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Abstract. The selection of features that are relevant for a prediction or
classification problem is an important problem in many domains involv-
ing high-dimensional data. Selecting features helps fighting the curse of
dimensionality, improving the performances of prediction or classification
methods, and interpreting the application. In a nonlinear context, the mu-
tual information is widely used as relevance criterion for features and sets
of features. Nevertheless, it suffers from at least three major limitations:
mutual information estimators depend on smoothing parameters, there is
no theoretically justified stopping criterion in the feature selection greedy
procedure, and the estimation itself suffers from the curse of dimension-
ality. This chapter shows how to deal with these problems. The two first
ones are addressed by using resampling techniques that provide a statis-
tical basis to select the estimator parameters and to stop the search pro-
cedure. The third one is addressed by modifying the mutual information
criterion into a measure of how features are complementary (and not only
informative) for the problem at hand.

1 Introduction

High-dimensional data are nowadays found in many applications areas: im-
age and signal processing, chemometrics, biological and medical data analysis,
and many others. The availability of low cost sensors and other ways to mea-
sure information, and the increased capacity and lower cost of storage equip-
ments, facilitate the simultaneous measurement of many features, the idea being
that adding features can only increase the information at disposal for further
analysis.

The problem is that high-dimensional data are in general more difficult
to analyse. Standard data analysis tools either fail when applied to high-
dimensional data, or provide meaningless results. Difficulties related to handling
high-dimensional data are usually gathered under the curse of dimensionality
terms, which gather many phenomena usually having counter-intuitive mathe-
matical or geometrical interpretation. The curse of dimensionality already con-
cerns simple phenomena, like colinearity. In many real-world high-dimensional
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problems, some features are highly correlated. But if the number of features
exceeds the number of measured data, even a simple linear model will lead to
an undetermined problem (more parameters to fit than equations). Other diffi-
culties related to the curse of dimensionality arise in more common situations,
when the dimension of the data space is high even if many data are available
for fitting or learning. For example, data analysis tools which use Euclidean dis-
tances between data or representatives, or any kind of Minkowski or fractional
distance (i.e. most tools) suffer from the fact that distances concentrate in high-
dimensional spaces (distances between two random close points and between two
random far ones tend to converge to the same value, in average).

Facing these difficulties, data analysis tools must address two ways to coun-
teract them. One is to develop tools that are able to model high-dimensional
data with a number of (effective) parameters which is lower than the dimension
of the space. As an example, Support-Vector Machines enter into this category.
The other way is to decrease in some way the dimension of the data space, with-
out significant loss of information. The two ways are complementary, as the first
one addresses the algorithms while the second preprocesses the data themselves.
Two possibilities also exist to reduce the dimensionality of the data space: fea-
tures (dimensions) can be selected, or combined. Feature combination means to
project data, either linearly (Principal Component Analysis, Linear Discriminant
Analysis, etc.) or nonlinearly. Selecting features, i.e. keeping some of the original
features as such, and discarding others, is a priori less powerful than projec-
tion (it is a particular case). However, it has a number of advantages, mainly
when interpretation is sought. Indeed after selection the resulting features are
among the original ones, which allows the data analyst to interact with the ap-
plication provider. For example, discarding features may help avoiding to collect
useless (possibly costly) features in a further measument campaign. Obtaining
relevances for the original features may also help the application specialist to
interpret the data analysis results, etc. Another reason to prefer selection to
projection in some circumstances, is when the dimension of the data is really
high, and the relations between features known or identified to be strongly non-
linear. In this case indeed linear projection tools cannot be used; and while
nonlinear dimensionality reduction is nowadays widely used for data visualiza-
tion, its use in quantitative data preprocessing remains limited because of the
lack of commonly accepted standard method, the need for expertise to use most
existing tools and the computational cost of some of the methods.

This chapter deals with feature selection, based on mutual information be-
tween features. The following of this chapter is organized as follows. Section 2
introduces the problem of feature selection and the main ingredients of a selec-
tion procedure. Section 3 details the Mutual Information relevance criterion, and
the difficulties related to its estimation. Section 4 shows how to solve these issues,
in particular how to choose the smoothing parameter in the Mutual Information
estimator, how to stop the greedy search procedure, and how to extend the mu-
tual information concept by using nearest neighbor ranks when the dimension
of the search space increases.
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2 The Two Ingredients of Feature Selection

Feature selection aims at reducing the dimensionality of data. It consists in
selecting relevant variables (or features) among the set of original ones. The
relevance has to be measured in an objective way, through an appropriate and
well-defined criterion. However, defining a criterion does not solve the feature
selection problem. As the number of initial features is usually large, it is compu-
tationally impossible to test all possible subsets of them, even if the criterion to
measure the relevance is simple to evaluate. In addition to the definition of the
criterion, there is thus a need to define a search procedure among all possible
subsets. The relevance criterion and the greedy search procedure are the two
basic ingredients of feature selection.

Note that in some situations, feature selection does not aim only at selecting
features among the original ones. In some cases indeed, potentially relevant fea-
tures are not known in advance, and must be extracted or created from the raw
data. Think for example of data being curves, as in spectroscopy, in hysteresis
curve analysis, or more generally in the processing of functions. In this case the
dimension of the data is infinite, and a first choice must consist in extracting
a finite number of original features. Curve sampling may be an answer to this
question, but other features, as integrals, area under curve, derivatives, etc. may
give appropriate information for the problem too. It may thus reveal interesting
to first extract a large number of features in a more or less blind way from the
original data, and then to use feature selection to select those that are most
relevant, in an objective way.

In addition to choosing a relevance criterion and a greedy procedure, a number
of other issues have to be addressed. First, one has to define on which features to
apply the criterion. For example, if the criterion is correlation, is it better to keep
features that are highly correlated to the output (and to drop the other ones), or to
drop features that are highly correlated between them (and to keep uncorrelated
ones)? Both ideas are reasonable, and will lead to different selections.

Another key issue is simply whether to use a criterion or not. If the goal
of feature selection is to use the reduced feature set as input to a prediction
or classification model, why not to use the model itself as a criterion? In other
words, why not fitting a model on each possible subset (resulting from the greedy
search), instead of using a criterion that will probably result in measuring rel-
evance in a different way as the model would do? Using the model is usually
referred to as a wrapper approach, while using an alternative criterion is a fil-
ter approach. In theory, there is nothing better than using the model itself,
as the final goal is model performances. However, the wrapper way may have
two drawbacks: first it could be computationally too intensive for example when
using nonlinear neural networks or machine learning tools that require tedious
learning. Secondly, when the stochastic nature of the tools makes that their re-
sults vary according to initial conditions or other parameters, the results may
not be unique, which results in a noisy estimation of the relevance and the need
for further simulations to reduce this noise. The main goal of criteria in filters
is then to facilitate the measure of feature relevance, rather than to provide a
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unique and unquestionable way of evaluation. This must be kept in mind when
designing both the relevance criterion and the greedy procedure: both will act as
compromises between adequateness (with the final goal of model performances)
and the computational complexity.

Most of the above issues are extensively discussed in the large scientific liter-
ature about feature selection. One issue which is much less discussed is how to
evaluate the criterion. An efficient criterion must measure any kind of relation
between features, not only linear relations. Such a nonlinear criterion is however
a (simplified) data model by itself, and requires to fix some design parameters.
How to fix these parameters is an important question too, as an inappropriate
choice may lead to wrong relevance estimations.

This chapter mainly deals with the last question, i.e. how to estimate in prac-
tice, and efficiently, the relevance criterion. Choices that are made concerning
the criterion itself and the greedy procedure are as follows.

As the relevance criterion must be able to evaluate any relation between fea-
tures, and not only linear relations, the correlation is not appropriate. A nonlin-
ear extension to correlation, borrowed from the information theory, is the mutual
information (MI). The mathematical definition of MI and its estimation will be
detailed in the next section.

Feature selection necessitates to select sets of features. This means that it
is the relevance of the sets that must be evaluated, rather than the relevance
of the features in the set. Indeed evaluating individually the relevance of single
features would result in similar relevances; if two highly correlated, but highly
relevant too, features are contained in the original set, they will then both be
selected, while selecting one would have been sufficient for the prediction or
classification model. Evaluating sets of features means in other words, to be able
to evaluate the relevance of a multi-dimensional variable (a vector), instead of a
scalar one only. Again MI is appropriate with this respect, as detailed in the next
section.

Finally, many greedy procedures are proposed in the literature. While sev-
eral variants exist, they can be roughly categorized in forward and backward
procedures; the former means that the set is built from scratch by adding rel-
evant features at each step, while the latter proceeds by using the whole set of
initial features and removing irrelevant ones. Both solutions have their respec-
tive advantages and drawbacks. A drawback of the forward procedure is that
the initial choices (when few features are concerned) influence the final choice,
and may reveal suboptimal. However, the forward procedure has an important
advantage: the maximum size of the vectors (feature sets) that have to be eval-
uated by the criterion is equal to the final set size. In the backward approach,
the maximum size is the one in the initial step, i.e. the size of the initial fea-
ture set. As it will be seen in the next section, the evaluation of the criterion
is also made more difficult because of the curse of dimensionality; working in
smaller space dimensions is thus preferred, what justifies the choice for a forward
approach.
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3 Feature Selection with Mutual Information

A prediction (or classification) model aims to reduce the uncertainty on the
output, the dependent variable. As mentioned in the previous section, a good
criterion to evaluate the relevance of a (set of) feature(s) is nothing else than a
simplified prediction model. A natural idea is then to measure the uncertainty
of the output, given the fact that the inputs (independent variables) are known.
The formalism below is inspired from [10].

3.1 Mutual Information Definition

A powerful formalization of the uncertainty of a random variable is Shannon’s
entropy. Let X and Y be two random variables; both may be multidimensional
(vectors). Let μX(x) and μY (y) the (marginal) probability density functions
(pdf) of X and Y , respectively, and μX,Y (x, y) the joint pdf of the (X,Y ) vari-
able. The entropies of X and of Y , which measures the uncertainty on these
variables, are defined respectively as

H(X) = −
∫
μX(x) logμX(x)dx, (1)

H(Y ) = −
∫
μY (y) logμY (y)dy. (2)

If Y depends on X , the uncertainty on Y is reduced when X is known. This is
formalized through the concept of conditional entropy:

H(Y |X) = −
∫
μX(x)

∫
μY (y|X = x) log μY (y|X = x)dydx. (3)

The Mutual Information (MI) then measures the reduction in the uncertainty
on Y resulting from the knowledge of X :

MI(X,Y ) = H(Y ) −H(Y |X). (4)

It can easily be verified that the MI is symmetric:

MI(X,Y ) = MI(Y,X) = H(Y ) −H(Y |X) = H(X) −H(X |Y ); (5)

it can be computed from the entropies:

MI(X,Y ) = H(X) +H(Y ) −H(X,Y ), (6)

and is equal to the Kullback-Leibler divergence between the joint pdf and the
product of the marginal pdfs:

I(X,Y ) =
∫ ∫

μX,Y (x, y) log
μX,Y (x, y)
μX(x)μY (y)

. (7)

In theory as the pdfs μX(x) and μY (y) may be computed from the joint one
μX,Y (x, y) (by integrating over the second variable), one only needs μX,Y (x, y)
in order to compute the MI between X and Y .
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3.2 Mutual Information Estimation

According to the above equations, the estimation of the MI between X and Y
may be carried out in a number of ways. For instance, equation (6) may be used
after the entropies of X , Y and X,Y are estimated, or the Kullback-Leibler
divergence between the pdfs may be used as in equation (7).

The latter solution necessitates to estimate the pdfs from the know sample
(the measured data). Many methods exist to estimate pdfs, including histograms
and kernel-based approximations (Parzen windows), see e.g. [11]. However, these
approaches are inherently restricted to low-dimensional variables. If the dimen-
sion of X exceeds let’s say three, histograms and kernel-based pdf estimation
requires a prohibitive number of data; this is a direct consequence of the curse
of dimensionality and the so-called empty space phenomenon. However, as men-
tioned in the previous section, the MI will have to be estimated on sets of fea-
tures (of increasing dimension in the case of a forward procedure). Histograms
and kernel-based approximators become rapidly inappropriate for this reason.

Although not all problems related to the curse of dimensionality are solved in
this way, it appears that directly estimating the entropies is a better solution, at
least if an efficient estimator is used. Intuitively, the uncertainty on a variable
is high when the distribution is flat and small when it has high peaks. A distri-
bution with peaks means that neighbors (or successive values in the case of a
scalar variable) are very close, while in a flat distribution the distance between
a point and its neighbors is larger. Of course this intuitive concept only applies
if there is a finite number of samples; this is precisely the situation where it
is needed to estimate the entropy rather than using its integral definition. This
idea is formalized in the Kozachenko-Leonenko estimator for differential Shannon
entropy [7]:

Ĥ(X) = −ψ(K) + ψ(N) + log cD +
D

N

N∑
n=1

log ε(n,K) (8)

where N is the number of samples xn in the data set, D is the dimensionality
of X , cD is the volume of a unitary ball in a D-dimensional space, and ε(n,K)
is twice the distance from xn to its K-th neighbour. K is a parameter of the
estimator, and ψ is the digamma function given by

ψ(t) =
Γ ′(t)
Γ (t)

=
d

dt
lnΓ (t), (9)

with

Γ (t) =
∫ ∞

0

ut−1e−udu. (10)

The same intuitive idea ofK-th nearest neighbor is at the basis of an estimator of
the MI between X and Y . The MI is aimed to measure the loss of uncertainty on
Y when X is known. In other words, this means to answer the question whether
some (approximate) knowledge on the value of X may help identifying what can
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be the possible values for Y . This is only feasible if there exists a certain notion
of continuity or smoothness when looking to Y with respect to X . Therefore,
close values in X should result in corresponding close values in Y . This is again
a matter of K-nearest neighbors: for a specific data point, if its neighbors in the
X and Y spaces correspond to the same data, then knowing X helps in knowing
Y , which reflects a high MI.

More formally, let us define the joint variable Z = (X,Y ), and zn =
(xn, yn), 1 ≤ n ≤ N the available data. Next, we define the norm in the Z
space as the maximum norm between the X and Y components; if zn = (xn, yn)
and zm = (xm, ym), then

‖zn − zm‖∞ = max(‖xn − xm‖ , ‖yn − ym‖), (11)

where the norms in the X and Y spaces are the natural ones. Then zK(n) is
defined as the K-nearest neighbor of zn (measured in the Z space). zK(n) can
be decomposed in its x and y parts as zK(n) =

(
xK(n), yK(n)

)
; note however

that xK(n) and yK(n) are not (necessarily) the K-nearest neighbors of xn and
yn respectively, with zn = (xn, yn).

Finally, we denote
εn =

∥∥zn − zK(n)

∥∥
∞ (12)

the distance between zn and its K-nearest neighbor. We can now count the
number τx(n) of points in X whose distance from xn is strictly less than εn, and
similarly the number τy(n) of points in Y whose distance from yn is strictly less
than εn. It can then be shown [8] that MI(X,Y ) can be estimated as:

M̂I(X,Y ) = ψ(K) + ψ(N) − 1
N

N∑
n=1

[ψ(τx(n)) + ψ(τy(n))]. (13)

As with the Kozachenko-Leonenko estimator for differential entropy, K is a
parameter of the algorithm and must be set with care to obtain an acceptable
MI estimation. With a small value of K, the estimator has a small bias but a
high variance, while a large value of K leads to a small variance but a high bias.

In summary, while the estimator (13) may be efficiently used to measure the
mutual information between X and Y (therefore the relevance of X to predict
Y ), it still suffers from two limitations. Firstly, there is a parameter (K) in
the estimator that must be chosen with care. Secondly, it is anticipated that
the accuracy of the estimator will decrease when the dimension of the X space
increases, i.e. along the steps of the forward procedure. These two limitations
will be addressed further in this contribution.

3.3 Greedy Selection Procedure

Suppose that M features are initially available. As already mentioned in Section
2, even if the relevance criterion was well-defined and easy to estimate, it is usu-
ally not possible to test all 2M−1 non-empty subsets of features in order to select
the best one. There is thus a need for a greedy procedure to reduce the search
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space, the aim being to have a good compromise between the computation time
(or the number of tested subsets) and the potential usefulness of the considered
subsets. In addition, the last limitation mentioned in the previous subsection
gives the preference to greedy search avoiding subsets with a too large number
of features.

With these goals in mind, it is suggested to use a simple forward procedure.
The use of a backward procedure (starting from the whole set of M features) is
not considered to avoid having to evaluate mutual information onM -dimensional
vectors.

The forward search consists first in selecting the feature that maximizes the
mutual information with the output Y :

Xs1 = arg max
Xj , 1≤j≤M

M̂I (Xj, Y ) . (14)

Then in step t (t ≥ 2), the t-th features is selected as

Xst = arg max
Xj , 1≤j≤M, j /∈{s1,s2,...,st−1}

M̂I
({
Xs1 , Xs2 , . . . , Xst−1 , Xj

}
, Y

)
. (15)

Selecting features incrementally as defined by equations (14) and (15) makes
the assumption that once a feature is selected, it should remain in the final set.
Obviously, this can lead to a suboptimal solution: it is not because the first
feature (for example) is selected according to equation (14) that the optimal
subset necessarily contains this feature. In other words, the selection process
may be stuck in a local minimum. One way to decrease the probability of being
stuck in a local minimum is to consider the removing of a single feature at each
step of the algorithm. Indeed, there is no reason that a selected feature (for
example the first one according to equation (14)) belongs to the optimal subset.
Giving the possibility to remove a feature that has become useless after some
step of the procedure is thus advantageous, while the increased computational
cost is low. More formally, the feature defined as

Xsd
= arg max

Xj , 1≤j≤t−1
M̂I

({
Xs1 , Xs2 , . . . , Xsj−1 , Xsj+1 , . . . , Xst

}
, Y

)
(16)

is removed if

M̂I
({
Xs1 , . . . , Xsd−1 , Xsd+1 , . . . , Xst

}
, Y

)
> M̂I ({Xs1 , . . . , Xst} , Y ) . (17)

Of course, the idea or removing features if the removal leads to an increased MI
may be extended to several features at each step. However, this is nothing else
than extending the search space of subsets. The forward-backward procedure
consisting in considering the removal of only one feature at each step is thus a
good compromise between expected performances and computational cost.

Though the above suggestion seems to be appealing, and is used in many state-
of-the-art works, it is theoretically not sound. Indeed, it can easily be shown that
the mutual information can only increase if a supplementary variable is added
to a set [2]. The fact that equation (17) may hold in practice is only due to
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the fact that equations (16) and (17) involve estimations of the MI, and not the
theoretical values. The question is then whether it is legitimate to think that
condition (17) will effectively lead to the removal of unnecessary features, or
if this condition will be fulfilled by chance, without a sound link to the non-
relevance of the removed features.

Even if the backward procedure is not used, the same problem appears. In
theory indeed, if equation (15) is applied repeatedly with the true MI instead of
the estimated one, the MI will increase at each step. There is thus no stopping
criterion, and without additional constraint the procedure will result in the full
set of M initial features! The traditional way is then to stop when the estima-
tion of the MI begins to decrease. This leads to the same question whether the
decrease of the estimated value is only due to a bias or noise in the estimator,
or has a sound link to the non or low relevance of a feature.

3.4 The Problems to Solve

To conclude this section, coupling the use of an estimator of the mutual informa-
tion, even if this estimator is efficient, to a greedy procedure raises several ques-
tions and problems. First, the estimator includes (as any estimator) a smoothing
parameter that has to be set with care. Secondly, the dimension of the vectors
from which a MI has to be estimated may have an influence on the quality of
the estimation. Finally, the greedy procedure (forward, or forward-backward)
needs a stopping criterion. In the following section, we propose to solve all
these issues together by the adequate use of resampling methods. We also in-
troduce an improvement to the concept of mutual information, when used to
measure the relevance of a (set of) features.

4 Improving the Feature Selection by MI

In this section, we first address the problem of setting the smoothing parameter
in the MI estimator, by using resampling methods. Secondly, we show how using
the same resampling method provides a natural and sound stopping criterion for
the greedy procedure. Finally, we show how to improve the concept of MI, by
introducing a conditional redundancy concept.

4.1 Parameter Setting in the MI Estimation

The estimator defined by equation (13) faces a classical bias/variance dilemma.
While the estimator is known to be consistent (see [6]), it is only asymptotically
unbiased and can therefore be biased on a finite sample. Moreover, as observed in
[8], the number of neighbors K acts as a smoothing parameter for the estimator:
a small value of K leads to a large variance and a small bias, while a large value
of K has the opposite effects (large bias and small variance).

Choosing K consists therefore in balancing the two sources of inaccuracy in
the estimator. Both problems are addressed by resampling techniques. A cross-
validation approach is used to evaluate the variance of the estimator while a
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permutation method provide some baseline value of the mutual information that
can reduce the influence of the bias. Then K is chosen so as to maximize the
significance of the high MI values produced by the estimator.

The first step of this solution consists in evaluating the variance of the estima-
tor. This is done by producing “new” datasets drawn from the original dataset
Ω = {(xn, yn)}, 1 ≤ n ≤ N . As the chosen estimator strongly overestimates the
mutual information when submitted replicated observations, the subsets cannot
be obtained via random sampling with replacement (i.e. bootstrap samples), but
are on the contrary strict subsets of Ω. We use a cross-validation strategy: Ω
is split randomly into S non-overlapping subsets U1, . . . , US of approximately
equal sizes that form a partition of Ω. Then S subsets of Ω are produced by
removing a Us from Ω, i.e. Ωs = Ω \Us. Finally, the MI estimator is applied on
each Ωs for the chosen variables and a range of values to explore for K. For a
fixed value of K the S obtained values M̂Is(X,Y ) (1 ≤ s ≤ S) provide a way
to estimate the variance of the estimator.

The bias problem is addressed in a similar way by providing some refer-
ence value for the MI. Indeed if X and Y are independent variables, then
MI(X,Y ) = 0. Because of the bias (and variance) of the estimator, the esti-
mated value M̂I(X,Y ) has no reason to be equal to zero (it can even be negative,
whereas the mutual information is theoretically bounded below by 0). However
if some variables X and Y are known to be independent, then the mean of
M̂I(X,Y ) evaluated via a cross-validation approach provides an estimate of the
bias of the estimator. In practice, given two variables X and Y known through
observations Ω = {(xn, yn)}, 1 ≤ n ≤ N , independence is obtained by randomly
permuting the yn without changing the xn. Combined with the cross-validation
strategy proposed above, this technique leads to an estimation of the bias of the
estimator. Of course, there is no particular reason for the bias to be uniform:
it might depend on the actual value of MI(X,Y ). However, a reference value
if needed to obtain an estimate and the independent case is the only one for
which the true value of the mutual information is known. The same X and Y
as those used to calculate M̂Is(X,Y ) should be of course be used, in order to
remove from the bias estimation a possible dependence on the distributions (or
entropies) of X and Y ; just permuting the same variables helps reducing the
differences between the dependent case and the reference independent one.

The cross-validation method coupled with permutation provides two (empiri-
cal) distributions respectively for M̂IK(X,Y ) and M̂IK(X,π(Y )), where π de-
notes the permutation operation and where theK subscript is used to emphasises
the dependency on K. A good choice of K then corresponds to a situation where
the (empirical) variances of M̂IK(X,Y ) and M̂IK(X,π(Y )) and the (empirical)
mean of M̂IK(X,π(Y )) are small. Another way to formulate a similar constraint
is to ask for M̂IK(X,Y ) to be significantly different from M̂IK(X,π(Y )) when
X and Y are known to exhibit some dependency. The differences between the
two distributions can be measured for instance via a measure inspired from Stu-
dent’s t-test. Let us denote μK (resp. μK,π) the empirical mean of M̂IK(X,Y )
(resp. M̂IK(X,π(Y ))) and σK (resp. σK,π) its empirical standard deviation.
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Then the quantity

tK =
μK − μK,π√
σ2

K + σ2
K,π

(18)

measures the significance of the differences between the two (empirical) distri-
butions (if the distributions were Gaussian, a Student’s t-test of difference in
the means of the distributions could be conducted). Then one chooses the value
of K that maximizes the differences between the distributions, i.e. the one that
maximizes tK .

The pseudo-code for the choice ofK in the MI estimator is given in Table 1. In
practice, the algorithm will be applied to each real valued variable that constitute
the X vector and the optimization of K will be done along all the obtained tK
values. As tK will be larger for relevant variables than for non-relevant ones,
this allows to discard automatically the influence of non-relevant variables in
the choice of K.

Table 1. Pseudo-code for the choice of K in the mutual information estimator

Inputs Ω = {(xn, yn)}, 1 ≤ n ≤ N the dataset

Kmin and Kmax the range where to look for the optimal K
S the cross-validation parameter

Output the optimal value of K

Code Draw a random partition of Ω into S subsets U1, . . . , US

with roughly equal sizes

Draw a random permutation π of {1, . . . , N}
For K ∈ {Kmin, . . . , Kmax}

For s ∈ {1, . . . , S}
compute mi[s] the estimation of the mutual information

MI(X,Y ) based on Ωs = Ω \ Us

compute miπ[s] the estimation of the mutual information

MI(X,π(Y )) based on Ωs = Ω \ Us

with the permutation π applied to the yi

EndFor

Compute μK the mean of mi[s] and σK its standard deviation

Compute μK,π the mean of miπ[s] and σK,π its standard deviation

Compute tK =
μK−μK,π√
σ2

K
+σ2

K,π

EndFor

Return the smallest K that minimises tK on {Kmin, . . . , Kmax}

To test the proposed methodology, a dataset is generated as follows. Ten
features Xi, 1 ≤ i ≤ 10 are generated from a uniform distribution in [0, 1]. Then,
Y is built according to

Y = 10 sin(X1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + ε, (19)
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Fig. 1. Values of tK for MI(X4, Y ) (see text for details)

where ε is a Gaussian noise with zero mean and unit variance. Note that variables
X6 to X10 do not enter into equation (19); they are independent from the output
Y . A sample size of 100 observations is used and the CV parameter is S = 20.
When evaluating the MI between Y and a relevant feature (for example X4), a
tK value is obtained for each value of K, as shown on Figure 1. Those values
summarize the differences between the empirical distributions of M̂IK(X4, Y )
and of M̂IK(X4, π(Y )) (an illustration of the behaviour of those distributions is
given in Figure 2). The largest tK value corresponds to the smoothing parameter
K that best separates the distributions in the relevant and permuted cases (in
this example the optimal K is 10).

4.2 Stopping Criterion

As mentioned above, stopping the greedy forward or forward-backward proce-
dure when the estimated MI decreases is not sound or theoretically justified. A
better idea is to measure whether the addition of a feature to the already selected
set increases significantly the MI, compared to a situation where a non-relevant
feature is added, again in the same settings i.e. keeping the same distribution
for the potentially relevant variable and the non-relevant one.

This problem is similar to the previous one. Given a subset of already selected
variables S, a new variable Xst is considered significant if the value of MI(S ∪
Xst, Y ) significantly differs from the values generated by MI(S ∪ π(Xst), Y ),
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Fig. 2. Boxplots for the distributions of M̂IK(X4, Y ) (top) and of M̂IK(X4, π(Y ))
(bottom) as a function of K

where π is a random permutation. In practice, one generates several random
permutation and counts the number of times that MI(S ∪ π(Xst), Y ) is higher
than MI(S ∪Xst, Y ). This gives an estimate of the p-value of MI(S ∪Xst, Y )
under the null hypothesis that Xst is independent from (S, Y ). A small value
means that the null hypothesis should be rejected and therefore that Xst brings
significant new information about Y . The pseudo-code for the proposed algo-
rithm is given in Table 2.

It should be noted that the single estimation of MI(S ∪ Xst, Y ) could be
replaced by a cross-validation based estimate of the distribution of this value.
The same technique should then be used in the estimation of the distribution of
MI(S ∪ π(Xst), Y ).

To illustrate this method, 100 datasets are randomly generated according to
equation (19). For each dataset, the optimal value of K for the MI estimator
is selected according to the method proposed in Section 4.1. Then a forward
procedure is applied and stopped according to the method summarized in Table 2
(with a significance threshold of 0.05 for the p-value). As it can be seen from
Table 3, in most cases 4 or 5 relevant features are selected by the procedure (5 is
the expected number, as X6 to X10 are not linked with Y ). Without resampling,
by stopping the forward procedure at the maximum of mutual information, in
most cases only 2 (45 cases) and 3 (33 cases) features are selected. This is a
consequence of the fact that when looking only to the value of the estimated
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Table 2. Pseudo-code for the choice of the stopping criterion for the greedy procedure

Inputs Ω = {(xn, yn)}, 1 ≤ n ≤ N the dataset

P the number of permutations to compute

the subset S of currently selected variables

the candidate variable Xst

Output a p-value for the hypothesis that the variable is useless

Code Compute ref the value of MI(S ∪ Xst, Y )
Initialise out to 0

For p ∈ {1, . . . , P}
Draw a random permutation πp of {1, . . . , N}
If MI(S ∪ πp(Xst), Y ) ≥ ref then

increase out by 1
EndIf

EndFor

Return out/P

Table 3. Number of selected features

Number of features 1 2 3 4 5 6
Percentage 0 1 12 52 29 6

MI at each step, the estimation is made in spaces of increasing dimension (the
dimension of X is incremented at each step). It appears that in average the
estimated MI decreases with the dimension, making irrelevant the comparison
of MI estimations with feature vectors of different dimensions.

More experiments on the use of resampling to selectK and to stop the forward
procedure may be found in [5].

4.3 Clustering by Rank Correlation

In some problems and applications, the number of features that are relevant
for the prediction of variable Y may be too large to afford the above described
procedures. Indeed, as detailed in the previous sections, the estimator of mutual
information will fail when used on too high-dimensional variables, despite all
precautions that are taken (using an efficient estimator, avoiding a backward
procedure, using estimator results on a comparative basis rather than using the
rough values, etc.).

In this case, another promising direction is to cluster features instead of se-
lecting them [9,3]. Feature clustering consists in grouping features in natural
clusters, according to a similarity measure: features that are similar should be
grouped in a single cluster, in order to elect a single representative from the
latter. This is nothing else than applying to features the traditional notion of
clustering usually applied to objects. For example, all hierarchical clustering
methods can be used, the only specific requirement being to define a measure
of similarity between features. Once the measure of similarity is defined, the
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clustering consists in selecting the two most similar features and replacing them
by a representative. Next, the procedure is repeated on the remaining initial
features and representatives.

The advantage of feature clustering with respect to the procedure based on the
mutual information between a group of features and the output, as described
above, is that the similarity measure is only used on two features (or repre-
sentatives) at each iteration. Therefore the problems related to the increasing
dimensionality of the feature sets is completely avoided. The reason behind this
advantage is that in the first case the similarity is measured between a set of
features and the output, while in the clustering the similarity is measured be-
tween features (or their representatives) only. Obviously, the drawback is that
the variable Y to predict is no more taken into account.

In order to remedy to this last problem, a new conditional measure of sim-
ilarity between features is introduced. Simple correlation or mutual informa-
tion between features could be used, but will not take the information from
Y into account. However, based on the idea of Kraskov’s estimator of Mutual
Information, one can define a similarity measure that takes Y into account, as
follows [4].

Let X1 and X2 the two features whose similarity should be measured. The
idea is to measure if X1 and X2 contribute similarly, or not, to the prediction of
Y . Let Ω = zn = (x1n, x2n, yn), 1 ≤ n ≤ N the sample set; other features than
X1 and X2 are discarded from the notation for simplicity. For each element n, we
search for the nearest neighbor according to the Euclidean distance in the joint
(X1, Y ) space. Let we denote this element by its index m. Then, we count the
number c1n of elements that are closer from element n than element m, taking
only into account the distance in the X1 space. Figure 3 shows such elements.
c1n is a measure of the number of local false neighbors, i.e. elements that are
neighbors according to X1 but not according to (X1, Y ). If this number if high, it
means that element n can be considered as a local outlier in the relation between
X1 and Y .

The process is repeated for all elements n in the sample set, and resulting c1n

values are concatenated in a N -dimensional vector C1. Next, the same procedure
is applied with feature X2 instead of X1; resulting c2n values are concatenated
in vector C2.

If featuresX1 andX2 carry the same information to predict Y , vectors C1 and
C2 will be similar. On the contrary, if they carry different yet complementary
information, vectors C1 and C2 will be quite different. Complementary infor-
mation can be for example that X1 is useful to predict Y in a part of its range,
while X2 plays a similar role in another part of the range. As the c1n and c2n

vectors contain local information in the (X1, Y ) (respectively (X2, Y )) relation,
vectors C1 and C2 will be quite different in this case. For these reasons, the
correlation between C1 and C2 is a good indicator of the similarity between X1

and X2 when these features are used to predict Y . This is the similarity measure
that is used in the hierarchical feature clustering algorithm.



Advances in Feature Selection with Mutual Information 67

Fig. 3. Identification of neighbors in X1 that are not neighbors in (X1, Y )

In order to illustrate this approach, it is applied to two feature clustering
problems where the number of initial features is large. Analysis of (infrared)
spectra is a typical example of such problem. The first dataset, Wine citewine,
consists in 124 near-infrared spectra of wine samples, for which the concentration
in alcohol has to be predicted from the spectra. Three outliers are removed, and
30 spectra are kept aside for test. The second dataset is the standard Tecator
benchmark [1]; it consists of 215 near-infrared spectra of meat samples, 150 of
them being used for learning and 65 for test. The prediction model used for the
experiments is Partial Least Squares Regression (PLSR); the number of compo-
nents in the PLSR model is set by 4-fold cross-validation on the training set.
Three experiments are conducted on each set: a PLSR model on all features, a
PLSR model on traditional clusters built without using Y , and a PLSR model
built on clusters defined as above. The results are shown in Table 4; the Nor-
malized Mean Square Error (NMSE) on the test set is given, together with the
number of features or clusters.

In both cases, the clustering using the proposed method (last column) per-
forms better than a classical feature clustering, or no clustering at all. In the
Tecator experiment, the advantage in terms of performances with respect to the
non-supervised clustering is not significant; however, in this case, the number
of resulting clusters is much smaller in the supervised case, which reaches the
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Table 4. Results of the feature clustering on two spectra datasets

without clustering clustering without Y clustering with Y

Wine NMSE = 0.00578 NMSE = 0.0111 NMSE = 0.00546
256 features 19 clusters 33 clusters

Tecator NMSE = 0.02658 NMSE = 0.02574 NMSE = 0.02550
100 features 17 clusters 8 clusters

fundamental goal of feature selection, i.e. the ability to build simple, inter-
pretable models.

5 Conclusion

Feature selection in supervised regression problems is a fundamental preprocess-
ing step. Feature selection has two goals. First, similarly to other dimension
reduction techniques, it is aimed to reduce the dimensionality of the problem
without significant loss of information, therefore acting against the curse of di-
mensionality. Secondly, contrarily to other approaches where new variables are
built from the original features, feature selection helps to interpret the resulting
prediction model, by providing a relevance measure associated to each original
feature.

Mutual Information (MI), a concept borrowed from information theory, can
be used for feature selection. The MI criterion is used to test the relevance
of subsets of features with respect to the prediction task, in a greedy proce-
dure. However, in practise, the MI theoretical concept needs to be estimated.
Even if efficient estimators exist, they still suffer from two drawbacks: their per-
formances decrease with the dimension of the feature subsets, and they need
to set a smoothing parameter (for example K in a K-nearest neighbors based
estimator).

In addition, when embedded in a forward selection procedure, the MI does
not provide any stopping criterion, at least in theory. Standard practice to stop
the selection when the estimation of the MI begins to decrease exploits in fact a
limitation of the estimator itself, without any guarantee that the algorithm will
indeed stop when no further feature has to be added.

This chapter shows how to cope with these three limitations. It shows how
using resampling and permutations provides first a way to compare MI values on
a sound basis, and secondly a stopping criterion in the forward selection process.

In addition, when the number of relevant features is high, there is a need to
avoid using MI between feature sets and the output, because of the too high
dimension of the feature sets. It is also shown how to cluster features by a
similarity criterion used on single features. The proposed criterion measures
whether two features contribute identically or in a complementary way to the
prediction of Y ; the measure is thus supervised by the prediction task.

These methodological proposals are shown to improve the results of a feature
selection process using similarity measures based on Mutual Information.
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Agro-industrie et Méthodes statistiques, pp. 55–61. Louvain-la-Neuve, Belgium
(2008)

5. François, D., Rossi, F., Wertz, V., Verleysen, M.: Resampling methods for
parameter-free and robust feature selection with mutual information. Neurocom-
puting 70(7-9), 1265–1275 (2007)

6. Goria, M.N., Leonenko, N.N., Mergel, V.V., Inverardi, P.L.N.: A new class of ran-
dom vector entropy estimators and its application in testing statistical hypotheses.
Journal of Nonparametric Statistics 17(3), 277–297 (2005)

7. Kozachenko, L.F., Leonenko, N.N.: Sample estimate of entropy of a random vector.
Probl. Inf. Transm. 23, 95–101 (1987)
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