmittance through

the sample thickness). The second data set relates to the

determination of the sugar (saccharose) concentration in

juice samples measured by near infrared reflectance spec-

troscopy. In this case, the training and validation sets

contain 150 and 68 spectra, respectively, with 700 spectral
Fig. 2. Forward–backward selection with non-linear model (RBFN) on the

wine samples.
variables that are the absorbance (log1/R) at 700 wave-

lengths between 1100 and 2500 nm (where R is light

reflectance on the sample surface).
3. Results

The two data sets studied in this work contain 256 and

700 variables, respectively, i.e., more than the number of

samples in both cases. Reducing the number of variables is

thus mandatory.

3.1. Data set 1

In Table 1, the predictive ability of the PCR, PLSR,

SMLR, FBS-lin and FBS-RBFN models is compared in

terms of normalized mean square error on a validation set.

The three first methods were detailed in Section 2.1, while

the two last ones correspond to the forward–backward

selection procedure detailed in Section 2.2.4, using a linear

model and a non-linear one (RBFN), respectively, for the
Fig. 4. Predicted alcohol concentration according to actual alcohol

concentration for the wine samples with FBS–RBFN model.



Fig. 6. Forward–backward selection with non-linear model (RBFN) on the

juice samples.

Table 2

Comparisons of results on the juice database for the seven procedures

described (see text)

Calibration models Number of variables NMSEV

PCR 42 0.2596

PLSR 16 0.2435

SMLR 16 0.5137

FBS-lin 7 0.2265

PCA-RBFN 12 0.1407

PLS-RBFN 14 0.1364

FBS-RBFN 13 0.0703
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prediction. Table 1 shows the NMSE on the validation set

for each procedure, together with the number of parameters

involved in each model.

In the PCR model the lowest NMSEV value was

obtained with 30 principal components. Similarly for the

PLSR model, the lowest NMSEV value was obtained with

12 latent variables. In the FBS-lin case, the initial number

of variables selected by the forward selection is 20, but

after the application of the backward selection this number

is reduced to 17, as illustrated in Fig. 1. It can be seen in

this figure that the backward procedure could have been

stopped at 19 variables, leading to a smaller NMSEV. We

chose here to continue the procedure until the NMSEV

reaches the same value as after the forward stage, thus

privileging a lower number of variables. About the FBS-

RBFN procedure, we tested radial-basis function networks

with 2–9 nodes in the hidden layer. On the Wine database,

the best result was obtained with three centers in the hidden

layer; the width scaling factor was also optimized on the

validation set. Also, in this case, the initial number of

variables selected by forward selection is 32, but after the

backward selection this number is reduced to 20, as shown

in Fig. 2. In Figs. 1 and 2, the validation NMSEV is shown

as a function of the number of forward–backward selected

variables. Note that the set of variables obtained by FBS-

lin is different from the set of variables obtained by FBS-

RBFN.
Fig. 5. Forward–backward selection with linear model on the juice samples.
Errors obtained with the forward–backward selection

(both with linear and non-linear calibration models) are

much lower than the errors obtained with the other proce-

dures. The use of RBFN slightly improves the results

compared to the use of a linear model. Figs. 3 and 4 show

the relation between the predicted alcohol concentration and

the actual alcohol concentration with both methods of

variables selection.

3.2. Data set 2

On this second dataset (juice samples), we used the five

methods already used for the wine dataset, and added two

methods: PCA-RBFN and PLS-RBFN, where the selection

of variables takes place exactly as in PCR and PLSR,

respectively (thus using a linear model for the selection).

Nevertheless, once the variables are selected, a non-linear

model (RBFN) is used to predict the concentration in sugar

(saccharose). Table 2 gives a comparison between the

predictive ability of the PCR, PLSR, SMLR, FBS-lin,
Fig. 7. Predicted saccharose concentration according to actual saccharose

concentration with PLS-RBFN model for the samples of juice.



Fig. 8. Predicted saccharose concentration according to actual saccharose

concentration with FBS-RBFN model for the samples of juice.
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FBS-RBFN, PCA-RBFN and PLS-RBFN models in terms

of normalized mean square error of the validation set.

Table 2 shows clearly that the calibration models using

non-linear RBFN largely reduce the errors. The smallest

error is obtained with the FBS-RBFN calibration model,

with eight centers in the hidden layer.

Fig. 5 shows that in the FBS-lin case the backward

selection did not reduce the number of variables previously

selected by the forward stage (seven variables). On the

contrary, Fig. 6 shows the effect of the backward selection

on the reduction of the number of variables previously

selected by the forward stage in the case of the FBS-RBFN.

The number of variables is reduced from 17 to 13 for the

same level of NMSEV. The predicted saccharose concentra-

tion according to the actual saccharose concentration (both

with PLS-RBFN and FBS-RBFN procedures) are presented

in Figs. 7 and 8, respectively. These figures show the

improvement obtained with the use of forward–backward

selection procedure compared to the PLS one, as measured

in Table 2.

In these two examples, we notice that in the mid

infrared spectroscopy (wine), the calibration model FBS-

RBFN decreases slightly the error, with regards to the

calibration model FBS-lin. On the other hand, in the near

infrared spectroscopy (juice) the error decreases consider-

ably, around 3–4 times lower than the error obtained with

the linear calibration models (PCR, PLSR, SMLR and

FBS-lin).

We notice in these two examples that the increase of

performances due to the use of non-linear (RBFN) calibra-

tion models is obvious in both cases, but is higher for the

near infrared spectroscopy data (juice) than for the mid

infrared ones (wine). Moreover, when comparing methods

using similar calibration models (linear or non-linear), the

forward–backward selection also clearly improves the

performances with regards to other variable selection

procedures.
4. Conclusions

In this work, the problem of the variables selection is

treated. Two data sets were studied, containing more than

250 variables each. We proposed a procedure for spectral

data selection based on the combination of three princi-

ples: non-linear regression, incremental procedure for

variable selection, and use of a validation set. This

procedure allows on one hand to benefit from the advan-

tages of non-linear methods to predict a chemical data

which is probably not in completely linear relation with

the infrared spectra of the products, and on the other hand

to avoid the overfitting phenomenon, i.e., building a

model with good performances on the learning set but

behaving poorly on new (validation) data. As shown in

our study, the FBS-RBFN procedure can efficiently deal

with the calibration of multivariate spectral data (mid and

near infrared spectroscopy).
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