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Abstract. Embedded feature selection can be performed by analyzing
the variables used in a Random Forest. Such a multivariate selection
takes into account the interactions between variables but is not easy
to interpret in a statistical sense. We propose a statistical procedure
to measure variable importance that tests if variables are significantly
useful in combination with others in a forest. We show experimentally
that this new importance index correctly identifies relevant variables.
The top of the variable ranking is, as expected, largely correlated with
Breiman’s importance index based on a permutation test. Our measure
has the additional benefit to produce p-values from the forest voting
process. Such p-values offer a very natural way to decide which features
are significantly relevant while controlling the false discovery rate.

1 Introduction

Feature selection aims at finding a subset of most relevant variables for a pre-
diction task. To this end, univariate filters, such as a t-test, are commonly used
because they are fast to compute and their associated p-values are easy to inter-
pret. However such a univariate feature ranking does not take into account the
possible interactions between variables. In contrast, a feature selection proce-
dure embedded into the estimation of a multivariate predictive model typically
captures those interactions.

A representative example of such an embedded variable importance mea-
sure has been proposed by Breiman with its Random Forest algorithm (RF) [1].
While this importance index is effective to rank variables it is difficult to decide
how many such variables should eventually be kept. This question could be ad-
dressed through an additional validation protocol at the expense of an increased
computational cost. In this work, we propose an alternative that avoids such
additional cost and offers a statistical interpretation of the selected variables.

The proposed multivariate RF feature importance index uses out-of-bag
(OOB) samples to measure changes in the distribution of class votes when per-
muting a particular variable. It results in p-values, corrected for multiple testing,
measuring how variables are useful in combination with other variables of the



2 Identification of Statistically Significant Features from RF

model. Such p-values offer a very natural threshold for deciding which variables
are statistically relevant.

The remainder of this document is organised as follows. Section 2 presents
the notations and reminds Breiman’s RF feature importance measure. Section
3 introduces the new feature importance index. Experiments are discussed in
Section 4. Finally, Section 5 concludes this document and proposes hints for
possible future work.

2 Context and Notations

Let Xn×p be the data matrix consisting of n data in a p-dimensional space and
y a vector of size n containing the corresponding class labels. A RF model [1] is
made of an ensemble of trees, each of which is grown from a bootstrap sample
of the n data points. For each tree, the selected samples form the bag (B), the
remaining ones constitute the OOB (B). Let B stand for the set of bags over the
ensemble and B be the set of corresponding OOBs. We have |B| = |B| = T , the
number of trees in the forest.

In order to compute feature importances, Breiman[1] proposes a permutation
test procedure based on accuracy. For each variable xj , there is one permutation
test per tree in the forest. For an OOB sample Bk corresponding to the k-th
tree of the ensemble, one considers the original values of the variable xj and a
random permutation x̃j of its values on Bk. The difference in prediction error
using the permuted and original variable is recorded and averaged over all the
OOBs in the forest. The higher this index, the more important the variable is
because it corresponds to a stronger increase of the classification error when
permuting it. The importance measure Ja of the variable xj is then defined as:

Ja(xj) =
1

T

∑
Bk∈B

1

|Bk|

∑
i∈Bk

I(h
x̃j

k (i) 6= yi)− I(hk(i) 6= yi)

 (1)

where yi is the true class label of the OOB example i, I is an indicator function,
hk(i) is the class label of the example i as predicted by the tree estimated on the

bag Bk, h
x̃j

k (i) is the predicted class label from the same tree while the values of
the variable xj have been permuted on Bk. Such a permutation does not change
the tree but potentially changes the prediction on the out-of-bag example since
its j-th dimension is modified after the permutation. Since the predictors with

the original variable hk and the permuted variable h
x̃j

k are individual decision
trees, the sum over the various trees where this variable is present represents
the ensemble behaviour, respectively from the original variable values and its
various permutations.

3 A Statistical Feature Importance Index from RF

While Ja is able to capture individual variable importances conditioned to the
other variables used in the forest, it is not easily interpretable. In particular,
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it does not define a clear threshold to highlight statistically relevant variables.
In the following sections, we propose a statistical feature importance measure
closely related to Ja, and then compare it with an existing approach that aims
at providing statistical interpretation to feature importance scores.

3.1 Definition

In [2], the authors analyse the convergence properties of ensembles of predictors.
Their statistical analysis allows us to determine the number of classifiers needed
in an ensemble in order to make the same predictions as an ensemble of infinite
size. To do so, they analyse the voting process and have a close look to the class
vote distribution of such ensembles.

In the present work, we combine the idea of Breiman’s Ja to use a permu-
tation test with the analysis of the tree class vote distribution of the forest. We
propose to perform a statistical test that assesses whether permuting a variable
significantly influences that distribution. The hypothesis is that removing an im-
portant variable signal by permuting it should change individual tree predictions,
hence the class vote distribution.

One can estimate this distribution using the OOB data. In a binary classifica-
tion setting, for each data point in an OOB, the prediction of the corresponding
tree can fall into one of the four following cases : correct prediction of class 1
(TP), correct prediction of class 0 (TN), incorrect prediction of class 1 (FP) and
incorrect prediction of class 0 (FN). Summing the occurrences of those cases over
all the OOBs gives an estimation of the class vote distribution of the whole forest.
The same can be performed when permuting a particular feature xj . This gives
an estimation of the class vote distribution of the forest after perturbing this
variable. The various counts obtained can be arranged into a 4× 2 contingency
table. The first variable that can take four different values is the class vote. The
second one is an indicator variable to represent whether xj has been permuted
or not. Formally a contingency table is defined as follows for each variable xj :

xj x̃j
TN s(0, 0) sx̃j (0, 0)
FP s(0, 1) sx̃j (0, 1)
FN s(1, 0) sx̃j (1, 0)
TP s(1, 1) sx̃j (1, 1)

(2)

where

s(l1, l2) =
∑
Bk∈B

∑
i∈Bk

I(yi = l1 and hk(i) = l2) (3)

and sx̃j (l1, l2) is defined the same way with h
x̃j

k (i) instead of hk(i).
In order to quantify whether the class vote distribution changes when per-

muting xj , one can use Pearson’s χ2 test of independence on the contingency
table defined above. This test allows to measure if joined occurrences of two
variables are independent of each other. Rejecting the null hypothesis that they
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are independent with a low p-value pχ2(xj) would mean that xj influences the
distribution and is therefore important. We note that, even on small datasets,
there is no need to consider a Fisher’s exact test instead of Pearson’s χ2 since
cell counts are generally sufficiently large: the sum of all counts is twice the sum
of all OOB sizes, which is influenced by the number of trees T .

If the importance of several variables has to be assessed e.g. to find out
which features are important, one should be careful and correct the obtained
p-values for multiple testing. Indeed, if 1000 dimensions are evaluated using the
commonly accepted 0.05 significance threshold, 50 variables are expected to be
falsely deemed important. To control that false discovery rate (FDR), p-values
can be rescaled e.g. using the Benjamini-Hochberg correction [3].

Let pfdrχ2 (xj) be the value of pχ2(xj) after FDR correction, the new impor-
tance measure is defined as

Jχ2(xj) = pfdrχ2 (xj) (4)

This statistical importance index is closely related to Breiman’s Ja. The two
terms inside the innermost sum of Equation (1) correspond to counts of FP et
FN for permuted and non permuted variable xj . This is encoded by the second
and third lines of contingency table in Equation (2). However, there are some
differences between the two approaches. First, the central term of Ja (eq. (1))
is normalized by each OOB size while the contingency table of Jχ2 (eq. (2))
considers global counts. This follows from the fact that Ja estimates an average
decrease in accuracy on the OOB samples while Jχ2 estimates a distribution
on those samples. More importantly, the very nature of those importance in-
dices differ. Ja is an aggregate measure of prediction performances whereas Jχ2

(eq. (4)) is a p-value from a statistical test. The interpretation of this new in-
dex is therefore much more easy from a statistical significance viewpoint. In
particular, it allows one to decide if a variable is significantly important in the
voting process of a RF. As a consequence, the lower Jχ2 the more important the
corresponding feature, while it is the opposite for Ja.

3.2 Additional Related Work

In [4], the authors compare several ways to obtain a statistically interpretable
index from a feature relevance score. Their goal is to convert feature rankings to
statistical measures such as the false discovery rate, the family wise error rate
or p-values. To do so, most of their proposed methods make use of an external
permutation procedure to compute some null distribution from which those met-
rics are estimated. The external permutation tests repeatedly compute feature
rankings on dataset variants where some features are randomly permuted.

A few differences with our proposed index can be highlighted. First, even if it
can be applied to convert Breiman’s Ja to a statistically interpretable measure,
the approach in [4] is conceptually more complex than ours: there is an addi-
tional resampling layer on top of the RF algorithm. This external resampling
encompasses the growing of many forests and should not be confused with the
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internal bootstrap mechanism at the tree level, inside the forest. This external
resampling can introduce some meta-parameters such as the number of external
resamplings and the number of instances to be sampled. On the other side, our
approach runs on a single RF. There is no need for additional meta-parameters
but it is less general: it is restricted to algorithms based on classifier ensembles.
The external resampling procedures in [4] implies that those methods are also
computationally more complex than Jχ2 . Indeed, they would multiply the cost
of computing a ranking with Ja by the number of external resamplings whereas
the time complexity of computing Jχ2 for p variables is exactly the same as with
Breiman’s Ja. If we assume that each tree node splits its instances into two sets of
equal sizes until having one point per leaf, then the depth of a tree is log n and the
time complexity of classifying an instance with one tree is O(log n). Hence, the
global time complexity of computing a ranking of p variables is O(T ·p ·n · log n).
Algorithm 1 details the time complexity analysis.

res← initRes() // Θ(p)
for xj ∈ Variables do // Θ(p)

contTable← init() // Θ(1)
for Bk ∈ B do // Θ(T)

x̃j ← perm(xj , Bk) // Θ(n)
for i ∈ Bk do // O(n)

a← hk(i) // Θ(depth)

b← h
x̃j
k (i) // Θ(depth)

contTable← update(contTable, a, b, yi) // Θ(1)
end

end
res[xj ]← χ2(contTable) // Θ(1)

end
return res

Algorithm 1: Pseudo-code for computing the importance of all variables with
a forest of T = |B| trees

4 Experiments

The following sections present experiments that highlight properties of the Jχ2

importance measure. They show that Jχ2 actually provides an interpretable im-
portance index (Section 4.1), and that it is closely related to Ja both in terms of
variable rankings (Section 4.2) and predictive performances when used as feature
selection pre-filter (Section 4.3). The last experiments in Section 4.4 present some
predictive performances when restricting models to only statistically significant
variables.
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4.1 Interpretability of Jχ2

The main goal of the new feature importance measure is to provide an inter-
pretable index allowing to retrieve variables that are significantly important in
the prediction of the forest. In order to check that Jχ2 is able to identify those
variables, first experiments are conducted on an artificial dataset with a lin-
ear decision boundary. This dataset is generated the same way as in [4]. Labels
y ∈ {−1, 1}n are given by y = sign(Xw) where w ∈ Rp and X ∈ Rn×p. Data
values come from a N (0, 1) distribution. The number p of variables is set to
120. The first 20 weights wi are randomly sampled from U(0, 1). The other 100
weights are set to 0 such that relevant variables only belong to the first 20 ones
(but all these variables need not be relevant e.g. whenever a weight is very small).
The number of instances is n = 500 such that X ∈ R500×120. In order to add
some noise, 10% of the labels are randomly flipped.

To check that a feature selection technique is able to identify significant
variables, we report the observed False Discovery Rate (FDR) as in [4]:

FDR =
FD

FD + TD
(5)

where FD is the number of false discoveries (i.e. variables which are flagged as
significantly important by the feature importance index but that are actually not
important) and TD the number of true discoveries. A good variable importance
index should yield a very low observed FDR.

A RF, built on the full dataset, is used to rank the variables according to their
importance index. In order to decide if a variable is significantly important, we
fix the p-value threshold to the commonly accepted 0.05 value after correcting for
multiple testing. Figure 1 shows importance indices obtained by forests of various
sizes and different numbers m of variables randomly sampled as candidate in
each tree node. As we can see, the traditional (decreasing) Ja index does not
offer a clear threshold to decide which variables are relevant or not. Similarly to
the methods presented in [4], the (increasing) Jχ2 index appears to distinguish
more clearly between relevant and irrelevant variables. It however requires a
relatively large number of trees to gain confidence that a feature is relevant.
When computed on small forests (plots on the left), Jχ2 may fail to identify
variables as significantly important but they are still well ranked as shown by
the FDR values. Moreover, increasing the parameter m also tends to positively
impact the identification of those variables when the number of trees is low.

4.2 Concordance with Ja

As explained in Section 3.1, Jχ2 and Ja share a lot in their computations. Figure
2 compares the rankings of the two importance measures on one sampling of the
microarray DLBCL[5] dataset (p = 7129, class priors = 58/19). It shows that
variable ranks in the top 500 are highly correlated. Spearman’s rank correlation
coefficient is 0.97 for those variables. One of the main differences between the
rankings produced by Ja and Jχ2 is that the first one penalizes features whose
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Fig. 1. Importance indices computed on an artificial dataset with a linear decision
boundary. For the sake of visibility, Ja has been rescaled between 0 and 1. The hori-
zontal line is set at 0.05. Jχ2(xj) below this line are deemed statistically relevant.
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permuted versions would increase the prediction accuracy while the second one
would favour such a variable since it changes the class vote distribution. That
explains why features at the end of Ja’s ranking have a better rank with Jχ2 .
In particular, after rank 1250 on the horizontal axis, features have a negative Ja
value for they somehow lower the prediction performance of the forest. But, since
they influence the class vote distribution, they are considered more important
by Jχ2 . Although those differences are quite interesting, the large ranks of those
variables indicates that they encode most probably nothing but noise. Further-
more, only top ranked features are generally interesting and selected based on
their low corrected p-values.

0 500 1000 1500

0
50

0
10

00
15

00

Fig. 2. Rankings produced by Ja and Jχ2 on one external sampling of the DLBCL
dataset

4.3 Feature Selection Properties

As shown in section 4.2, Ja and Jχ2 provide quite correlated variable rankings.
The experiments described in this section go a little bit deeper and show that,
when used for feature selection, the properties of those two importance indices
are also very similar in terms of prediction performances and stability of the
feature selection.

In order to measure the predictive performances of a model, the Balanced
Classification Rate (BCR) is used. It can be seen as the mean of per-class ac-
curacies and is preferred to accuracy when dealing with non-balanced classes.
It also generalizes to multi-class problems more easily than AUC. For two class
problems, it is defined as

BCR =
1

2

(
TP

P
+
TN

N

)
(6)
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Stability of feature selection indices aim at quantifying how much selected sets
of features vary when little changes are introduced in a dataset. The Kuncheva
index (KI) [6] measures to which extent K sets of s selected variables share
common elements.

KI({S1, ..., SK}) =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

|Si ∩ Sj | − s2

p

s− s2

p

(7)

where p is the total number of features and s2

p is a term correcting the chance to
share common features at random. This index ranges from −1 to 1. The greater
the index, the greater the number of commonly selected features. A value of 0
is the expected stability for a selection performed uniformly at random.

In order to evaluate those performances and to mimic little changes in datasets,
an external resampling protocol is used. The following steps are repeated 200
times:

Randomly select a training set Tr made of 90% data. The remaining 10%
form the test set Te.
• train a forest of T trees to rank the variables on Tr
• for each number of selected features s
∗ train a forest of 500 trees using only the first s features on Tr
∗ save the BCR computed on Te and the set of s features

The statistics recorded at each iteration are then aggregated to provide mean
BCR and KI.

Figure 3 presents the measurements made over 200-resamplings from the
DLBCL dataset according to the number of features kept to train the classifier.
It shows that the two indices behave very similarly with respect to the number
of features and the number of trees used to rank the features. Increasing the
number of trees allows to get more stable feature selection in both cases. This
kind of behaviour has also been shown in [7].

4.4 Prediction from Significantly Important Variables

Experiments show that Jχ2 ranks features roughly the same way as Ja while
providing a statistically interpretable index. One can wonder if it is able to
highlight important variables on real-world datasets and furthermore if those
variables are good enough to make a good prediction by themselves. Table 1
briefly describes the main characteristics of 4 microarray datasets used in our
study.

Using the same protocol as in Section 4.3, experiments show that the number
of selected variables increases with the number of trees, which is consistent with
the results in Section 4.1. As we can see on Table 2, it is also very dataset depen-
dent with almost no features selected on the DLBCL dataset. Similar results are
observed in [4]. When comparing the predictive performances of a model built
on only significant variables of Jχ2 and a model built using the 50 best ranked



10 Identification of Statistically Significant Features from RF

s

B
C

R

1 5 10 50 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s

K
I

1 5 10 50 500
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Fig. 3. Average BCR and KI of Ja and Jχ2 over 200 resamplings of the DLBCL dataset
according to the number of selected features, for various numbers T of trees

Table 1. Summary of the microarray datasets: class priors report the n values in each
class, p represents the total number of variables.

Name Class priors p

DLBCL [5] 58/19 7129
Lymphoma [8] 22/23 4026
Golub [9] 25/47 7129
Prostate [10] 52/50 6033
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variables of Ja, a paired T-test shows significant differences in most of the cases.
However, except for the DLBCL dataset, when using 10000 trees, the average
predictive performances are quite similar to each other. This confirms that, pro-
vided the number of trees is large enough and depending on the dataset, Jχ2

is able to select important variables that can be used to build good predictive
models.

Table 2. Various statistics obtained over 200-resamplings when keeping only signifi-
cantly relevant variables. T is the number of trees used to build the forest. avg(srel)
(resp. max, min) is the average (resp. maximum, minimum) number of Jχ2 significantly
important features used to make the prediction. BCR is the average BCR obtained on
models for which there is at least one significant feature with Jχ2 . BCR50 is the average
BCR obtained when using the 50 Ja best ranked features in each iteration where Jχ2

outputted at least one significant feature.

T avg(srel) min(srel) max(srel) BCR BCR50

DLBCL 5000 0.04 0 1 0.52 0.67
10000 0.99 0 5 0.69 0.83

golub 5000 5.96 3 10 0.93 0.97
10000 10.82 8 14 0.96 0.97

lymphoma 5000 0.66 0 6 0.62 0.82
10000 4.85 2 9 0.93 0.94

prostate 5000 4.95 2 8 0.93 0.94
10000 7.92 6 11 0.93 0.94

5 Conclusion and Perspectives

This paper introduces a statistical feature importance index for the Random
Forest algorithm which combines easy interpretability with the multivariate as-
pect of embedded feature selection techniques. The experiments presented in
Section 4 show that it is able to correctly identify important features and that it
is closely related to Breiman’s importance measure (mean decrease in accuracy
after permutation). The two approaches yield similar feature rankings. In com-
parison to Breiman’s importance measure, the proposed index Jχ2 brings the
interpretability of a statistical test and allows us to decide which variables are
significantly important using a very natural threshold at the same computational
cost.

We show that growing forests with many trees increases the confidence that
some variables are statistically significant in the RF voting process. This obser-
vation may be related to [7] where it is shown that feature selection stability of
tree ensemble methods increases and stabilises with the number of trees. The
proposed importance measure may open ways to formally analyse this effect,
similarly to [2]. We have evaluated Jχ2 on binary classification tasks. Although
there is a straightforward way to adapt it to the multi-class setting, future work
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should assess whether it is practically usable, in particular how many trees would
be needed when increasing the number of classes. Finally one should also evalu-
ate the possibility to apply this approach on other ensemble methods, possibly
with different kinds of randomization.
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