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Abstract
A functional method for time series forecasting is presented. Based on the splitting of
the past dynamics into clusters, local models are built to capture the possible evolution
of the series given the last known values. A probabilistic model is used to combine the
local predictions. The method can be applied to any time series forecasting problem, but is
particularly suited to data showing nonlinear dependencies, cluster e�ects, and observed
at irregularly and randomly spaced times as �nancial series of "tick data" do. The method
is applied to the forecasting of �nancial time series of �tick data� of IBM asset.
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1 Introduction
The analysis of �nancial time series is of primary importance in the economical world.
This paper deals with a data-driven empirical analysis of �nancial time series; the goal is
to obtain insights into the dynamic of the series and out-of-sample forecasting.
Forecasting future returns on assets is of obvious interest in empirical �nance. If one
were able to forecast tomorrow's return on an asset with some degree of precision, one
could use this information in an investment today. Unfortunately, we are seldom able to
generate a very accurate prediction for asset returns.
Financial time series display typical nonlinear characteristics : it exists clusters within
which returns and volatility display speci�c dynamic behavior. For this reason, we will
consider here nonlinear forecasting models, based on local analysis into clusters. Although
�nancial theory does not provide many motivations for nonlinear models, analyzing data
by nonlinear tools seems to be appropriate, and is at least as much informative as an
analysis by more restrictive linear methods.
Time series of asset returns can be characterized as serial dependent. This is revealed by
the presence of positive autocorrelation in squared returns, and sometimes in the returns
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too. The increased importance played by risk and uncertainty considerations in modern
economic theory, has necessitated the development of new econometric time series tech-
niques that allow for modelling of time varying means, variances and covariances. Given
the apparent lack of any structural dynamic economic theory explaining the variation
in the second moment, econometricians have thus extended traditional time series tools
such as AutoRegressive Moving Average (ARMA) models (Box and Jenkins 1970) for
the conditional means and equivalent models for the conditional variance. Indeed, the
dynamics observed in the dispersion is clearly the dominating feature in the data. The
most widespread modelling approach to capture these properties is to specify a dynamic
model for the conditional mean and the conditional variance, such as an ARMA-GARCH
model or one of its various extensions (Engle 1982), (Hamilton 1994).
The Gaussian random walk paradigm - under the form of the di�usion geometric Wiener
process - is the core of modelling of �nancial time series. Its robustness mostly su�ces to
keep it as the best foundation for any development in �nancial modelling, in addition to
the fact that, on the long run, and with enough spaced out data, it is almost veri�ed by
the facts. Failures in its application are however well admitted on the (very) short term
(market microstructure) (Fama 1991). We claim that, to some extent, such failures are
actually caused by the uniqueness of the modelling process.
The �rst breach in such unique process has appeared with two-regime or switching pro-
cesses (Diebold 1994), which recognize that a return process could be originated by two
di�erent stochastic di�erential equations. But in such case, the switch is governed by an
exogenous cause (for example in the case of exchange rates, the occurrence of a central
bank decision to modify its leading interest rate or to organize a huge buying or selling
of its currency through major banks) .
Market practitioners, however, have always observed that �nancial markets can follow
di�erent behaviors over time, such as overreaction, mean reversion, etc, which look like
succeeding each other with the passing time. Such observations would justify a rather
fundamental divergence from the classic modelling foundations. That is, �nancial mar-
kets should not be modelled by a single process, but rather by a succession of di�erent
processes, even in absence of the exogenous causes retained by existing switching process.
Such a multiple switching process should imply, �rst, the determination of a limited num-
ber of competitive sub-process, and secondly, the identi�cation of the factor(s) causing the
switch from one to another sub-processes. The resulting model should not be Markovien,
and, without doubt, would be hard to determine. The aim of this paper is, as a �rst step,
to at least empirically verify, with the help of functional clustering and neural networks,
that a multiple switching process leads to better short term forecasting.
In this paper we will present a forecasting method based on an empirical functional anal-
ysis of the past of the series. An originality of this method is that it does not make the
assumption that a single model is able to capture the dynamics of the whole series. On
the contrary, it splits the past of the series into clusters, and generates a speci�c local
neural model for each of them. The local models are then combined in a probabilistic way,
according to the distribution of the series in the past. This forecasting method can be
applied to any time series forecasting problem, but is particularly suited for data showing
nonlinear dependencies, cluster e�ects and observed at irregularly and randomly spaced
times like �nancial time series of �tick data� do. One way to overcome the irregular and
random sampling of "tick-data" is to resample them at low frequency, as it is done with
"Intraday". However, even with optimal resampling using say �ve minute returns when
transactions are recorded every second, a vast amount of data is discarded, in contradic-
tion to basic statistical principles. Thus modelling the noise and using all the data is a
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better solution, even if one misspeci�es the noise distribution (Aït-Sahalia 2003).
In the following of this paper, we will �rst describe how Functional Analysis can be ap-
plied to time series data (section 2), and brie�y introduce the Radial-Basis Functions
Networks that will be used as nonlinear models (section 3). Then, we will describe the
forecasting method itself (section 4), and illustrate its results on the IBM series of "tick
data" (section 5).

2 Functional Modelling and Clustering
Cluster analysis consists in identifying groups in data; it is the dual form of discriminant
analysis but in cluster analysis the group labels are not known a priori. We assume that
the observations [y1, · · · ,yN ] are generated according to a mixture distribution with G
components. Let fk(y|θk) be the density corresponding to cluster k, with parameters
θk, and let 1{k}(i) be the cluster membership (indicator function of cluster k) for the
observation i where 1{k}(i) = 1 if yi is a member of cluster k and 0 otherwise. The
indicators are unknown and 1{k}(i) is multinomial with parameters [π1, · · · , πG] and πk is
the probability that an observation belongs to cluster k. We can estimate the parameters
by maximizing the likelihood

L(θ1, · · · , θG; π1, · · · , πG|y1, · · · ,yN) =
N∏

i=1

G∑

k=1

πkfk(yi|θk). (1)

The maximum likelihood corresponds to the most probable model, given the observations
y1, · · · ,yN . Such model can be used in �nite dimensional problems, but it is not appro-
priated to in�nite dimensional data such as curves. We could run around by discretizing
the time interval, but generally the resulting data vectors are highly correlated and high-
dimensional, and by resampling at low frequency we loose much information. Another
approach is to projet each curve onto a �nite-dimensional basis φ(x), and �nd the best
projection of each curve onto this basis. The resulting basis coe�cients can than be used
as a �nite-dimensional representation making it possible to use classical clustering meth-
ods on the basis coe�cients. These approches can work well when every curve has been
observed over the same �ne grid of points, but they break down if the individual curves
are sparsely sampled. In this case, we convert the original in�nite dimensional problem
into a �nite dimensional one using basic functions and we use a random e�ects model for
the coe�cients (Rice 2001).

2.1 Modelling functional data
Let hi, Yi and εi be the vectors of the true value, observed values and measurement
errors for the curve i, at times (ti1, · · · , tini

). Remember that the curves are irregularly
and di�erently sampled, so that the number of observation in curve i depends on i, it is
noted ni. Then

Yi = hi + εi, for i = 1, · · · , N, (2)

where N is the number of curves. The measurement errors are assumed to have zero
mean and to be uncorrelated with each other and with hi. We chose natural cubic
splines as basic functions because they have desirable mathematical properties, are easy
to implement and require a relative minimal number of parametric assumptions (deBoor
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1978).
The functional clustering model can be written as

Yi = Si(m + Aczi
+ di) + εi, for i = 1, · · · , N, (3)

where
• εi ∼ N(0, R),

• di ∼ N(0, Q),

• R = σ2I,

• Q is the same for all clusters,

• Si = (si(ti1), · · · , si(tini
))T is the spline basis matrix for curve i,

• m is a vector of dimension [q],

• ck is a vector of dimension [h],

• A is a matrix [q, h], with h ≤ min(q, G− 1),

• G is the number of clusters,

• zi denotes the unknown cluster membership vector for curve i, with zik = 1 if curve
i is a member of cluster k and 0 otherwise,

• s(t)Tm : modelling of the mean curve,

• s(t)TAck : variation of the centroid with respect to the mean curve,

• s(t)Tdi : variation of the curve with respect to the centroid of its cluster,

• s(t) is a spline basis vector of dimension [q]. Let us for example choose a cubic power
spline with 3 nodes; we then have s(t) =

[
s1(t), · · · , s5(t)

]T , with s1(t) = 1, s2(t) =
t, s3(t) = t2, s4(t) = t3, s5(t) = (t− τ)3

+, where τ is the location of the internal node.

2.2 The �tting algorithm
We need to identify the parameters m , A , ck , Q , σ2 et πk by maximisation of the
likelihood. The likelihood �tting procedure treats the unknown cluster membership zi as
missing data and uses the EM algorithm (Dempster 1977). Note that since the zi and the
di are assumed independent one from another, the complete data distribution factors as

f(Y, zi, d) = f(Y|zi, d)f(zi)f(d). (4)

Given that the zi are multinomial with parameters πk, the di are N(0,Q) and the Yi are
conditional N [Si(m + Ack + di), σ

2I] the complete data likelihood is

L(πk,m,A, ck,Q, σ2|Yi, zi,di) =
N∏

i=1

(2π)−
ni+q

2 |Q|− 1
2 exp

(− 1

2
dT

i Q−1di

) ∗

G∑

k=1

{
πk exp(−ni

2
log σ2) exp

(− 1

2σ2

∥∥Yi − Si(m + Ack + di)
∥∥2)}zik

.

(5)
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The EM algorithm consists of iteratively maximizing the expected values of (5) given
Yi and the current parameters estimates. Since all three parts of the complete data log
likelihood of (5) involve separate parameters they can be maximized independently of
each other.

2.3 E-step
The E-step consists of predicting d̂i = E

{
di|Yi,m,A, c,Q, σ2, zi

}
. The result is given

by

d̂i =
(
ST

i Si + σ2Q−1
)−1

ST
i

(
Yi − Sim− SiAck

)
. (6)

2.4 M-step
The M-step maximizes Q = E{l(πk,m,A, ck,Q, σ2|Yi, zi,di)}.

2.4.1 Estimation of πk

We have

π̂k =
1

N

N∑
i=1

πk|i. (7)

with πk|i = P
(
zik = 1|Yi

)
= f(y|zik)πkPG

j=1 f(y|zik)πj
,

and f(y|zik) is given by Yi ∼ N(Si(m + Aczi
),Σi), where Σi = σ2I + SiQST

i .

2.4.2 Estimation of Q

We have

Q̂ =
1

N

N∑
i=1

E
[
d̂id̂

T

i |Yi

]
=

1

N

N∑
i=1

G∑

k=1

E
[
d̂id̂

T

i |Yi, zik = 1
]
. (8)

with (d̂i|Yi, zik) given by the E-step.

2.4.3 Estimation of m, ck and A

This involve an iterative procedure where m, ck and the columns of A are repeatedly
optimized while holding all other parameters �xed.

2.4.4 Estimation of m
First let Yi = Si(m + Aczi

+ di) + εi, for i = 1, · · · , N .
By GLS we get

m̂ =
( N∑

i=1

ST
i Si

)−1 N∑
i=1

ST
i

[
Yi −

G∑

k=1

πk|iSi(Âĉk + d̂ik)
]
, (9)

with d̂ik = E
{
dik|zik,Yi

}
given by the E-step.
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2.4.5 Estimation of ck

The ĉk are calculated using

ĉk =
( N∑

i=1

πk|iÂ
TST

i SiÂ
)−1

N∑
i=1

πk|iÂ
TST

i

[
Yi − Sim̂− Sid̂ik

]
. (10)

2.4.6 Estimation of A

By GLS we only compute vectors, thus each column of A is optimized holding all other
�xed using

âm =
( N∑

i=1

G∑

k=1

πk|iĉ
2
kmST

i Si

)−1
N∑

i=1

G∑

k=1

πk|iĉkmST
i

(
Yi − Sim̂−

G∑

l 6=m

ĉkmSiâl − Sid̂ik

)
,

(11)

where

• am is the mth column of A

• ĉkm is the mth component of ĉk

We iterates through (9), (10) and (11) until all parameters have converged.

2.4.7 Estimation of σ2

The �nal step is to set

σ̂2 =
1

N

N∑
i=1

G∑

k=1

π̂k

{
yT

ikyik + SiCov[d̂i|Yi, zik]S
T
i

}
, (12)

where yik = Yi − Sim̂− SiÂĉk − Sid̂i

The algorithm iterates through (7), (8), (9), (10), (11) and (12) until all parameters
have converged.

3 Radial Basis Function Networks
Radial Basis Function Networks (RBFN) are neural networks used in approximation and
classi�cation tasks. They share with Multi-Layer Perceptrons the universal approximation
property (Haykin 1999).
Classical RBF networks have their inputs fully connected to non-linear units in a single
hidden layer. The output of a RBFN is a linear combination of the hidden units outputs.
More precisely, the output is a weighted sum of Gaussian functions or kernels (i.e. the
nonlinearities) applied to the inputs :

y =
I∑

i=1

λi exp
{
− || x− ci ||2

σi

}
. (13)

where x is the input vector, y is the scalar output of the RBFN, ci, 1 ≤ i ≤ I, are the
centers of the I Gaussian kernels, σi, 1 ≤ i ≤ I, are their widths, and λi, 1 ≤ i ≤ I,
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their weights. Intuitively those last λi parameters represent the relative importance of
each kernel in the output y.

As shown in equation (13), the RBF network has three sets of parameters ci, σi, λi, 1 ≤ i ≤ I.
One advantage of RBFN networks compared to other approximation models is that these
three sets can be learned separately with suitable performances. Moreover the learning of
the λi weights results from a linear system. A description of learning algorithms for RBF
networks can be found in (Verleysen 2003).

4 The Forecasting Method
In this section we present a detailed model-based approach for clustering functional data
and a time series forecasting method. This method will �rst be sketched to give an
intuition of how the forecasting is performed. Then each step of the method will be
detailed.

4.1 Method Description
The forecasting method is based on the "looking in the past" principle. To perform
a functional prediction of the curve for the time interval [t, t + 4tout], we create two
functional spaces. A �rst functional space IN is built with past observations for the time
interval [t−4tin, t], the "regressors" and a similar second functional space OUT is built
with observations for the time interval [t − 4tin, t + 4tout]; these two spaces are built
with all data corresponding to times t ∈ [t0 +4tin, T −4tin −4tout]. These functional
spaces are combined into a probabilistic way to build the functional prediction for the time
interval [t, t + 4tout] and are quantized using the functional clustering algorithm. The
relationship between the �rst and the second functional spaces issued from the clustering
algorithms is encoded into a frequency table constructed empirically on the datasets. In
each of the clusters determined by the second clustering OUT , a local RBFN model is
built to approximate the relationship between the functional output (the local prediction)
and the functional input (the regressor).
Finally, the global functional prediction at time t for the interval [t, t+4tout] is performed
by combining the local models results associated to clusters OUT , according to their
frequencies with respect to the class considered in the cluster IN .

4.2 Quantizing the � inputs �
Consider a scalar time series X, where x(t) is the value at time t, t ∈ [t0, T ]. This original
series is transformed into an array of observations Xin for the time intervals [t, t +4tin],
for all t ∈ [t0, t0 +4tin, t0 + 24tin, · · · , T −4tin −4tout]. Then the clustering algorithm
is applied to the input array Xin; after convergence it gives an IN map of Kin codewords
and the spline coe�cients for the curves of each cluster in this IN map .

4.3 Quantizing the � outputs �
At each input vector of the matrix Xin we aggregate the next observations to get a new
array Yout for the time interval [t, t+4tin+4tout] for all t ∈ [t0, t0+4tin, t0+24tin, · · · , T−
4tin−4tout]. The clustering algorithm is applied to the new array Yout; after convergence
it gives an OUT map of Kout codewords and the spline coe�cients for the curves of each
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cluster in this OUT map. Note that, by construction, there is a one-to-one relationship
between each input and each output vector of spline coe�cients.

4.4 Frequency table
The two sets of codewords from maps IN and OUT only contain a static information.
This information does not re�ect completely the evolution of the time series. The idea is
thus to create a data structure that represents the dynamics of the time series, i.e. how
each class of output vectors of spline coe�cients (including the values for the time interval
[t, t +4tout]) is associated to each class of input vectors of spline coe�cients for the time
interval [t − 4tin, t]. This structure is the frequency table T (i, j), with 1 ≤ i ≤ Nin,
1 ≤ j ≤ Nout. Each element T (i, j) of this table represents the proportion of output
vectors that belongs to the jth class of the OUT map while their corresponding input
vectors belong to class i of the IN map. Those proportions are computed empirically for
the given dataset and sum to one on each line of the table. Intuitively the frequency table
represents all the possible evolutions at a given time t together with the probability that
they e�ectively happen.

4.5 Local RBFN models
When applied to the � outputs �, the functional clustering algorithm provides Nout classes
and the spline coe�cients of the curves for the intervals [t, t + 4tout]. In each of these
classes a RBFN model is learned. Each RBFN model has q inputs (the spline's coe�cients
of the regressors) and q outputs (the spline coe�cients of the prediction curve). These
models represent the local evolution of the time series, restricted to a speci�c class of
regressors. The local information provided by these models will be used when predicting
the future evolution of the time series.

4.6 Forecasting
The relevant information has been extracted from the time series through both maps, the
frequency table and the local RBFN models detailed in the previous sections. Having this
information, it is now possible to perform the forecasting itself. At each time t, the goal is
to estimate the functional curve for the time interval [t, t+4tout] denoted x̂([t, t+4tout]).
First the input at time t is built, leading to X(t). This vector is presented to the IN map,
and the nearest codeword Xk(t) is identi�ed (1 ≤ k(t) ≤ Nin).
In the frequency table, in the k(t)th line, there are some columns corresponding to classes
of the OUT map for which the proportions are non zero. This means that those columns
represent possible evolutions for the considered data X(t), since X(t) has the same shape
than data in the k(t)th class.

For each of those potential evolutions, the respective RBFN models are considered
(one RBFN model has been built for each class in the OUT map). For each of them, a
local prediction x̂j([t, t +4tout]) is obtained (1 ≤ j ≤ Nout). The �nal prediction is a
weighted sum of the di�erent local predictions, the weights being the proportions recorded
in the frequency table. The �nal prediction is thus

x̂([t, t +4tout]) =
Nout∑
j=1

T (k, j)x̂j([t, t +4tout]). (14)
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5 Experimental Results
The examples presented here deal with the IBM stock time series of "tick data" for the
period starting on January 02, 1997 and ending on may 08, 1997 with more than 3000
transactions per day, on the New York Stock Exchange (NYSE).
On Fig. 1 we can see the evolution of the Prices (top) and Volumes (bottom) on one
day. On Fig. 2 we see the distribution of transactions for the same day. Each point
is a transaction, with more transactions at the opening and closing of the NYSE. The
transactions are sampled discretely in time and like it is often the case with �nancial data
the time separating successive observations is itself random.
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On Fig. 3 we can see two successives days of the stock IBM with a �ne smoothing of
the "tick data" by splines.
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Figure 3: Two days of transactions for IBM (dashed curve),with smoothing splines (solid curve)

5.1 Prédiction
We forecast the futur transactions splines for three hours of day J between 10.30Hr. and
13.30 Hr. (4tout = 3.0Hr), from the past transactions (days J − 2 and J − 1 and half an

DSI'05, Decision Sciences Institute International Conference
Barcelona (Spain), 3-6 July 2005, pp. 159-169.



hour of day J between 10.00 Hr. and 10.30 Hr.), in this case (4tin = 11.30Hr). We have
eliminated the transactions at the opening and closing of the NYSE, which are "outliers"
without any correlation with the next hours. On Fig. 4 we can see four out-of-sample
forecasting days superposed with the observations and smoothing splines (not known by
the model). There is a good correlation between the out-of-sample forecasting and the
observations.
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Figure 4: Four forecasting days for IBM stock price. Observations (Points); Smoothing splines
(solid curve); Out-of-sample forecasting by the model (dashed curve)

6 Conclusion
We have presented a functional method for the clustering, modelling and forecasting of
time series by functional analysis and neural networks. This method can be applied
to all types of time series but is particularly e�ective when the observations are sparse,
irregularly spaced, occur at di�erent time points for each curve, or when only fragments of
the curves are observed; standard methods completely fail in these circumstances. By the
functional clustering, we can also realize the forecasting of multiple dynamic processes.
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