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Abstract

The large number of spectral variables in most data sets encountered in spectral chemometrics often renders the prediction of a dependent
variable uneasy. The number of variables hopefully can be reduced, by using either projection techniques or selection methods; the latter allow for
the interpretation of the selected variables. Since the optimal approach of testing all possible subsets of variables with the prediction model is
intractable, an incremental selection approach using a nonparametric statistics is a good option, as it avoids the computationally intensive use of
the model itself. It has two drawbacks however: the number of groups of variables to test is still huge, and colinearities can make the results
unstable. To overcome these limitations, this paper presents a method to select groups of spectral variables. It consists in a forward–backward
procedure applied to the coefficients of a B-spline representation of the spectra. The criterion used in the forward–backward procedure is the
mutual information, allowing to find nonlinear dependencies between variables, on the contrary of the generally used correlation. The spline
representation is used to get interpretability of the results, as groups of consecutive spectral variables will be selected. The experiments conducted
on NIR spectra from fescue grass and diesel fuels show that the method provides clearly identified groups of selected variables, making
interpretation easy, while keeping a low computational load. The prediction performances obtained using the selected coefficients are higher than
those obtained by the same method applied directly to the original variables and similar to those obtained using traditional models, although using
significantly less spectral variables.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Prediction problems are often encountered in analytical spectral
chemometrics. They require estimating the unknown value of a
dependent variable from, for example, a near-infrared spectrum.
Such problems may be encountered in the food [1], pharmaceu-
tical [2] and textile [3] industry, to cite only a few.

Viewed from a statistical or data analysis perspective, the main
difficulty in such problem is to cope with the colinearity between
spectral variables: not only consecutive variables in a spectrum are
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highly correlated by nature, but in addition real applications
usually concern databases with a low number of known spectra,
and a high number of spectral variables. Any method built on the
original spectral variables is thus ill-posed, making feature
(spectral variable) selection and/or projection necessary.

Selection and projection methods differ by several aspects.
Projection methods are more general by essence, as selection may
be regarded as projection with many zero weights. However,
projection methods usually build factors (latent variables) that are
combinations of a large number of original features. Even if their
prediction properties are good, they usually suffer from the fact that
the latent variables are hardly interpretable in terms of original
features (wavelengths in the case of infrared spectra). On the
contrary, selection methods are based on the principle of choosing
a small number of variables among the original ones, leading to
easy interpretation. Of course, the challenge with selection
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methods is to obtain prediction performances of the same level as
projection ones.

In this work, we are interested in variable selection methods
providing interpretability. However, if the whole procedure
consisting in selecting the features and building a prediction
model on them is kept linear, it will certainly lead to poorer
performances than the traditional and widely used PLS (Partial
Least Squares), as the latter consists in a projection and a
prediction. It is thus investigated how nonlinear models may be
used, both for selecting the features and performing the prediction.

Nonlinear models could be used in a wrapper approach [4], in
which their estimated generalization performances is used as a
relevance criterion for a group of variables. This however, is very
demanding in terms of computational load because resampling
techniques must be used to estimate accurately the predicted error
of themodel, in addition to the fact that onemodelmust be learned
for each considered feature set. This paper thus focuses on the so-
called filter approach: the features are selected prior the use of any
prediction model.

Among filtermethods, the correlation is the standard criterion to
be used for selecting features in a linear way: features with
maximal correlation with the dependent (output) variable, and
possibly with minimal information between them to avoid
redundancy, are selected. Mutual information (see e.g. Cover and
Thomas [5]) extends the correlation to the measure of nonlinear
dependencies, while correlation is strictly limited to linear ones. As
an example, the correlation between a centered antisymmetric
variable and its second power is zero, despite the fact they
obviously depend one from another (though in a nonlinear way).
The mutual information avoids this drawback, providing a more
general and less restricted way to measure dependencies between
variables.

The mutual information (MI) has already been used to select
variables from near-infrared spectra [6]. Despite it provides a
promising way to extend state-of-the-art spectral analysis to
nonlinear methodologies, the direct selection of variables by MI
suffers from some drawbacks. First, the MI estimation becomes
difficult as the number of selected variables grows. Indeed in a
forward procedure the estimation is faced to the curse of
dimensionality, making the estimation of the MI with the last
selected feature much more difficult than with the first selected
one. Second, the low number of spectra usually available for
learning makes the results of the selection highly dependent on the
data set: a small change in the data can lead to different selected
variable sets, resulting in difficult interpretation. Finally, even
though the estimation of themutual information is less demanding
in terms of computation time than the construction of a nonlinear
model, the large number of initial variables results in high com-
putation times for the selection.

In this paper, we propose to first reduce the number of
variables through a projection of the spectral features before the
selection by mutual information. To maintain the interpretability
despite the use of a projection, the latter is achieved by ensuring
that each coordinate in the projection corresponds to a restricted
set of initial features with consecutive wavelengths. The general
methodology proposed in [7] is followed: spectra are projected on
a functional basis. More precisely, as in e.g. [8], a projection on a
basis of B-splines is chosen, rather than wavelets for example;
indeed B-splines have the advantage that they span a restricted
interval of wavelengths, and that the intervals are roughly of the
same length over the whole range. As a consequence, each
coefficient depends on the value of the corresponding spectrum
on a limited wavelength interval. The complete procedure then
consists in replacing the spectra by their B-spline coefficients, in
selecting relevant coefficients by measuring their mutual
information with the output variable, and by predicting the latter
using Radial-Basis Function networks (any other nonlinear model
could be used). The last two steps are nonlinear, giving to the
procedure the necessary flexibility to reach high performances
both in prediction and in interpretation.Design parameters that are
unavoidable in a nonlinear context, such as the number of B-
splines to be used in the projection, are set automatically (without
the necessity of a user's choice) using a cross-validation method.

This paper shows that the prediction results obtained by this
procedure are comparable than those obtained through conven-
tional linear techniques such as PLS. In addition interpretability is
added, as the number of wavelengths selected by the procedure
remains low,making it possible to identifywhich wavelengths are
responsible for the phenomenon to predict. Moreover, B-spline
compression allows us both to reduce the feature selection
running time and to increase the quality of the prediction results
compared to the same nonlinear procedure applied directly to the
original spectral variables.

Section 2 of this paper reminds how spectra can be projected
on a basis of B-splines, details how the number of B-splines can
be set automatically and analyzes the computational complexity
of the procedure. Section 3 presents the mutual information
criterion and its use in a forward–backward procedure. It also
investigates the computational complexity of the forward–
backward method. Section 4 shows examples of the application
of the proposed method on two data sets. The first one consists
of NIR spectra obtained from fescue grass; the aim is to predict
the nitrogen content of the plant. The second one is a database of
spectra from fuel samples for which the goal is to predict the
cetane number of the fuel.

2. B-splines

2.1. Functional representation of spectra

As pointed out in the introduction, the performances of
variable selection procedures decrease with the number of initial
variables, while their running time increases. Our goal is
therefore to reduce the set of initial variables in a simple way
that preserves information and interpretability. This can be done
by leveraging the functional nature of spectra, following the
general approach initiated in [7] and the principals of Functional
Data Analysis [9].

A spectrum can be viewed as a smooth function s that maps a
wavelength interval [wmin, wmax] to the measured response, for
instance the transmittance of the studied sample. A spectral
variable Xw corresponds to the value taken by the function at a
specific wavelength, i.e., to Xw(s)= s(w) for a given wavelength
w∈ [wmin, wmax]. We denote w1,…, wN the wavelengths used by
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the spectrometer (numbered in increasing order) and X1,…, XN

the corresponding original spectral variables.
A simple way to reduce the number of variables is to replace

each spectrum by its best approximation by a linear combina-
tion of n basis functions, with n smaller than N. Let us consider
n functions (ϕi)1≤i≤n from [wmin, wmax] to R (the set of real
numbers). The best approximation of a spectrum s, in the sense
of the squared reconstruction error, is obtained by minimizing
the following error with respect to (as,i)1≤i≤n:

XN
j¼1

sðwjÞ−
X
i¼1

as;i/iðwjÞ
 !2

: ð1Þ

This type of quadratic optimization problem is easy to solve;
it is well known, see e.g. [9], that the (as,i)1≤i≤n are obtained
from the (s(wj))1≤j≤N via a linear transformation that depends
only on the (ϕi)1≤i≤n and on the (wj)1≤j≤N. In other words, there
is a n×N matrix R such that for all s and i:

as;i ¼
XN
j¼1

Ri;jsðwjÞ: ð2Þ

This allows us to define n new variables A1,…, An from the
N original ones by:

Ai ¼
XN
j¼1

Ri; jXj: ð3Þ

The main difficulty of this approach lies in the choice of the set
of functions (ϕi)1≤i≤n. They must provide good approximations of
the original spectra for a small value of n (compared to N) while
preserving interpretation abilities: in practice, we need each Ai to
depend only on a small localized subset of the original variables.
Fig. 1. Graphical representation of R65,k for a B-spline of order 5 basis
2.2. Spline approximation

A simple solution is obtained by using a spline approxima-
tion, i.e., a piecewise polynomial representation of the spectra.
This is done by splitting the original wavelength range into p
sub-intervals, defined by the p+1 values, t0,…, tp, called knots,
such that ti< ti+1, t0=wmin and tp=wmax. A spline of order d
[10] is a function f from [wmin, wmax] to R such that:

• f is a polynomial of degree d−1 on each interval [tk , tk+1];
• f is Cd − 2 on [wmin, wmax] (i.e., f is continuous and has
continuous derivatives up to order d−2).

The regularity constraints imposed on splines are adapted to
spectrometric applications: spectra are generally very smooth
and are therefore very accurately represented by splines of small
order (e.g. 4 or 5).

The vector space of splines of order d based on the knots
(tk)0≤k≤p has a basis made of p−1+d B-splines (see e.g. [10] for
details), B1

d,…, Bp
d
−1+d. Each B-spline is a spline with a localized

support: it is positive on only at most d consecutive intervals. This
basis can be used to define n=p−1+d new variables, as proposed
in the previous section. It should be noted that choosing p and d is
not enough to define an unique B-spline basis: the positions of the
knots have to be specified. In this paper, we split [wmin,wmax] into p
subintervals of equal length, but adaptive schemes could be used as
long as the knots are identical for all spectra.

B-splines are very computational efficient. In the case of
arbitrary functions (ϕi)1≤i≤n, calculating (as,i)1≤i≤n for one spec-
trum costsO(n2N) operations (when n≤N), whereas its is onlyO
(N) for n B-splines, because of the localized supports (see e.g.
Ramsay and Silverman [9]). Computational details on B-splines
can be found in de Boor [10] or in e.g. Alsberg and Kvalheim [8];
Olsson et al. [11].
with 155 B-splines calculated for 1050 original spectral variables.
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2.3. B-spline coordinates

Spectra representation byB-splines of degree 0 (i.e., of order 1),
which corresponds to piecewise constant approximation, has been
used for compression purpose, see, e.g., Alsberg andKvalheim [8];
Alsberg et al. [12]; Alsberg and Kvalheim [13]; Olsson et al. [11].
Those papers take advantage of the linear relationship between a
spectrum and its coordinates on the B-spline basis. When the
coordinates are used as inputs to a linear method (such as Principal
ComponentAnalysis, as inAlsberg andKvalheim [13]), the results
of the method can be applied directly to the original spectra by
combining both linear transformations. In our application, we use
the compression property already explored in earlier work, but we
also take advantage of the localization properties of the B-splines
to preserve interpretability of the variables.

Because of the localized supports of the B-splines, the linear
transformation expressed by the matrix R used in Eqs. (2) and
(3) has an interesting property: most of the values in R are very
small and significant values are localized, as illustrated in Fig. 1.
This property preserves interpretability as it allows to determine
which wavelength range of the original spectra contributes
significantly to the value of a chosen new variable.

Based on this idea, a wavelength range [wli, wui] for Ai can be
easily estimated. Given a precision ratio ϵ>0, the indexes of the
bounds of the interval are

li ¼ max 1 � j � N j max
1Vk< j

jRik j < " max
1V1kVN

jRik j
� �

; ð4Þ

ui ¼ min 1 � j � N j max
j<kVN

jRik j < " max
1VkVN

jRik j
� �

; ð5Þ

with the convention that max1≤ k<1 |Rik| =maxN<k≤N |Rik | =0.
The lower bound wli corresponds to the largest index j such that
all coefficients Rik for k< j are smaller than ϵ times the maximal
coefficient. The upper bound wui is defined in a symmetric way.
Fig. 1 displays two wavelength intervals: the vertical solid lines
give the bounds of the interval calculated for ϵ=0.05 and the
dashed lines correspond to ϵ=0.01.

2.4. Choosing the B-spline basis

A critical point of this approach is to determine a correct
value for n, the number of new variables. A small value of n
corresponds to an efficient variable selection but also to a poor
approximation of the spectra. On the contrary, a high value for n
ensures almost perfect approximation of the spectra, but does
not bring any improvement in terms of variable selection.

For efficiency reasons, a wrapper approach, in which the
optimal value of n would be chosen according to the quality of
prediction model built with the selected variables, is not possible;
a filter approach is preferred. However, the regular approximation
error of the spline representation is not a reliable criterion: it will
tend to favors the highest possible value of n, i.e., almost N.

Our solution is based on a leave-one-out (loo) criterion (as in
Rossi et al. [14]). Let us first recall the definition of the leave-
one-out error for a single spectrum s and a specific B-spline basis
B1
d,…, Bn

d. The loo error is based on estimating the effects of
removing one evaluation point of s (a wavelength) on the quality
of the approximation of s at this point. To do this, we define for all
1≤k≤N the coordinates as,i

(−k) as the optimal coefficients for the
B-spline representation of (s(w1),…, s(wk−1), s(wk+1),…, s(wN)).
Those coefficients minimize

XN
j¼1; jpk

sðwjÞ−
Xn
i¼1

að−kÞs;i Bd
i ðwjÞ

 !2

: ð6Þ

The leave-one-out error for the spectrum s is then

LOOðs; nÞ ¼ 1
N

XN
k¼1

sðwkÞ−
Xn
i¼1

að−kÞs;i Bd
i ðwkÞ

 !2

: ð7Þ

The advantage of the loo error over the regular approxima-
tion error is that it favors stable solutions for which the removal
of one observation does not modify significantly the spline
approximation.

The calculation of the loo error might appear computation-
ally-intensive, but efficient algorithms exist (see e.g. Ramsay
and Silverman [9]): they scale in O(nN) for one spectrum.

The total leave-one-out error for a set of P spectra is obtained
by simply summing the individual loo errors, i.e., LOO(n)=Σl=1

P

LOO(sl, n) (the computation cost is O(nNP)). This value is used
to select the optimal n, via a simple brute forceminimization. The
simplest solution consists in calculating LOO(n) for all possible
values of n in a reasonable range, for instance [N/20, N/2]. The
worst case total complexity of this approach is dominated by O
(N3P). Heuristics can be used in practice to reduce this cost, for
instance by testing a few values in [N/20,N/2] and then by testing
all the possible solutions in a small sub-interval of [N/20, N/2].
3. Variable selection

The projection of each spectrum as described in the previous
section results in n B-spline coefficients. The next objective is to
select which of these coefficients are important for the prediction
of the output (response) variable. This is achieved through variable
selection.

The benefits of variable selection, or feature selection are
twofold. First, it allows building an efficient prediction model of
the response variable, which we call Y, by reducing the data
space dimension. As the complexity of most model structure
increases at best linearly, and at worst exponentially with the
dimension of the data, reducing the dimension can help
avoiding overfitting and reducing computation times. Second,
feature selection methods identify which features are relevant
for the problem at hand. Although they do not help discovering
the mechanisms by which the inputs interact together, they can
identify the elements that have an influence on the problem
considered. This provides the interpretability that is needed in
most real-world applications. In this section, a set of features
will be denoted X and contains either spectral variables Xw or
spline coordinates Ai. It is viewed here as a random vector
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whose dimension n is the number of spectral or spline variables
it contains.

A feature selection method needs to combine two elements.
The first one is a measure to score a feature subset to evaluate its
potential for prediction. Themutual information criterion is a good
choice as it is nonparametric (it does not assume any distribution of
the features) and model-independent (it is generic and does not
make use of a specific prediction model). The second element is a
procedure that explores the candidate feature subset space in order
to find the optimal one. This can be done with incremental algo-
rithms such as the forward–backward search procedure. Although
this class of algorithms is suboptimal in the sense that it does not
ensure finding the optimal feature subset among all possible ones,
it often presents a good trade-off between accuracy and com-
putation time.

The remaining of this section will introduce the mutual
information criterion and the forward–backward incremental
search.

3.1. Mutual information

To evaluate the relevance of a group of features in terms of
prediction potential, we will estimate the mutual information
between that group of features and the variable to predict. The
mutual information of two variables is the amount of
uncertainty that is lost on one variable when the other is
known, and vice versa.

The uncertainty of a variable can be estimated through its
entropy. The entropy of a real-valued random vector Y is a non-
negative value given by [15]

HðYÞ ¼ −
Z

lYðyÞloglYðyÞdy; ð8Þ

where μY is the probability density function of Y.
The entropy of Y when the value of some other random

vector X is known is the conditional entropy:

HðYjXÞ ¼ −
Z

lY;Xðy; xÞloglYðyjX ¼ xÞdydx: ð9Þ

The difference between those two values, i.e., the difference
between the entropy of Yand the entropy ofY conditioned onX
is called the mutual information between Y and X:

IðYjXÞ ¼ HðYÞ−HðYjXÞ: ð10Þ
It is symmetric and measures the amount of information a

variable can bring about the other. The mutual information is zero
if and only if the variables are independent; it is thus well suited to
measure the relevance of X to predict the values of Y [16].

In practice, the mutual information has to be estimated from
the data set, as the exact probability density functions in the above
equations are not known. Themost sensitive part of the estimation
of the mutual information is the estimation of the joint probability
density function μY,X. Several methods have been developed in
the literature to estimate such joint densities [17]. Unfortunately,
most of them require a sample whose size grows exponentially
with both the dimensions of X and Y to provide an accurate
estimation. Since most applications consider one output at a time,
the dimension of Y is one. However, in the next section, we will
see that the mutual information has to be estimated between a set
of features and the variable to predict; therefore, the dimension of
X grows and can potentially be as large as the total number of
features.

A method that does not so dramatically depend on the
sample size is the method developed by [18]. It is based on a
nearest neighbors statistic. The core of the algorithm is the
assumption that data element that are close in the space will
correspond to similar values of the variable to predict.

The algorithm described in [18,6] needs O(nP2) operations,
where n is the dimension of X and P is the sample size (here the
number of spectra). However, using heuristics, the algorithm
has been implemented in such a way to have an average
complexity that is linear in both the dimension and the sample
size1.

3.2. Forward–backward procedure

Searching for the optimal (according to themutual information
criterion for example) feature subset actually requires to evaluate
the mutual information between all 2n−1 possible subsets and the
variable to predict. This, especially for spectrophotometric data, is
often intractable. Combinatorial optimization algorithms, such as
a genetic or simulated annealing ones, are rather efficient and
could be used (see [4]); they however demand a lot of
computations to converge. Incremental (greedy) algorithms are
cheaper and usually perform efficiently too [19]. They are
suboptimal in the sense that there is no guarantee that they will
find the optimal subset, because they choose one feature at a time
and never question that choice afterward. However, they only
needO(n2) evaluations of the mutual information to find the (sub-
optimal) solution. They neverthelesswill often find a good subset.
The procedure actually is optimal when the features are
independent.

The forward–backward procedure acts in two stages. The
first stage, the forward phase, consists in adding features one by
one. At each iteration, the feature chosen to incorporate the
current subset is the one that most increases the mutual
information with the variable to predict. The process is stopped
when adding any new feature actually decreases the mutual
information. The second stage is the backward phase. During
this stage, features are eliminated one at a time. The feature that
is excluded from the current feature subset is the feature that
most increases the mutual information when it is discarded. As
in the first stage, the backward phase stops when discarding any
other feature decreases the mutual information of the subset
with the variable to predict.

3.3. Computational cost

Let us consider n initial variables. At each iteration of the
forward stage, all features that are not already selected in the
current set have to be tested. So at iteration i there are n− i

http://www.uelich.de/nic/cs/software/
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subset evaluations to perform. Since there are n features at the
beginning, the maximum number of evaluations is:

Xn−1
i¼0

n−i ¼ 3n
2
ðnþ 1Þ: ð11Þ

Since the nearest-neighbor-based estimation of the mutual
information is linear in the dimension n and quadratic in the
number of data points P, the total complexity of the algorithm is
O(n3P2). Similar calculations lead to the same result for the
backward procedure.

Consequently, reducing in advance the initial number of
features can dramatically decrease the computation time. Of
course, the method used to reduce the initial number of features
must not be more complex than the forward–backward
procedure.

Given the complexity of the loo estimation for the splines
detailed in Section 2.3, and the fact that at most O(N) B-splines
can be used, the total worst case complexity of the spline
construction procedure is O(N3P).

If the forward–backward method is applied to the N spectra
variables, it will of course require O(N3P2) operations.

Therefore, since the value of n determined by leave-one-out
is often much smaller than N, the overall cost of the procedure,
that is O(N3P)+O(n3P2) is smaller than the cost of the forward–
backward procedure conducted on all the spectral variables,
which is O(N3P2). Actually, working with the spline coordi-
nates instead of the spectral variables is much cheaper when

1
P
þ n

N

� �3
< 1; ð12Þ

which is satisfied most of the time in practice.

4. Experimental results

The selection of variables with the mutual information
criterion, after projection of the spectra on a basis of B-splines,
leads to a prediction model that combines advantages in terms
of performances and interpretability. In this section, the
prediction methodology is first summarized, before describing
the data sets on which experimental comparisons are performed.

4.1. Methodology

In order to asses the propositions contained in this paper, the
proposed method is compared to reference ones; the methods
and comparison criteria are detailed in the following sections.

4.1.1. Proposed method
To achieve a good prediction of the output in a reasonable

time as well as an interpretable determination of the
wavelengths involved in the process, our method consists in
the following steps:

(1) Extraction of the B-spline coefficients for each spectrum.
The number of B-splines is chosen by the leave-one-out
procedure described in Section 2.4.
(2) Selection of the B-spline coefficients through mutual
information maximization (Section 3.1) and forward–
backward search (Section 3.2).

(3) Calculation of the wavelength ranges associated to the
selected variables, as explained in Section 2.3, with
ϵ=0.01.

(4) Construction of a nonlinear model (Radial Basis Function
Network) on the coefficients selected by the previous step.

A Radial Basis Function Network (RBFN) model is a
weighted sum of Gaussian kernels [20]. The prediction ŷ of y
given x is computed as

y ̂ ¼
XM
l¼1

kldKðx;Cl; rlÞ þ b; ð13Þ

where

Kðx;Cl; rlÞ ¼ exp −
jjx−Cljj
WSFdrl

� �2
 !

: ð14Þ

The position of the centers Cl is determined by vector
quantization [20], and the values of σl

2 are set to the variance of
the clusters identified by the vector quantization stage. The λl
and b are fixed by linear regression, as described in [21].

Both M and WSF are called meta parameters of the model
and determine its complexity, hence its generalization capabil-
ities. They are chosen so as to minimize the generalization error
of the model.

The generalization error is estimated using a 3-fold cross
validation technique. The learning set is split into three different
sets of equal size. Each subset serves as a validation set, one at a
time, while the other two sets are used to build the model.
Although the population of each set is randomly chosen, the
split is done so as to ensure that each set is representative of the
distribution of the variable Y to predict.

4.1.2. Reference methods
In order to assess the performances of the proposed method,

its results are compared to the ones obtained by four different
reference methods:

• to show the interest of the B-spline compression, we apply
the variable selection method described in Section 3 directly
to the original spectral variables (this is a simplified version
of the variable selection method proposed in Rossi et al. [6]).
We build a RBFN on the selected variables, using the same
procedure as the one used for the proposed method;

• to motivate the use of a nonlinear model, we also include the
results of a standard linear regression (LR) built on the
variables selected by the proposed method;

• we use linear reference models, namely a principal component
regression (PCR) and a partial least squares regression
(PLSR). The numbers of components in the PLS and in the
PCR model are chosen with the same 3-fold cross-validation
method used to choose the meta parameters of the nonlinear
model.



Fig. 2. Some spectra from the shootout database.

2 http://www.idrc-chambersburg.org/index.htm.
3 http://kerouac.pharm.uky.edu/asrg/cnirs/shoot_out_1998/.
4 http://www.swri.org/.
5 http://software.eigenvector.com/Data/SWRI/.
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The comparison of the models is done according to the
Normalized Mean Squared Error (NMSE) they reach on an
independent test set. The test set contains Pt spectra that were not
used to build the models; the remaining Pl spectra are used to
design the model; they form the learning set. When the optimal
values for the meta parametersM andWSF have been determined
by the 3-fold validation procedure explained above on the
learning set, the final model is fit using all data from the learning
set and the results of the model on the test set are reported.

The NMSE normalizes the mean squared error by the
variance of the output:

NMSE ¼ 1
VarðYÞ

XN
ya testset

ðy− ̂yÞ2: ð15Þ

where ŷ is the approximation of y by the model. The variance is
estimated over the union of the learning and the test set.

Finally, we use a simple method to extract the wavelengths
that play a significant role in the prediction of the target variable
by the best linear model obtained with PCR or PLSR. The
output of such a model can be written

̂y ¼ a0 þ
XN
i¼1

aiX
s
wi
; ð16Þ

where X s
wi
is a scaled version of the original input variableX s

wi
(i.e.,

X s
wi

has zero mean and unit variance). As in Section 2.3, we
consider that wavelength wi is important if |αi|>ϵ max1≤k≤N |αk|.

4.2. Data sets

The experiments are conducted on two different databases. The
first one consists in spectra of fescue grass (shootout database) and
the second one is a data set of NIR spectra of diesel fuels (diesel
database).
The shootout database (see Fig. 2) originates from a software
contest organized at the International Diffuse Reflectance
Conference2 held in 1998 in Chambersburg, Pennsylvania,
USA. It consists of scans and chemistry gathered from fescue
grass (Festuca elatior). The grass was bred on soil medium with
several nitrogen fertilization levels. The aim of the experiments
was to try to find the optimum fertilization level to maximize
production andminimize the consequences on the environment. In
this context, the problem to address is the following: can NIR
spectrometry measure the nitrogen content of the plants?

Although the scans were performed on both wet and dry
grass samples, we only consider wet samples here (i.e., the
scans were performed directly after harvesting). The data set
contains 141 spectra (see Fig. 2 for 20 of them) discretized to
1050 different wavelengths, from 400 to 2498 nm. The nitrogen
level goes from 0.8 to 1.7 approximately. The data can be
obtained from the Analytical Spectroscopy Research Group of
the University of Kentucky3.

We have split randomly the data set into a test set containing
36 spectra and a training set with the remaining 105 spectra. The
random split has been done in a way that roughly preserves the
distribution of the target variable (the nitrogen level).

The diesel database (see Fig. 3) was built by the Southwest
Research Institute under a U.S. Army contract4 (it can be obtained
from Eigenvector Research Incorporated5). It consists of scans of
approximately 250 diesel fuel samples. The research was
conducted to develop instrumentation for fuel quality assessment
on battle fields. The aim was to predict several quantities from the
NIR analysis: density, total aromatics, kinematic viscosity, net
heat of combustion, freezing temperature, cetane number, etc.

http://www.idrchambersburg.org/index.htm
http://kerouac.pharm.uky.edu/asrg/cnirs/shoot%20out%201998/
http://kerouac.pharm.uky.edu/asrg/cnirs/shoot%20out%201998/
http://kerouac.pharm.uky.edu/asrg/cnirs/shoot%20out%201998/
http://www.swri.org/
http://software.eigenvector.com/Data/SWRI/


Fig. 3. High leverage spectra (after centering and reduction) from the Diesel database.

Table 1
Normalized mean squared error on the test set for the nitrogen content prediction
problem (shootout database)

Method Variables NMSE (test)

PCR 10 1.57 10−1

PLSR 9 1.51 10−1
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The database contains only summer fuels, and outliers were
removed. We consider one of the most difficult prediction tasks
of the set: to predict the cetane number (CN) of the fuel (ranging
from 40 to 60). The corresponding data set contains 20 high
leverage spectra (see Fig. 3) and 225 low leverage spectra, the
latter being separated into two subsets labeled a and b. As
suggested by the providers of the data, we have built a training
set with the high leverage spectra and subset a of the low
leverage spectra (this corresponds to 133 spectra). The test set is
made of the low leverage spectra of subset b (it contains 112
spectra). All spectra range from 750 to 1550 nm, discretized into
401 wavelength values.

4.3. Results

The methodology proposed in this paper and the reference
methods are applied on the two databases described in the
previous section. The results are expressed in terms of
Normalized Mean Squared Error (NMSE) with normalization
variance calculated on the whole data set (learning and test).

The experiments have been conducted with Matlab. Mutual
information calculation is performed with MILCA6 (written in
C). On the computation time point of view, it has been
experimentally verified that running the variable selection
method on the original spectral variables is one order of
magnitude above running the same procedure on the B-spline
coefficients. The selection of the optimal number of B-splines is
of the same order of magnitude as the latter: both are measured
in minutes on a standard personal computer, whereas running
the forward backward procedure on the original variables takes
several hours. Fitting the nonlinear model on the selected
variables takes a negligible time.
6 The MILCA toolbox: http://www.fz-juelich.de/nic/cs/software/.
4.3.1. Shootout database
The shootout database is quite challenging in terms of

compression as spectra are described by 1050 variables. The
leave-one-out error calculation leads to the selection of an
optimal basis of 149 B-splines of order 5 (the optimal number of
B-splines is chosen in [50, 500]).

The results on the test set (NMSE) for the studied methods are
given in Table 1. The mutual information based selection method
on the original spectra variables keeps only three of them:
wavelengths 410, 414 and 720 nm (in the visible band). However,
the performances of the nonlinear model constructed on those
variables are quite low, especially compared to the results
obtained by the proposed method. Therefore, the interpretation
ability is less interesting than with the proposed method.

The 10 B-spline variables selected by maximization of the
mutual information cannot be used to construct a linear model with
performances comparable to the ones of the optimal linear models.
On this problem, the nonlinear model constructed on those varia-
bles shows clearly the best performances (reflection spectroscopy,
used in the shootout database, has frequently some nonlinear
aspects).

While the mutual information maximization on the B-spline
coefficients leads to the selection of 10 variables, the latter
correspond to only three intervals of the original wavelength range:
MI+RBFN 3 3.91 10−1

B-splines+MI+RBFN 10 1.21 10−1

B-splines+MI+LR 10 2.59 10−1

http://www.uelich.de/nic/cs/software/


Fig. 4. Normalized absolute value of the coefficients used to compute the selected variables from the original spectral variables.
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[400, 816], [874, 1118] and [2002, 2478]. Fig. 4 represents the
normalized coefficients used to compute the new variables. It
appears clearly that only some of the original wavelengths are used.

The first wavelength range corresponds to the visible band (400
to 700 nm): this is natural as the color hue of the grass samples
should be related to their nitrogen content. The last wavelength
range is also related to absorption bands of nitrogen–hydrogen
bonds. This wavelength range is not selected when we use the
feature selection algorithm on the original variable (which retains
only wavelengths in the visible range). The low performances of
this alternate solution shows, as expected, that the visible spectrum
is not sufficient to predict the nitrogen content of the sample.
Fig. 5. Normalized absolute values of the coeffic
It is not possible to select a few wavelength ranges from the
linear model induced by the PLSR: only 17 weights out of 1050
are smaller than ϵ=0.01 times the higher one in this linear
model. As illustrated in Fig. 5, the PLSR uses almost the full
wavelength range. While the PLSR model (as well as the PCR
one) gives acceptable predictions, no interpretation can be done:
it seems that the model needs the full wavelength range to
provide a value for the nitrogen content.

On this database, the proposed method allows us to obtain
the best performances, to provide interpretability, and to reduce
significantly the running time of the algorithm compared to a
method where the projection on a basis of B-splines is not used.
ients of the linear model induced by PLSR.



Table 2
Normalized mean squared error on the test set for the cetane number prediction
problem (diesel database)

Method Variables NMSE (test)

PCR 8 3.64 10−1

PLSR 4 3.67 10−1

MI+RBFN 12 4.32 10−1

B-splines+MI+RBFN 4 3.75 10−1

B-splines+MI+LR 4 3.91 10−1
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4.3.2. Diesel database
The second database corresponds to a less favorable setting for

the proposed method: spectra are obtained by transmission
spectroscopy that generally leads to linear relationship between
the spectra and the target variable. Moreover, the use of less
spectral variables (401) lowers the a priori compression
possibilities. In fact, the leave-one-out procedure selects an optimal
basis of 135 B-splines of order four (the number of B-splines is
chosen in the interval [20, 200]). This corresponds to a reduction of
approximately one third of the number of variables: the
compression ratio is twice less important than in the case of the
shootout database.

Results on the test set (NMSE) are given in Table 2. As
expected, the results of the different models are quite similar,
leading to the conclusion that the link between the cetane
number and the spectrum is linear. Moreover, all models use a
rather low number of features. The B-splines variable selected
by mutual information corresponds to only three wavelength
intervals: [816, 902], [954, 1102] and [1288, 1370]. The twelve
original variables selected by the direct procedure correspond to
the following wavelengths: 792, 794, 990, 1058, 1060, 1296,
1394, 1398, 1400, 1402, 1520, 1522.

Important variables for the PCR linear model form three
intervals: [974, 1086], [1200, 1262] and [1486, 1550]. The total
range of the intervals found by the proposed method and by the
PCR are of the same order of magnitude.

The results of the proposed method are comparable to the
ones obtained by PCR, both in terms of prediction quality and
for interpretation purpose: the wavelength ranges correspond in
both cases to absorption bands of hydrocarbons whose
combustibility explains the value of the cetane number. The
main interest of the proposed method, in this case, is to reduce
the variable selection time and to improve the quality of the
selected variables compared to the mutual information based
selection of original spectral variables.

The reasonable running time of the proposed method allows
one to test it regardless of the potential improvements. The fact
that the method behaves similarly as other ones, both in terms of
prediction ability and interpretation, when the setting is a priori
not advantageous for it, proves that the method may be used
blindly in a wide range of circumstances.

4.3.3. Discussion
The results obtained on both data sets show that the computation

times for the selection of variables are drastically reduced compared
to a forward–backward selection procedure carried out directly on
the spectral variables. The whole procedure (B-splines represen-
tation, feature selection and nonlinear model construction) takes a
fewminutes on a standard personal computer: the proposedmethod
is therefore very attractive as it can be tested quickly, even for data
sets for which it has no particular reason to outperform linear
methods. This is for example the case when the number of spectral
variables is reasonable and/or when the spectrometric method is
known to lead to linear dependency between the target variable and
the spectrum, as in transmission spectroscopy.

Moreover, the proposed approach reaches similar levels of
performances as the PLSR although it uses the information of far
less variables. The variables that are used are furthermore grouped
into consecutive segments, which can then easily be interpreted.

5. Conclusion

Estimating the relevance of spectral variables in a prediction
problem is not an easy task. The PLSR approach allows scoring
each variable by the influence they have on the PLS components.
Unfortunately, a large number of variables are most of the time
taken into account in each PLS component by the method, making
the results difficult to interpret. An alternative is the selection of
variables with a wrapper approach that uses the performances of
the prediction model to score the variables. However, this method
demands large amounts of computations, often rendering the task
intractable. Furthermore, its results may sometimes be difficult to
interpret because it may select a variable and discard another
although they may be highly correlated and hence carry virtually
the same information. To overcome these limitations, it is proposed
to gather consecutive variables into groups and to use the forward–
backward selectionmethod to select ranges of frequencies, instead
of selecting individual spectral variables. This is done by means of
a B-spline functional basis to describe the spectra. Each spectrum
is described by a reduced set of new variables each one related to a
range of frequencies. The set of new variables being much smaller
than the original set of spectral variables, the computation load is
drastically reduced; this renders the selection procedure feasible
evenwhen the spectra contain thousand or more spectral variables.
Due to the localization properties of the B-splines, the new
variables remains interpretable as they correspond to sub-ranges of
the original wavelength interval. The experiments conducted on
spectra obtained from fescue grass and from diesel fuel show that a
nonlinear prediction model built on the reduced set of variables
achieves similar performances as the PLSRmodel, although it uses
the information from far less variables. In addition to reduced
computation time and similar (sometimes better) performances,
the method always uses a limited range of spectral variables,
leading to an easy interpretation of the results.
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